JPS6113456A - Manufacture of photomagnetic recording medium - Google Patents

Manufacture of photomagnetic recording medium

Info

Publication number
JPS6113456A
JPS6113456A JP13287784A JP13287784A JPS6113456A JP S6113456 A JPS6113456 A JP S6113456A JP 13287784 A JP13287784 A JP 13287784A JP 13287784 A JP13287784 A JP 13287784A JP S6113456 A JPS6113456 A JP S6113456A
Authority
JP
Japan
Prior art keywords
gas
sputtering
recording medium
thin film
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13287784A
Other languages
Japanese (ja)
Inventor
Toshio Niihara
敏夫 新原
Katsuhiro Kaneko
金子 克弘
Shinji Takayama
高山 新司
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13287784A priority Critical patent/JPS6113456A/en
Publication of JPS6113456A publication Critical patent/JPS6113456A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To obtain the photomagnetic recording medium excellent in reproducibility and never causes a device to deteriorate by using mixed gas of inert gas and hydrogen gas as sputter gas used for sputtering. CONSTITUTION:A target which has a small piece of Tb arranged on a Co disk of 110mm. in diameter so that its occupation area is 35% of that of the disk is used. A vacuum is produced up to a 8X10<-7>Torr attainable degree of vacuum and then the mixed sputter gas of hydrogen gas varied in addition amount and argon gas is admitted into a vacuum tank for sputtering; and high frequency electric power of 100W is applied under 5X10<-3>Torr total pressure to perform sputtering, thereby forming a Tb-Co thin film on a glass substrate. Even if there is time or spatial variation in hydrogen partial pressure PH2, the value Ku does not vary greatly and the reproducibility of the Ku value is high. The Ku value is controllable according to the composition of the target for sputtering, i.e. the number of Tb small pieces arranged on the Co plate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光磁気記録媒体の製造方法に係り、特にスパッ
タリング法または蒸着法によって該記録媒体を製膜する
場合に好適な、製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a magneto-optical recording medium, and particularly to a manufacturing method suitable for forming a film of the recording medium by a sputtering method or a vapor deposition method.

〔発明の背景〕[Background of the invention]

一度記録した情報を消失し、繰り返し使用することがで
きる光記録法として光磁気記録が近年極めて注目されて
いる。光磁気記録に用いられる記録媒体としては、記録
感度や読出し性能などの点から、希土類金属と遷移金属
とからなる非晶質金属磁性薄膜が有利である。
In recent years, magneto-optical recording has attracted much attention as an optical recording method that allows information once recorded to be erased and used repeatedly. As a recording medium used for magneto-optical recording, an amorphous metal magnetic thin film made of a rare earth metal and a transition metal is advantageous in terms of recording sensitivity and read performance.

この非晶質金属磁性薄膜に要求される最も基本的な特性
は、磁化が膜面に垂直であることである。
The most basic characteristic required of this amorphous metal magnetic thin film is that the magnetization be perpendicular to the film surface.

言いかえれば、磁化を垂直に保つエネルギー(垂直磁気
異方性エネルギーKu)が充分大きいことが必要である
。このような薄膜(垂直磁化膜)をスパッタリング法に
より製造する場合、従来より基板にバイアス電圧を印加
する方法がとられてきた=しかし、基板にはガラスなど
の絶縁材料が使用されるため基板上に何らかの手段で導
電性を与えねばならず、薄膜製造プロセスが繁雑になる
。さらに、基板にダメージを与えるため、基板上に形成
した案内溝の形状が乱されるという問題もある。
In other words, it is necessary that the energy for keeping the magnetization perpendicular (perpendicular magnetic anisotropy energy Ku) is sufficiently large. When manufacturing such thin films (perpendicularly magnetized films) by sputtering, the conventional method has been to apply a bias voltage to the substrate. However, since the substrate is made of an insulating material such as glass, must be made conductive by some means, which complicates the thin film manufacturing process. Furthermore, since the substrate is damaged, there is also the problem that the shape of the guide groove formed on the substrate is disturbed.

