JPS61133136A - Reactor - Google Patents

Reactor

Info

Publication number
JPS61133136A
JPS61133136A JP25173784A JP25173784A JPS61133136A JP S61133136 A JPS61133136 A JP S61133136A JP 25173784 A JP25173784 A JP 25173784A JP 25173784 A JP25173784 A JP 25173784A JP S61133136 A JPS61133136 A JP S61133136A
Authority
JP
Japan
Prior art keywords
reactor
tube
catalyst
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25173784A
Other languages
Japanese (ja)
Inventor
Toshikazu Shinkawa
新川 利和
Daisaku Shozen
少前 大作
Kichiyoshi Arahatake
新畠 吉良
Hiroshi Makihara
牧原 洋
Katsutoshi Murayama
村山 勝利
Masaaki Kuwa
久和 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP25173784A priority Critical patent/JPS61133136A/en
Publication of JPS61133136A publication Critical patent/JPS61133136A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To facilitate charge and discharge of catalyst by locating a porous central pipe at the center of a reactor and locating simultaneously a porous cylinder which is concentric with the central pipe and having a gas passage constituted between an external shell of the reactor. CONSTITUTION:Water contg. substantially no steam bubbles is introduced from a nozzle 13 and flows from below toward above through an annular space formed by the inside dia. of a cooling pipe 15 and an outside dia. of a central pipe 17. Steam is generated and moved upward from an inside surface of the pipe 15 serving as a heat transmitting surface. A fluid mixture consisting of water having risen to the top of the cooling pipe 15 and the steam is inversed its flow direction and flows downward through the central pipe 17 and discharged from a nozzle 14. Since in this reactor, a lower tube plate 7 is contained but no upper tube plate is contained, packing work of the catalyst is facilitated remarkably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水素と一酸化炭素(および二酸化炭素)ガスを
用いtメタノール台底の如く固形粒された反応器を提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a reactor in which hydrogen and carbon monoxide (and carbon dioxide) gases are used in a solid state such as a methanol base.

(従来の技術) この種の反応器は運転時の発熱反応によるガス温度の上
昇全制御する手段、構造に種々のものが提案されている
が、これは第6図の例、即ちメタノール合成反応のメタ
ノール平衡濃度に対する温度の効果で明らかなように、
温度の上昇と共にメタノール平衡濃度が低下し工業的プ
テントの経済性が損なわれるためである。
(Prior art) For this type of reactor, various methods and structures have been proposed to completely control the rise in gas temperature due to exothermic reactions during operation. As evidenced by the effect of temperature on the methanol equilibrium concentration of
This is because as the temperature rises, the methanol equilibrium concentration decreases, impairing the economic efficiency of industrial patents.

触媒を使用しても反応速度は有限であシ、反応速度は当
然ながら温度の低下と共に小さくなるので工業的には触
媒性能を考慮したある適正温度範囲内で運転することが
必要とされる。
Even if a catalyst is used, the reaction rate is limited, and the reaction rate naturally decreases as the temperature decreases, so industrially it is necessary to operate within a certain appropriate temperature range that takes catalyst performance into consideration.

この温度調節の几めの反応器1構造として公知の例にド
イツ特許第3007203号がある。この公知例は第7
因に示す如く、冷却1iF(複数個)2を垂直方向に位
置させて上下の管板3で固定し、該管内全飽和温度の加
圧水か下方から上方へ移動するようにしている。また、
肢管2とシェル1で構成される空間に目板4によって触
媒5を充填させ、未反応ガスをシェルの上部から反応器
内へ流入させて触媒床内を軸方向に移動するようにして
、シェル下部から反応終了ガスを取出している。
German Patent No. 3007203 is a well-known example of a reactor 1 structure with this precise temperature control. This known example is the seventh
As shown in the above, the cooling units 1iF (a plurality of units) 2 are vertically positioned and fixed by upper and lower tube plates 3, and the pressurized water at the total saturation temperature inside the tubes is moved from the bottom to the top. Also,
The space formed by the limb tube 2 and the shell 1 is filled with the catalyst 5 through the perforated plate 4, and the unreacted gas is caused to flow into the reactor from the upper part of the shell and move in the axial direction within the catalyst bed. Reaction-completed gas is taken out from the bottom of the shell.

この公知例を工業的に使用する場合には、触媒の充填、
抜出しが困難であるという大きい欠点を有している。即
ち、冷却管は複数個設置されているためシェルの内部に
作業人、工具金持ち込むことが現実的に不可能であり、
触媒充填不良により反応器として満足な性能を得ること
ができない。
When this known example is used industrially, filling the catalyst,
The major drawback is that it is difficult to extract. In other words, since multiple cooling pipes are installed, it is practically impossible to bring workers or tools inside the shell.
Due to insufficient catalyst filling, it is not possible to obtain satisfactory performance as a reactor.

