JPS61134544A - Refrigerator with plurality of refrigerant circulation system - Google Patents
Refrigerator with plurality of refrigerant circulation systemInfo
- Publication number
- JPS61134544A JPS61134544A JP59258177A JP25817784A JPS61134544A JP S61134544 A JPS61134544 A JP S61134544A JP 59258177 A JP59258177 A JP 59258177A JP 25817784 A JP25817784 A JP 25817784A JP S61134544 A JPS61134544 A JP S61134544A
- Authority
- JP
- Japan
- Prior art keywords
- side heat
- heat exchanger
- load
- refrigerant circulation
- capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/06—Several compression cycles arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、多室を冷凍又は空調す°べく各室内にそれぞ
れ負荷側熱交換器を配設してなる複数の冷媒循環系統を
備えた冷凍装置の改良に関し、詳しくは、冷凍能力の制
御幅の拡大による快適性向上対策に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention comprises a plurality of refrigerant circulation systems each having a load-side heat exchanger disposed in each room in order to refrigerate or air-condition multiple rooms. The present invention relates to improvements in refrigeration equipment, and specifically relates to measures to improve comfort by expanding the range of control over refrigeration capacity.
(従来の技術)
従来より、冷凍装置における冷凍能力を室内の冷凍負荷
に応じた複数段階に制御するようにした技術として、例
えば実開昭59−23035号公報、実開昭59−23
036号公報等に開示されるように、圧縮礪と、室外に
配設される熱源側熱交換器と、膨張機構と、所定の室内
に配設される負荷側熱交換器とを順次接続してなる冷媒
循環系統に対して1.上記圧縮機を能力制御するインバ
ータと、上記負荷側熱交換器の配設される室内の温度を
検出する室温検出手段と、該室温検出手段の室温信号を
室温目標値と比較し、その偏差に応じた複数種類(例え
ば4種類)の周波数設定信号を上記インバータに出力す
る信号出力手段とを備えて、圧m機の能力を上記室温と
室温目標値との偏差に応じた能力に制御することにより
、空調能力を例えば4段階にll1lJ 110丈るよ
うにしたものが知られている。(Prior Art) Conventionally, as a technique for controlling the refrigerating capacity of a refrigeration system in multiple stages according to the indoor refrigeration load, for example, Japanese Utility Model Application Publication No. 59-23035 and Japanese Utility Model Application No. 59-23 are known.
As disclosed in Publication No. 036, etc., a compression chamber, a heat source side heat exchanger disposed outdoors, an expansion mechanism, and a load side heat exchanger disposed inside a predetermined room are sequentially connected. 1. For the refrigerant circulation system consisting of An inverter that controls the capacity of the compressor, a room temperature detection means that detects the temperature in the room where the load-side heat exchanger is installed, and a room temperature signal of the room temperature detection means that is compared with a room temperature target value, and the deviation thereof and a signal output means for outputting a plurality of types (for example, four types) of frequency setting signals to the inverter according to the temperature, so as to control the capacity of the pressurizer to a capacity corresponding to the deviation between the room temperature and the target room temperature value. According to the above, it is known that the air conditioning capacity is divided into four stages, for example.
(発明が解決しようとする問題点)
ところで、多室を同時に冷凍又は空調すべく、熱源側熱
交W8器を内蔵する1台の室外ユニットに対して複数台
の室内ユニットを設け、該各室内ユニットに内蔵される
負荷側熱交換器を多室に配設してなる、いわゆるマルチ
方式の冷凍装置において上記従来の技術を適用する場合
、該各室内ユニットでの冷凍能力を太き(確保すべく各
負荷側熱交換器に対してそれぞれ1台の圧縮機を対応さ
せたときには、各負荷側熱交換器の冷凍能力の変化幅は
対応する圧縮機の例えば4段階の能力変化幅に応じた。(Problems to be Solved by the Invention) By the way, in order to simultaneously refrigerate or air-condition multiple rooms, a plurality of indoor units are provided for one outdoor unit with a built-in heat exchanger W8 on the heat source side. When applying the above conventional technology to a so-called multi-system refrigeration system in which the load-side heat exchanger built into the unit is arranged in multiple rooms, it is necessary to increase (secure) the refrigerating capacity of each indoor unit. When one compressor is associated with each load-side heat exchanger, the range of change in the refrigerating capacity of each load-side heat exchanger will correspond to the capacity change range of the corresponding compressor, for example, in four stages. .