このような問題点を解決するために、たとえば特開昭5
3−76399号公報で述べられているように反応性ガ
ス(例えば窒素、酸素、塩素ガス等)を非反応性スパッ
タガス(例えばアルゴンガス)中に混入してスパッタリ
ングを行ない、垂直磁化膜を得るという方法がある。と
ころが、窒素ガスを混入する方法では、窒素ガス分圧の
わずかな変動により、作製される薄膜の垂直磁気異方性
エネルギーKuが大きく変化してしまい、再現性よく薄
膜を製造することが難がしい。また、酸素ガスや塩素ガ
スでは、スパッタ装置の真空排気系統の酸化、腐食を引
き起こすという問題があった。
In order to solve such problems, for example,
As described in Publication No. 3-76399, sputtering is performed by mixing a reactive gas (e.g., nitrogen, oxygen, chlorine gas, etc.) into a non-reactive sputtering gas (e.g., argon gas) to obtain a perpendicularly magnetized film. There is a method. However, in the method of mixing nitrogen gas, the perpendicular magnetic anisotropy energy Ku of the thin film produced changes greatly due to slight fluctuations in the nitrogen gas partial pressure, making it difficult to produce thin films with good reproducibility. Yes. Furthermore, oxygen gas and chlorine gas have the problem of causing oxidation and corrosion of the vacuum exhaust system of the sputtering apparatus.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、再現性が良好であり、しかも1置の劣
化を招くことのない、光磁気記録媒体の製造方法を提供
することにある。
An object of the present invention is to provide a method for manufacturing a magneto-optical recording medium that has good reproducibility and does not cause any deterioration.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、希土姓金属と遷
移金属との合金からなる非晶質光磁気記録媒体をスパッ
タリング法あるいは蒸着法により製造する方法において
、前記スパッタリングの際に用いるスパッタガスが不活
性ガスと水素ガスとの混合ガスであることを特徴として
おり、また前記蒸着の際に用いる雰囲気が1×1o−5
〜I X 10−’Torrのガス圧のH2を含むもの
であることを特徴としている。
In order to achieve the above object, the present invention provides a method for manufacturing an amorphous magneto-optical recording medium made of an alloy of a rare earth metal and a transition metal by a sputtering method or a vapor deposition method. The gas is a mixed gas of an inert gas and hydrogen gas, and the atmosphere used during the vapor deposition is 1×1o-5.
It is characterized by containing H2 at a gas pressure of ~I x 10-'Torr.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

第1図はTb −Co薄膜中に垂直磁気異方性エネルギ
ーKuを誘起できることを示す図である。この図に特性
を示した薄膜は、高周波スパッタリング法で作製したも
のである。すなわち、直径110龍の00円板上にTb
の小片を、その占める面積が円板のそれの35%となる
よ−glπ配置したターゲットを用いλ到達真空度8 
X 10  Torrまで真空排気した後、水素ガス添
加量を変えた水素ガスとアルゴンガスとの混合スパッタ
ガスをスパッタリング用真空槽内に導入し、全圧5 X
 1O−3Torr のもとで、100Wの高周波電力
を印加してスパッタリングを行ない、ガラス基板上に’
I’b −C!o薄膜を形成した。第1図中の横軸は上
述の混合スパッタガス中の水素分圧(P”2)  であ
り、縦軸は一軸異方性エネルギーKuである。なお、水
素分圧P H2の増加とともにTb濃度はわずかに減少
する傾向があり、P)+2 = Q%のときの組成はT
b 26.s Co 7.3.5 %p )+2 : 
10%のときの組成はTb   (!o   であった
23.3   76.7 合金組成は原子パーセントで示しである。同図から、P
)+2が5%以上になると、Kuの大きさはほぼ一定に
なる。しかし、PH2が余り大きくなると膜形成速度が
遅くなり実用的でなくなる上爆発の危険もあるので、P
H2の上限は30%、より好ましくは15%までである
。つまり、PH2を5〜30%、より好ましくは5〜1
5%の範囲に設定しておけば、水素分圧P H2に3時
間的・空間的変動が生じもKuの値はあまり変化しない
。言いかえれば、Ku値の。
FIG. 1 is a diagram showing that perpendicular magnetic anisotropy energy Ku can be induced in a Tb--Co thin film. The thin film whose characteristics are shown in this figure was produced by high-frequency sputtering. That is, Tb is placed on a 00 disk with a diameter of 110 mm.
Using a target arranged with -glπ so that the area occupied by the small piece is 35% of that of the disk, the vacuum degree reaching λ is 8
After evacuation to X 10 Torr, mixed sputtering gas of hydrogen gas and argon gas with different amounts of hydrogen gas added was introduced into the sputtering vacuum chamber, and the total pressure was raised to 5 X
Sputtering was performed by applying 100 W of high-frequency power under 1 O-3 Torr, and sputtering was performed on the glass substrate.
I'b-C! o A thin film was formed. The horizontal axis in Figure 1 is the hydrogen partial pressure (P"2) in the above-mentioned mixed sputtering gas, and the vertical axis is the uniaxial anisotropy energy Ku. Note that as the hydrogen partial pressure P H2 increases, the Tb concentration increases. tends to decrease slightly, and the composition when P) + 2 = Q% is T
b26. sCo7.3.5%p)+2:
The composition at 10% was Tb (!o)23.3 76.7 The alloy composition is shown in atomic percent. From the same figure, P
)+2 becomes 5% or more, the size of Ku becomes almost constant. However, if the PH2 becomes too large, the film formation rate will slow down, making it impractical, and there is also the risk of explosion.
The upper limit of H2 is 30%, more preferably up to 15%. That is, PH2 is 5-30%, more preferably 5-1
If it is set within the range of 5%, the value of Ku will not change much even if the hydrogen partial pressure P H2 changes over time and space. In other words, the Ku value.