(発明が解決しようとする問題点) 本発明はこのような公知例の欠点を解決し次工業的に適
用可能な反応器を提供せんとするものである。
(Problems to be Solved by the Invention) The present invention aims to solve the drawbacks of such known examples and provide a reactor that can be applied industrially.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は管外に固形粒状触媒と反応させよう
とするガス金位置させて発熱反応上行わせると共に管内
にガス温度よりも低い飽和温度の加圧水を位置させて蒸
発潜熱によシ反応熱を取り去ることによりガス温度を制
御するようにしt反応器に於いて、該反応器の中央に多
孔中心管を位置させると共に該中心管と同心円状でかつ
反応器外殼との間にガス流路を構成させた多孔円筒全位
置させ、該中心管と円筒で構成される円環状空間を触媒
充填部とし、該触媒充填部の上部には着脱自在の蓋板全
取付け、反応させようとするガスを円環状触媒充填層内
を径方向に流動させるようにし、かつ反応器の下方に位
置する管板に上端に蓋を有する冷却管を垂直方向に固定
し、肢管の中央に中心!を位置させて肢管と中心管で構
成される円環状空間を水が上昇し、中心管内金水蒸気が
下降するようにしたことを特徴とする反応器である。
That is, in the present invention, the gas to be reacted with the solid particulate catalyst is placed outside the tube to perform an exothermic reaction, and pressurized water with a saturation temperature lower than the gas temperature is placed inside the tube to reduce the heat of reaction by latent heat of vaporization. In the reactor, a porous central tube is located in the center of the reactor, and a gas flow path is provided concentrically with the central tube and between the outer shell of the reactor and the reactor. The configured porous cylinder is fully positioned, the annular space composed of the center tube and the cylinder is used as a catalyst filling part, and a removable cover plate is attached to the top of the catalyst filling part to fill the gas to be reacted. In order to allow the flow to flow in the annular catalyst packed bed in the radial direction, a cooling tube with a lid at the upper end is fixed vertically to the tube plate located below the reactor, and the cooling tube is centered at the center of the limb tube. This reactor is characterized in that the water rises through the annular space formed by the limb tubes and the central tube, and the gold vapor within the central tube descends.

そして上記反応器を以下のようにすることを本発明の好
ましい実施態様とするものである。
A preferred embodiment of the present invention is to configure the above reactor as follows.

外表面にガスと触媒が位置する領域の冷却!の管径を管
板挿入部の管径よりも大にすること。
Cooling of the area where the gas and catalyst are located on the outer surface! The diameter of the tube should be larger than that of the tube plate insertion section.

本発明の反応器の基本的な構造の断面図を第1図に、そ
の径方向の平面図を第2図に示す′。
A sectional view of the basic structure of the reactor of the present invention is shown in FIG. 1, and a radial plan view thereof is shown in FIG.

第1図、第2図における符号は下記のものを意味する。The symbols in FIGS. 1 and 2 mean the following.

1:未反応ガス入口ノズル、2:耐圧殻(@!と円筒か
ら成る)、44;蓋板、5:多孔板よシ成る中心管、′
6:多孔板より成る円筒、7.8;管板、9:蓋板、1
G、11:円筒、12;円筒、13;補給水入口ノズル
、14;水蒸気出口ノズル、15;冷却管(複数個)、
16:蓋(管15にナベで装着)、17:中心管(管1
5にすべて!i層)、18;反応終了ガス出口ノズル、
19;固形粒状触媒、20:ガス流路 第1図に於いて、反応熱は冷却管15(複数個)の管内
に位置させた飽和温度の加圧水の蒸′ 発潜熱として反
応器の外部へ取出すのであるが、本発明においては、所
謂バヨネット型と称する形式の冷却管を採用している点
に特徴を有する。
1: Unreacted gas inlet nozzle, 2: Pressure-resistant shell (consisting of @! and cylinder), 44; Lid plate, 5: Center tube consisting of perforated plate,'
6: Cylinder made of perforated plate, 7.8; Tube plate, 9: Lid plate, 1
G, 11: Cylinder, 12: Cylinder, 13: Make-up water inlet nozzle, 14; Steam outlet nozzle, 15; Cooling pipe (plurality),
16: Lid (attached to tube 15 with a pan), 17: Center tube (tube 1
Everything in 5! i layer), 18; reaction completion gas outlet nozzle,
19: Solid particulate catalyst, 20: In the gas flow path shown in FIG. 1, the reaction heat is extracted to the outside of the reactor as the latent heat of evaporation of pressurized water at the saturation temperature located inside the cooling pipes 15 (multiple pipes). However, the present invention is characterized in that it employs a so-called bayonet type cooling pipe.