従来と同様の範囲に制限されて、多くの圧縮機を備える
にも拘らずその能力変化幅を拡大することができないこ
とになり、各圧N機の能力変化を室内の快適性向上に有
効に利用、寄与し得ない。しかも、圧縮機の故障による
停止時には対応する負荷側熱交換器のIgi!設された
室内の冷凍又は空調作用も停止して、信頼性が低下する
ことになる。It is limited to the same range as before, and even though it has many compressors, it is not possible to expand the range of capacity changes, so it is not possible to effectively change the capacity of each compressor to improve indoor comfort. Cannot be used or contributed. In addition, when the compressor is stopped due to failure, the load-side heat exchanger's Igi! The refrigeration or air conditioning function in the installed room will also stop, reducing reliability.
本発明は斯かる点に鑑みてなされたものぐあり、その目
的は、上記の如くマルチ方式の冷凍装置において複数個
の負荷側熱交換器に対してこれと同 1数の圧縮
機を備える場合には、各負荷側熱交換器の冷凍能力をそ
れぞれ複数個の圧縮機の作動に基づいて発揮させるよう
にすることにより、各負荷側熱交換器の冷凍能力の変化
幅を該複数個の圧縮機の能力の組合せでもって拡大して
、室内の快適性の向上を図るとともに、所定の負荷側熱
交換器に対応する圧縮機のうち1台が故障により停止し
たときにも残りの圧縮機でもって対応する室内の冷凍能
力を可及的に確保して、信頼性の向上を図ることにある
。The present invention has been made in view of these points, and its purpose is to provide a multi-system refrigeration system with one compressor for a plurality of load-side heat exchangers as described above. In order to achieve this, the refrigerating capacity of each load-side heat exchanger is exerted based on the operation of a plurality of compressors, so that the range of change in the refrigerating capacity of each load-side heat exchanger can be adjusted based on the operation of a plurality of compressors. In addition to improving indoor comfort by expanding the capacity of the compressors, even if one of the compressors corresponding to a given load-side heat exchanger stops due to a failure, the remaining compressors can be used. The objective is to secure as much indoor refrigeration capacity as possible to improve reliability.
(問題点を解決するための手段)
上記目的を達成するため、本発明の解決手段は第1図に
示すように、熱源側熱交換器(1)を内蔵する1台の室
外ユニット(X)に対して11IliIの負荷側熱交換
器(2)、(2’ )を内蔵する室内ユニット(Y)、
(Z)を?!数台備えた冷凍装置において、上記室外ユ
ニット(X)には上記複数台の室内ユニット(Y)、(
Z)の負荷側熱交換器(2)、(2’ )と同数の圧縮
機(3)、 (3′ )が備えられているとともに、
該合圧縮機(3)、(3’ )から室外ユニット(X)
の熱源側熱交換器(1〉および上記各室内ユニット(Y
)。(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. Indoor unit (Y) with built-in load side heat exchanger (2), (2') of 11IliI,
(Z)? ! In a refrigeration system equipped with several units, the outdoor unit (X) is equipped with the plurality of indoor units (Y), (
Z) is equipped with the same number of compressors (3), (3') as the load side heat exchangers (2), (2'), and
From the joint compressor (3), (3') to the outdoor unit (X)
heat source side heat exchanger (1) and each of the above indoor units (Y
).
(Z)の各負荷側熱交換器(2)、(2’ )を循環す
る複数の冷媒循環系統(A)、(B)が形成されており
、上記各室内ユニット(Y)、(Z)の負荷側熱交換器
(2)、(2’ )は第1熱交換部(2a )、 (
2’ a )と第2熱交換部(2b)。A plurality of refrigerant circulation systems (A) and (B) are formed to circulate through each of the load-side heat exchangers (2) and (2') of (Z), and each of the above-mentioned indoor units (Y) and (Z) The load side heat exchangers (2), (2') are the first heat exchange parts (2a), (
2'a) and the second heat exchange section (2b).
(2’ b )とに分割されていて、該第1熱交換部(
2a )、 (2’ a )は自己の冷媒循環系統に
配置されているとともに、第2熱交換部(2b)。(2' b ), and the first heat exchange section (
2a) and (2'a) are arranged in the own refrigerant circulation system, and are the second heat exchange section (2b).