再現性が高いことを示している。This shows that reproducibility is high.

なお、Ku値はスパッタ用ターゲットの組成、すなわち
、CO析板上配置するTb小片の数によって制御するこ
とができる。ただし、光磁気記録媒体としての使用に耐
える特性(たとえば、角形比が1であること)を持つ薄
膜を得るためには、その組成が補償組成近傍になるよう
にTb小片の数を設定しなければならない。第2図は水
素分圧PH2がそれぞれ0%、10%のときの、Tb 
−C!o膜の飽和磁化MSとターゲット組成との関係を
示す図である。
Note that the Ku value can be controlled by the composition of the sputtering target, that is, the number of Tb pieces placed on the CO deposition plate. However, in order to obtain a thin film with characteristics that can withstand use as a magneto-optical recording medium (for example, a squareness ratio of 1), the number of Tb pieces must be set so that its composition is close to the compensation composition. Must be. Figure 2 shows Tb when the hydrogen partial pressure PH2 is 0% and 10%, respectively.
-C! FIG. 3 is a diagram showing the relationship between the saturation magnetization MS of the o film and the target composition.

p H2が0%から10%になると、補償組成は数%T
b過剰側へずれる。これは水素が一部のTbと選択的に
結合してこれを非磁性化するため、coのつくる。
When pH2 goes from 0% to 10%, the compensation composition increases by several %T
b Shifts to the excessive side. This is produced by co because hydrogen selectively combines with some of the Tb to make it non-magnetic.

副格子磁化を打ち消すのに必要なTb濃度がその分だけ
必要になるためである。したがって、ターゲットを構成
する際には、このことを考慮してアルゴンガスのみを使
用する通常のスパッタリングの時よりも多くのTb小片
を配置しなければならない。
This is because the Tb concentration required to cancel the sublattice magnetization is required accordingly. Therefore, when constructing the target, it is necessary to take this into consideration and arrange more Tb pieces than in the case of normal sputtering using only argon gas.

第3図はDy −Co薄膜のKuのpH2依存性を示し
たものである。製膜時のターゲット、スパッタリングの
条件は、第1図に関する説明の中で述べたものと同一で
あり、組成のずれもTb −Co薄膜の場合と同程度で
ある。Tb −Co薄膜と比較してKu値は小さいもの
の、PH2が増大するにしたがってKuが誘起されてく
ることがわかる。
FIG. 3 shows the pH2 dependence of Ku of the Dy-Co thin film. The target and sputtering conditions during film formation are the same as those described in the explanation regarding FIG. 1, and the deviation in composition is also about the same as in the case of the Tb--Co thin film. Although the Ku value is smaller than that of the Tb-Co thin film, it can be seen that Ku is induced as the PH2 increases.