ノズル13から送入された水(実質的に水蒸気泡を含有
しない)は冷却管150内径と中心管17の外径で構成
される円環状空間内を下から上へ移動し、管15の内表
面が伝熱面となって水蒸気を発生しつつ上昇して行くよ
うにする。
The water (substantially containing no water vapor bubbles) sent in from the nozzle 13 moves from bottom to top within the annular space formed by the inner diameter of the cooling pipe 150 and the outer diameter of the central pipe 17, and flows into the inner diameter of the pipe 15. The surface acts as a heat transfer surface, generating water vapor as it rises.

冷却管15の上部まで上昇し穴水と水蒸気の混合流体は
流動方向を反転させられ、中心IW17の管内を上から
下へ流下しノズル14から流出させられる。
The mixed fluid of hole water and steam that rises to the top of the cooling pipe 15 has its flow direction reversed, flows down inside the pipe at the center IW 17 from top to bottom, and is discharged from the nozzle 14 .

このように、本発明反応器においては、下部管板7は存
在するが、上部管板は存在しないものであって、これに
より触媒の充填作業が著しく容易となるという利点を有
するものである。
As described above, in the reactor of the present invention, the lower tube sheet 7 is present, but the upper tube sheet is not present, and this has the advantage that the catalyst filling operation is considerably facilitated.

本発明反応器に於いては、更に反応器中央に多孔構造を
有する中心管5を位置させると共に、反応器シェル(外
殼)2からガス流路20t−保持させた位置に多孔構造
を有する円筒6t−位置させる。触媒充填時には蓋3t
−取り除いて中心管5と円筒6と冷却管15(複数個)
で構成される空間に上方から粒状固形触媒を落下させる
ことによシ触媒床19を容易に構成させることができる
。(第2図においては、中心管17は図示省略しである
) 触媒抜き出し時には、第3図に示す如く中心管5の下部
(点線位置で、この箇所をボルト組立とする)を解体し
て固形粒状触媒を下方へ重力によシ落下させることによ
り抜出すことも可能であり、また蓋板3を取り外して触
媒抜出し工具を管で真空ポンプに連結して抜き出すこと
も可能である。
In the reactor of the present invention, a central tube 5 having a porous structure is further located in the center of the reactor, and a cylinder 6t having a porous structure is located at a position holding a gas flow path 20t from the reactor shell (outer shell) 2. - to position. Lid 3t when filling catalyst
-Remove the center tube 5, cylinder 6 and cooling tubes 15 (multiple pieces)
The catalyst bed 19 can be easily formed by dropping the granular solid catalyst from above into the space formed by the above structure. (In Fig. 2, the center pipe 17 is not shown.) When removing the catalyst, as shown in Fig. 3, the lower part of the center pipe 5 (indicated by the dotted line, this part is the bolt assembly) is disassembled and the solid is removed. It is possible to extract the granular catalyst by letting it fall downward by gravity, or it is also possible to remove the cover plate 3 and connect a catalyst extraction tool to a vacuum pump via a tube to extract it.

本発明反応器においては上部管板を有しないtめ、蓋板
3の上方に作業人、工具全位置させて触媒充填、抜出し
作業を行うことが容易であり、これが本発明の第1の特
徴である。
Since the reactor of the present invention does not have an upper tube plate, it is easy to position all workers and tools above the lid plate 3 to carry out catalyst filling and removal operations, which is the first feature of the present invention. It is.

次に、本発明反応器の第2の特徴は、反応させようとす
るガスを反応器の径方向に流動させることにある。第1
図において、未反応ガスはノズル1から流入させられ、
中心管5内に流入し九後、中心VSの多孔部から触媒床
19内へ流入して径方向へ移動しつつ接触反応を生じ、
その反応熱を冷却管15(複数個)の管壁を介して冷却
管15内の水に与えることによりガス温度は適正条件範
囲内に維持されつつ円筒6の多孔部からガス流路20へ
流出し、ノズル18から反応器外へ取出される。当然な
がら中心管5と円筒6は同心円とし、触媒床19のガス
流動抵抗を均等にし、空間速度を均一にすべきである。
Next, the second feature of the reactor of the present invention is that the gas to be reacted is made to flow in the radial direction of the reactor. 1st
In the figure, unreacted gas is introduced from nozzle 1;
After flowing into the center pipe 5, it flows into the catalyst bed 19 through the pores of the center VS and moves in the radial direction, causing a contact reaction.
By giving the reaction heat to the water in the cooling pipe 15 through the pipe wall of the cooling pipe 15 (multiple pieces), the gas temperature is maintained within the appropriate condition range and flows out from the porous part of the cylinder 6 to the gas flow path 20. Then, it is taken out from the reactor through the nozzle 18. Naturally, the center tube 5 and the cylinder 6 should be concentric circles to equalize the gas flow resistance of the catalyst bed 19 and to equalize the space velocity.