(2’ b )は他の冷媒循環系統に対してその負荷側
熱交換器の第1熱交換部(2a )、 (2’ a
)とは並列に接続された構成としたものである。(2'b) is the first heat exchange section (2a), (2'a) of the load side heat exchanger for other refrigerant circulation systems.
) are connected in parallel.
(作用〉
以上により、本発明では、各冷媒循環系統(A)、(B
)の負荷側熱交換器(2)、(2’ )において、第1
熱交換部(2a )、 (2’ a )の空調能力が
自己の冷媒循環系統の圧縮機の作動により発揮されると
ともに、第2熱交換部<2b)。(Function) As described above, in the present invention, each refrigerant circulation system (A), (B
), in the load side heat exchangers (2), (2'), the first
The air conditioning capacity of the heat exchange parts (2a) and (2'a) is exerted by the operation of the compressor of its own refrigerant circulation system, and the second heat exchange part <2b).
(2’ b ’)の空調能力が他の冷媒循環系統の圧縮
機の作動により発揮され、この両者間の空調能力の合計
値が自己の冷媒循環系統と他の冷媒循環系統との両圧縮
機の能力変化に応じて種々変化することにより、該多負
荷側熱交換器(2)、(2’ )の空調能力の変化幅
が拡大されるとともに、自己の冷媒循環系統の圧縮機が
故障により停止した場合にも、第1熱交換部(2a )
、 (2’ a >での冷凍作用の停止に拘わらず、
他の冷媒循環系統の圧縮機の(¥肋により第2熱交換部
(2b)、(2′b)で空調能力が可及的に確保される
のである。The air conditioning capacity of (2' b ') is exerted by the operation of the compressor of another refrigerant circulation system, and the total value of the air conditioning capacity between them is By making various changes in response to changes in the capacity of the heat exchangers (2) and (2'), the range of changes in the air conditioning capacity of the multi-load side heat exchangers (2) and (2') is expanded, and the compressor of the own refrigerant circulation system is prevented from malfunctioning. Even when it is stopped, the first heat exchange section (2a)
, (despite the cessation of the freezing action at 2′ a >
The air conditioning capacity is ensured as much as possible in the second heat exchange parts (2b) and (2'b) by the compressors of the other refrigerant circulation systems.
(実施例)
以下、本発明の実施例を第2図以下の図面に基づいて詳
細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.
第2図は、2つの室内を同時に空調し得るようにしたヒ
ートポンプ式冷暖房装置に適用した実施例を示し、(X
)は室外に配設された熱源側熱交11(1)を内蔵する
1台の室外ユニット、(Y)、(2)は室内に配設され
る負荷側熱交換器(2)、(2’)をそれぞれ内蔵する
第1および第2の室内ユニットである。FIG. 2 shows an example applied to a heat pump type air conditioning system that can air condition two rooms at the same time.
) is one outdoor unit with a built-in heat source side heat exchanger 11 (1) installed outdoors, (Y) and (2) are load side heat exchangers (2) and (2) installed indoors. ') respectively.
上記室外ユニット(X)の内部には、上記2台の室外ユ
ニット(Y)、(Z)の負荷側熱交換器(2)、(2’
)と同数つまり2台の第1および第2の圧縮機(3)
、(3’ )と、四路切換弁<4)、(4’ )と、暖
房用膨張機構(5)。Inside the outdoor unit (X), the load side heat exchangers (2) and (2') of the two outdoor units (Y) and (Z) are installed.
), i.e. two first and second compressors (3)
, (3'), a four-way switching valve <4), (4'), and a heating expansion mechanism (5).