以上はTb −C!oおよびDy −Co系について本
発明を説明したものであるが、その他の希土類金属と遷
移金属との合金からなる非晶質金属磁性薄膜についても
同様な効果がある。とくに、希土類金属元素としてTb
を含む場合には、2つの実施例からもわかるように、大
きな異方性エネルギーを誘起することができる。たとえ
ば、本実施例中で示したTb −Co薄膜やTb−Fe
 、 Tb −Gd −Co 。
The above is Tb-C! Although the present invention has been described for O and Dy-Co systems, similar effects can be obtained for amorphous metal magnetic thin films made of alloys of other rare earth metals and transition metals. In particular, Tb as a rare earth metal element
, as can be seen from the two examples, large anisotropic energy can be induced. For example, the Tb-Co thin film shown in this example or the Tb-Fe thin film
, Tb-Gd-Co.

Tb −Fe −Co薄膜等においては、本発明になる
方法で製膜することにより、異方性エネルギーの大きな
垂直磁化膜を得ることができる。
By forming a Tb-Fe-Co thin film or the like using the method of the present invention, a perpendicularly magnetized film with large anisotropic energy can be obtained.

なお、本発明になる製造方法で作成した薄膜を熱的によ
り安定化させるためには、希土類−遷移金属薄膜中にT
i、 Zr、 Nb、 Or、 AI、 Ga+Ge+
’−Rh 、 Ru 、 ptなどの元素を添加すれば
よい。
In order to thermally stabilize the thin film produced by the manufacturing method of the present invention, it is necessary to add T to the rare earth-transition metal thin film.
i, Zr, Nb, Or, AI, Ga+Ge+
'-Elements such as Rh, Ru, and pt may be added.

本発明は高周波スパッタリングに限られるものではなく
、直流スパッタリング、マグネトロンスパッタリング、
イオンビームスパッタリング等を用いて薄膜を作製する
場合も同様な結果が得られる。また、不活性ガスとして
は、アルゴンガス以外でもよく、ネオンガス、クリプト
ンガス、キセノンガス等を用いることができる。さらに
は、スパッタリング法と比較して基板への付着力は劣る
ものの、蒸着法を用いる場合においても、1×10〜I
 X 10  TorrのH2ガス圧になるように水素
ガスを導入することにより、Tb−(Eo、 Dy−C
o、 Tb−Fe 、 Gd −Fe 、 Gd −C
o  などの非晶質金属磁性薄膜においても垂直磁化膜
を得ることができる。
The present invention is not limited to high frequency sputtering, but includes direct current sputtering, magnetron sputtering,
Similar results can be obtained when forming a thin film using ion beam sputtering or the like. Further, the inert gas may be other than argon gas, and neon gas, krypton gas, xenon gas, etc. can be used. Furthermore, although the adhesion to the substrate is inferior to that of the sputtering method, even when using the vapor deposition method, 1×10 to I
By introducing hydrogen gas to the H2 gas pressure of X 10 Torr, Tb-(Eo, Dy-C
o, Tb-Fe, Gd-Fe, Gd-C
A perpendicularly magnetized film can also be obtained in an amorphous metal magnetic thin film such as .

〔発明の効果〕 以上詳細に説明したように、本発明により再現性が良好
であり、しかも製膜装置の劣化を招くことのない光磁気
記録媒体の製造方法を提供することができる。
[Effects of the Invention] As described above in detail, the present invention can provide a method for manufacturing a magneto-optical recording medium that has good reproducibility and does not cause deterioration of a film forming apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTb −Co非晶質磁性薄膜をアルゴンガスと
水素ガスとの混合スパッタガス中でスパッタリング法で
作製したときの該薄膜の垂直磁気異方性エネルギーの該
混合ガス中の水素分圧依存性を示す図、第2図は混合ス
パッタガス中の水素分圧“を一定にしたときのTb −
Co非晶質磁性薄膜の飽和磁化の組成依存性を示す図、
第3図はDy −C。 非晶質磁性薄膜を混合スパッタガス中で作製したときの
該薄膜の垂直磁気異方性エネルギーの水素分圧依存性を
示す図である。
Figure 1 shows the perpendicular magnetic anisotropy energy of a Tb-Co amorphous magnetic thin film produced by sputtering in a mixed sputtering gas of argon gas and hydrogen gas, as well as the hydrogen partial pressure in the mixed gas. Figure 2 shows the dependence of Tb − when the hydrogen partial pressure in the mixed sputtering gas is kept constant.
A diagram showing the composition dependence of saturation magnetization of a Co amorphous magnetic thin film,
Figure 3 shows Dy-C. FIG. 3 is a diagram showing the hydrogen partial pressure dependence of the perpendicular magnetic anisotropy energy of an amorphous magnetic thin film produced in a mixed sputtering gas.