(5′ )と、冷房用膨張機構(6)、(6’ )と
、アキュムレータ(7)、(7’ )とが内蔵されて
いて、該第1の機器(3)〜(ア)と熱源側熱交!IA
器(1)および第1の室内ユニット(Y)の負荷側熱交
換器く2)はそれぞれ冷媒配管(8)・・・により冷媒
循環可能に接続されて一つの冷媒W環系統(A)が形成
されているとともに、第2の機器(3′ )〜(7′)
と熱源側熱交換器(1)および第2の室内ユニット(Z
)の負荷側熱交換器(2′ )はそれぞれ冷媒配?!(
9)・・・により冷媒循環可能に接続されて他の冷媒循
環系統(B)が形成されており、冷房運転時には各四路
切換弁(4)、(4’ )を図中実線の如く切換えて冷
媒を図中実線矢印の如く循環させることにより、各負荷
側熱交換器(2)、(2’ )で室内から吸熱
lした熱量を熱源側熱交換器(1)で室外に放熱する
ことを繰返して、対応する室内を冷房する一方、暖房運
転時には各四路切換弁(4)、(4’ ”)を図中破線
の如く切換えて冷媒を図中破線矢印の如く循環させるこ
とにより、熱量の授受を上記とは逆にして室内を暖房す
るようになされている。(5'), cooling expansion mechanisms (6), (6'), and accumulators (7), (7') are built in, and the first devices (3) to (A) and the heat source Side heat exchange! IA
The load-side heat exchanger (2) of the heat exchanger (1) and the first indoor unit (Y) are connected to each other through refrigerant piping (8) so that the refrigerant can be circulated, and one refrigerant W-ring system (A) is formed. The second device (3') to (7')
and the heat source side heat exchanger (1) and the second indoor unit (Z
) is the load side heat exchanger (2') connected to refrigerant? ! (
9)... are connected to allow refrigerant circulation to form another refrigerant circulation system (B), and during cooling operation, each four-way switching valve (4), (4') is switched as shown by the solid line in the figure. By circulating the refrigerant as shown by the solid arrow in the figure, heat is absorbed from the room by each load-side heat exchanger (2), (2').
The heat exchanger (1) on the heat source side repeatedly radiates the heat to the outside to cool the corresponding room, while during heating operation, the four-way switching valves (4), (4''') are By switching the refrigerant as shown by the broken line and circulating the refrigerant as shown by the broken line arrow in the figure, the exchange of heat is reversed to heat the room.
そして、上記第1および第2の負荷側熱交換器(2)、
(2’ )はそれぞれ所定の比率、例えば1:1の割合
に2分割されて、第1熱交換部(2a)、(2′a)と
第2熱交換部(2b)、(2′b)とが設けられていて
、第1熱交換部(2a)、(2′a)はそれぞれ自己の
冷媒循環系統(A)、(B)に介設配置されているとと
もに、冷媒循環可能(A>の負荷側熱交換器(2)の第
2熱交換部(2b)は冷媒配管(10)、(10)によ
り他の冷媒循環系統(B)に対してその負荷側熱交換器
(2′ )の第1熱交換部(2′a>とは並列に接続さ
れている。同様に、冷媒循環系統(B)の負荷側熱交換
器(2′)の第2熱交換部(2′b)は冷媒配管(11
)、(11)により他の冷媒循環系統(A)に対してそ
の負荷側熱交換器(2)の第1熱交換部(2a)とは並
列に接続されている。and the first and second load side heat exchangers (2),
(2') is divided into two at a predetermined ratio, for example, 1:1, and the first heat exchange section (2a), (2'a) and the second heat exchange section (2b), (2'b ), and the first heat exchange parts (2a) and (2'a) are interposed in their own refrigerant circulation systems (A) and (B), respectively, and have a refrigerant circulation system (A The second heat exchange part (2b) of the load-side heat exchanger (2) of ) is connected in parallel with the first heat exchange section (2'a>).Similarly, the second heat exchange section (2'b) of the load side heat exchanger (2') of the refrigerant circulation system (B) ) is the refrigerant pipe (11
), (11), the first heat exchange section (2a) of the load-side heat exchanger (2) is connected in parallel to the other refrigerant circulation system (A).
また、上記冷媒循環系統(Δ〉の圧縮機(3)は0N−
OFF制御によりその能力が100%と0%との2段階
に制御されるものぐある。さらに、他の冷媒循環系統(
B)の圧wJ機(3′ )はインバータ(15)により
4種の周波数設定信号、60.50.40.30Hzに
応じた4段階の能力に制御されるものである。In addition, the compressor (3) of the refrigerant circulation system (Δ>) is 0N-
There are some whose capacity is controlled in two stages, 100% and 0%, by OFF control. In addition, other refrigerant circulation systems (
The pressure wJ machine (3') in B) is controlled by an inverter (15) to have four levels of capability corresponding to four types of frequency setting signals, 60, 50, 40, and 30 Hz.
したがって、上記実施例においては、第1および第2の
室内の冷房又は暖房時、各冷媒循環系統(A)、、(B
)の負荷側熱交換器(2)、<2’ )の空調能力は、
自己の冷媒循環系統の圧縮機の作動に基づく第1熱交換
部(2a )、 (2’ a )の空調能力と、他の
冷媒循環系統の圧縮機の作動に基づく第2熱交換部(2
1) )、 (2’ b )の空調能力との合計値と
なる。そして、この各空調能力の変化は第3図および第
4図に実線で示すように第1の圧縮機(3)の2段階の
能力変化と第2の圧縮機(3′ )の4段階の能力変化
との粗合せによる8段階の能力変化に基づいた範囲にな
るので、この空調能力の変化幅は例えば同図に破線で示
す比較例の如く各負荷側熱交換器(2)、(2’ )に
対して第2の圧縮IN(3’)と同様の圧縮機のみを対
応させた場合に比べて倍近くに拡大されることになる。Therefore, in the above embodiment, when cooling or heating the first and second rooms, each refrigerant circulation system (A), (B
) The air conditioning capacity of the load side heat exchanger (2), <2') is
The air conditioning capacity of the first heat exchange section (2a), (2'a) is based on the operation of the compressor of its own refrigerant circulation system, and the second heat exchange section (2'a) is based on the operation of the compressor of the other refrigerant circulation system.
This is the total value of the air conditioning capacity of 1)) and (2'b). As shown by the solid lines in Figures 3 and 4, these changes in air conditioning capacity are the two-stage capacity change of the first compressor (3) and the four-stage capacity change of the second compressor (3'). Since the range is based on eight stages of capacity change by rough combination with capacity change, the range of change in air conditioning capacity is, for example, for each load-side heat exchanger (2), (2) as in the comparative example shown by the broken line in the figure. ) is almost twice as large as the case where only a compressor similar to the second compression IN (3') is used.
よって、各負荷側熱交換器(2)。Therefore, each load side heat exchanger (2).
(2′ )の空調能力を室内空調負荷の変化に良好に対
応させつつ増減制御でき、室内の快適性の向上を顕著に
図ることができる。The air conditioning capacity (2') can be increased or decreased while suitably responding to changes in the indoor air conditioning load, and indoor comfort can be significantly improved.
しかも、自己の冷媒循環系統(A)、(B)の圧縮機(
3)、(3’ )の作動が故障により停止した場合にも
、他の冷媒循環系統の圧縮機の作動により各負荷側熱交
換器(2)、(2’ )の空調能力をその第2熱交換部
(2b )、 (2’ b )で可及的に確保するこ
とができるので、信頼性の向上を図ることができる。Moreover, the compressors (
3), (3') stops due to a failure, the air conditioning capacity of each load-side heat exchanger (2), (2') is reduced to its second level by the operation of the compressor of the other refrigerant circulation system. Since the heat exchange parts (2b) and (2'b) can secure as much as possible, reliability can be improved.
尚、上記実施例では、各負荷側熱交換器(2)。In addition, in the said Example, each load side heat exchanger (2).
〈2′ )を1:1の割合に等分割したが、本発明はこ
れに限定されず、その他、4:1等の所定の異なる比率
に分割してもよいのは勿論のこと、圧縮機(3)、(3
”)の能力制御についても例えば第1および第2の圧縮
機(3)、(3’ )を共にインバータで3段階以上の
複数段階に能力制御してもよい。<2') was divided equally at a ratio of 1:1, but the present invention is not limited to this, and it is of course possible to divide it at a different predetermined ratio such as 4:1. (3), (3
For example, the capacity of the first and second compressors (3) and (3') may be controlled by an inverter in three or more stages.
また、上記実施例では、1台の室外ユニット(X)に対
しで2台の室内ユニット(Y)、(Z)を備えたものに
適用した場合について説明したが、本発明をよこれに限
定されず、3台以上のFi数台の室内ユニットを備えた
ものに対しても同様に適用できるのは勿論である。Furthermore, in the above embodiment, a case has been described in which the present invention is applied to one having two indoor units (Y) and (Z) for one outdoor unit (X), but the present invention is not limited to this. Of course, the present invention can also be applied to an indoor unit equipped with three or more Fi indoor units.