Claims (1)

【特許請求の範囲】 1、希土類金属と遷移金属との合金からなる非晶質光磁
気記録媒体をスパッタリング法あるいは蒸着法により製
造する方法において、前記スパッタリングあるいは蒸着
の際に用いる雰囲気ガスが水素ガスを含有するものであ
ることを特徴とする光磁気記録媒体の製造方法。 2、特許請求の範囲第1項記載の光磁気記録媒体の製造
方法において、前記雰囲気ガスが5〜30%の水素ガス
と残り不活性ガスとからなり且つスパッタリング法によ
り製造することを特徴とする光磁気記録媒体の製造方法
。 3、特許請求の範囲第2項記載の光磁気記録媒体の製造
方法において、前記雰囲気ガスが5〜15%の水素ガス
と残り不活性ガスとからなることを特徴とする光磁気記
録媒体の製造方法。 4、特許請求の範囲第1項、第2項または第3項記載の
光磁気記録媒体の製造方法において、前記希土類金属と
して少なくともTbを含むことを特徴とする光磁気記録
媒体の製造方法。
[Claims] 1. In a method for manufacturing an amorphous magneto-optical recording medium made of an alloy of rare earth metal and transition metal by sputtering or vapor deposition, the atmospheric gas used during the sputtering or vapor deposition is hydrogen gas. 1. A method for manufacturing a magneto-optical recording medium, comprising: 2. The method for producing a magneto-optical recording medium as set forth in claim 1, characterized in that the atmospheric gas consists of 5 to 30% hydrogen gas and the remainder inert gas, and is produced by a sputtering method. A method for manufacturing a magneto-optical recording medium. 3. The method for manufacturing a magneto-optical recording medium according to claim 2, wherein the atmospheric gas is composed of 5 to 15% hydrogen gas and the remainder inert gas. Method. 4. A method for manufacturing a magneto-optical recording medium according to claim 1, 2 or 3, characterized in that the rare earth metal contains at least Tb.
JP13287784A 1984-06-29 1984-06-29 Manufacture of photomagnetic recording medium Pending JPS6113456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13287784A JPS6113456A (en) 1984-06-29 1984-06-29 Manufacture of photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13287784A JPS6113456A (en) 1984-06-29 1984-06-29 Manufacture of photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6113456A true JPS6113456A (en) 1986-01-21

Family

ID=15091644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13287784A Pending JPS6113456A (en) 1984-06-29 1984-06-29 Manufacture of photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6113456A (en)

Similar Documents

Publication Publication Date Title
EP0135322B2 (en) An optical magnetic recording member
US4362767A (en) Magnetic thin film and method of making it
US4929320A (en) Method of making magneto-optical recording medium
EP0170393B1 (en) Data recording medium
EP0091122B1 (en) Magneto-optical recording medium
JPS6113456A (en) Manufacture of photomagnetic recording medium
US4734334A (en) Magneto-optical recording medium
US5411813A (en) Ferhgasi soft magnetic materials for inductive magnetic heads
JP2680586B2 (en) Magneto-optical storage medium
JPS6334754A (en) Production of magneto-optical recording medium
JPH0673197B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS60243843A (en) Production of photothermomagnetic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
Zhang et al. Annealing effects of Co/Ni multilayers
JPS5931970B2 (en) Method for manufacturing amorphous ferromagnetic film
JP2629062B2 (en) Medium for magneto-optical memory
JPH0684213A (en) Magneto-optical recording medium and its production
JPS60125950A (en) Optical information recording medium and its production
JPH0256724B2 (en)
JPS62128043A (en) Photomagnetic recording material
JPS60125933A (en) Production of magnetic medium
JPH07111791B2 (en) Method for manufacturing magneto-optical recording medium
JPS60143460A (en) Optothermomagnetic recording medium and its production
JPS60125949A (en) Optical information recording medium and its production
JPH0766579B2 (en) Magneto-optical recording medium and manufacturing method thereof