(発明の効果)
以上説明したように、本発明によれば、1台の室外ユニ
ットに対して?!数台の室内ユニットを備えたいわゆる
マルチ方式の冷*装置において、該各室内ユニットの負
荷側熱交換器と同数の圧縮機を備えた場合、各負荷側熱
交換器は第1および第2の熱交換部に分割され、該各熱
交換部の空調能力がそれぞれ複数個の圧縮はの能力制御
によって増減調整されて、各負荷側熱交換器の空調能力
の 1変化幅が大きく拡大されるのに、室内の快適
性の向上を顕著に図ることができるとともに、上記1台
の負荷側熱交換器に対する複数台の圧縮機の対応により
、そのうち1台の圧縮機が故障により停止した場合にも
、残りの圧縮機でもって対応する室内を可及的に冷凍又
は空調することができ、信頼性の向上を図ることができ
る。(Effects of the Invention) As explained above, according to the present invention, for one outdoor unit? ! In a so-called multi-method refrigeration* system equipped with several indoor units, when each indoor unit is equipped with the same number of compressors as the load-side heat exchangers, each load-side heat exchanger has a first and a second It is divided into heat exchange parts, and the air conditioning capacity of each heat exchange part is adjusted to increase or decrease by controlling the capacity of a plurality of compressors, so that the range of one change in the air conditioning capacity of each load side heat exchanger is greatly expanded. In addition, indoor comfort can be significantly improved, and by using multiple compressors for one load-side heat exchanger, even if one of the compressors stops due to a failure, The remaining compressors can be used to refrigerate or air condition the corresponding room as much as possible, thereby improving reliability.
第1図は本発明の構成を示す図である。第2図ないし第
4図は本発明の実施例を示し、第2図は全体構成図、第
3図および第4図は空調能力の拡大された様子を説明す
るための説明図である。
(A)、(B)・・・冷媒循環系統、(X)・・・室外
ユニット、(Y)、(Z)・・・室内ユニツ)−、(1
)・・・熱源側熱交換器、(2)、(2’ )・・・負
荷側熱交換器、(2a )、 (2’ a ’)・・
・第1熱交換部、(2b )、 (2’ b )・・
・第2熱交換部、(3)。
(3′)・・・圧縮機。
第1図
X(室ダトユニ、、ト)
−士
な ν
堪ミ
ー2Mi’q磐や骸骨
02針毫罠E÷費FIG. 1 is a diagram showing the configuration of the present invention. 2 to 4 show embodiments of the present invention, with FIG. 2 being an overall configuration diagram, and FIGS. 3 and 4 being explanatory diagrams for explaining how the air conditioning capacity is expanded. (A), (B)...Refrigerant circulation system, (X)...Outdoor unit, (Y), (Z)...Indoor unit) -, (1
)...Heat source side heat exchanger, (2), (2')...Load side heat exchanger, (2a), (2'a')...
・First heat exchange section, (2b), (2'b)...
- Second heat exchange section, (3). (3')... Compressor. Figure 1
Claims (1)
ット(X)に対して1個の負荷側熱交換器(2)、(2
′)を内蔵する室内ユニット(Y)、(Z)を複数台備
えた冷凍装置において、上記室外ユニット(X)には上
記複数台の室内ユニット(Y)、(Z)の負荷側熱交換
器(2)、(2′)と同数の圧縮機(3)、(3′)が
備えられているとともに、該各圧縮機(3)、(3′)
から室外ユニット(X)の熱源側熱交換器(1)および
上記各室内ユニット(Y)、(Z)の各負荷側熱交換器
(2)、(2′)を循環する複数の冷媒循環系統(A)
、(B)が形成されており、上記各室内ユニット(Y)
、(Z)の負荷側熱交換器(2)、(2′)は第1熱交
換部(2a)、(2′a)と第2熱交換部(2b)、(
2′b)とに分割されていて、該第1熱交換部(2a)
、(2′a)は自己の冷媒循環系統に配置されていると
ともに、第2熱交換部(2b)、(2′b)は他の冷媒
循環系統に対してその負荷側熱交換器の第1熱交換部(
2a)、(2′a)とは並列に接続されていることを特
徴とする複数の冷媒循環系統を備えた冷凍装置。(1) For one outdoor unit (X) with a built-in heat source side heat exchanger (1), one load side heat exchanger (2), (2
') In a refrigeration system equipped with a plurality of indoor units (Y) and (Z), the outdoor unit (X) is equipped with a load-side heat exchanger of the plurality of indoor units (Y) and (Z). The same number of compressors (3) and (3') as (2) and (2') are provided, and each compressor (3) and (3')
A plurality of refrigerant circulation systems that circulate between the heat source side heat exchanger (1) of the outdoor unit (X) and the load side heat exchangers (2) and (2') of each of the indoor units (Y) and (Z). (A)
, (B) are formed, and each of the above indoor units (Y)
, (Z) load-side heat exchangers (2), (2') have first heat exchange parts (2a), (2'a) and second heat exchange parts (2b), (
2'b) and the first heat exchange section (2a).
, (2'a) are arranged in its own refrigerant circulation system, and the second heat exchange parts (2b), (2'b) are arranged in the second heat exchanger of the load side heat exchanger with respect to other refrigerant circulation systems. 1 Heat exchange section (
A refrigeration system equipped with a plurality of refrigerant circulation systems, characterized in that 2a) and (2'a) are connected in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59258177A JPS61134544A (en) | 1984-12-05 | 1984-12-05 | Refrigerator with plurality of refrigerant circulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59258177A JPS61134544A (en) | 1984-12-05 | 1984-12-05 | Refrigerator with plurality of refrigerant circulation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61134544A true JPS61134544A (en) | 1986-06-21 |
JPH04185B2 JPH04185B2 (en) | 1992-01-06 |
Family
ID=17316590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59258177A Granted JPS61134544A (en) | 1984-12-05 | 1984-12-05 | Refrigerator with plurality of refrigerant circulation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61134544A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003062718A1 (en) * | 2002-01-24 | 2003-07-31 | Daikin Industries, Ltd. | Refrigerating device |
WO2022189486A1 (en) * | 2021-03-09 | 2022-09-15 | Lowenco A/S | A cold storage, a method of operating a cold storage, and a cooling system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044774A (en) * | 1983-08-23 | 1985-03-09 | 三洋電機株式会社 | Air conditioner |
-
1984
- 1984-12-05 JP JP59258177A patent/JPS61134544A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044774A (en) * | 1983-08-23 | 1985-03-09 | 三洋電機株式会社 | Air conditioner |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003062718A1 (en) * | 2002-01-24 | 2003-07-31 | Daikin Industries, Ltd. | Refrigerating device |
US6938430B2 (en) | 2002-01-24 | 2005-09-06 | Daikin Industries, Ltd. | Refrigerating device |
WO2022189486A1 (en) * | 2021-03-09 | 2022-09-15 | Lowenco A/S | A cold storage, a method of operating a cold storage, and a cooling system |
Also Published As
Publication number | Publication date |
---|---|
JPH04185B2 (en) | 1992-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6038873A (en) | Air conditioner capable of controlling an amount of bypassed refrigerant according to a temperature of circulating refrigerant | |
US5689965A (en) | Air conditioner | |
JPS61134544A (en) | Refrigerator with plurality of refrigerant circulation system | |
JP2508825B2 (en) | Air conditioner | |
JP3078044B2 (en) | Air conditioner | |
JPH0320665B2 (en) | ||
JPS629138A (en) | Air conditioner | |
JPS60114662A (en) | Air conditioner | |
JPH03271675A (en) | Cold water manufacturing device | |
JP3429798B2 (en) | Air conditioner electric expansion valve flow variation compensation device | |
JP2508824B2 (en) | Air conditioner | |
JPS6038569A (en) | Refrigerator | |
JP2503701B2 (en) | Air conditioner | |
KR20010004763A (en) | Multi-type air conditioner having at least two bypass line and method for controlling amount of bypassing refrigerent | |
JP2508225B2 (en) | Air conditioner | |
JPH0735390A (en) | Air conditioning apparatus | |
JPH03255860A (en) | Cooling and heating inclusive type multi-chamber air conditioner | |
JPH02217758A (en) | Control device for refrigeratin machine | |
JPS62294852A (en) | Refrigerator | |
JPS63204076A (en) | Air conditioner | |
JPS62178828A (en) | Air conditioner of heat pump type | |
JPH1183224A (en) | Air conditioner system | |
JPS63163742A (en) | Multi-chamber air conditioner | |
JPH07208823A (en) | Multi-room air conditioner | |
JPS63318451A (en) | Multi-chamber type air conditioner |