ま几、第4図に示しt如く、未反応ガス全光ずガス流路
20へ流入するようにし、該ガスt   ′円筒6の多
孔部から触媒床19へ流入させて中心管5の多孔部を経
由してノズル18から反応器外へ取出すようにすること
も当然に可能であるO 本発明においては反応器の径、高さく長さ)は特に拘束
しないか、公知例(第7図)においては触媒床内金ガス
が軸方向に流動するようにしている友め、ガス流路面積
小(g!間速度大)となシ反応器としての圧力損失(差
圧)が大となる欠点がある。これに対し本発明において
は触媒床内金ガスを径方向に流動するようにしているた
め、当然ながらガスの流路面積を大にすることができる
。このガス流路面積は径方向に変化するが、最小流路面
積は中心管5の径を変化させることによシ、自由に調節
することが可能である。何れにしても本発明に於いては
、触媒床厚さは反応器径の7未満と小さく、平均ガス流
路面積が大である九めガスの空間速度を小として接触時
間全適切な条件に設定させることに表るが、これは反応
器内のガスの流動抵抗(差圧、圧力損失)を小にさせ、
循環ガス圧縮機の駆動エネルギーを軽減させることがで
きるという点で工業的に大きい価値がある。
As shown in FIG. In the present invention, the diameter, height, and length of the reactor are not particularly restricted, or the known example (Fig. 7) In this case, the gold gas in the catalyst bed flows in the axial direction, but the gas flow path area is small (g! velocity is large), and the pressure loss (differential pressure) as a reactor is large. There is. On the other hand, in the present invention, since the gold gas within the catalyst bed is made to flow in the radial direction, the area of the gas flow path can naturally be increased. Although this gas passage area changes in the radial direction, the minimum passage area can be freely adjusted by changing the diameter of the central tube 5. In any case, in the present invention, the catalyst bed thickness is as small as less than 7 the diameter of the reactor, and the space velocity of the ninth gas, which has a large average gas flow area, is kept small, and the contact time is kept under appropriate conditions. This means that the gas flow resistance (differential pressure, pressure loss) in the reactor is reduced,
It has great industrial value in that it can reduce the driving energy of the circulating gas compressor.

また、一方、接触速度を小にした時は当然ながら単位空
間当りの反応量が大となり、それに対応した発生熱を有
効に取り除くことが反応温度を適正条件範囲内に維持す
るために重要な問題となるが、本発明に於いては発明者
等が特願昭59−1750.95号として既に提案しt
構造のように、即ち第5図に示す如く、管板7挿入部の
管径(1,に比し、触媒とガスに接する領域の管径at
e大とすることによシ冷却管15伝熱面積を自由に増大
調節させることもできる。
On the other hand, when the contact speed is reduced, the amount of reaction per unit space naturally increases, and it is important to effectively remove the corresponding heat generated in order to maintain the reaction temperature within the appropriate condition range. However, in the present invention, the inventors have already proposed as Japanese Patent Application No. 1750.95/1982.
As shown in FIG. 5, compared to the tube diameter (1,
By making e large, the heat transfer area of the cooling pipe 15 can be freely increased and adjusted.

伝熱面積(管局長×管長)が管径に比例することは当然
であるが、管板挿入部の管径を大とすることは管板の構
造力学の点で制約があり、発明者らは管板挿入部の管径
はその内径d2において中心管(その外径aS)の挿入
および該内径amと中心管外径d3で構成される水流路
の確保全可能にすることを必要条件とし、触媒とガスに
擬する領域の管径についてはd1≧d2  と上限を制
限することなく管径を自由に調節しようとするものであ
る。当然ながら触媒とガスに接する領域の管径は反応器
の径方向、長さ方向に異にするようにすることができる
。また当然ながら同−空間において冷却管径を増大させ
ることは残余の空間面積を減少させ、触媒充填量の減少
と空間速度の増大を生じるが、これらは発生熱量との関
連か、ら適正条件の冷却管径を設定することによシ対応
し得るものである。
It is natural that the heat transfer area (pipe length x pipe length) is proportional to the pipe diameter, but increasing the pipe diameter at the tube sheet insertion part is constrained by the structural mechanics of the tube sheet, and the inventors The pipe diameter of the tube plate insertion part is required to make it possible to insert the center pipe (its outer diameter aS) at its inner diameter d2 and to secure a water flow path consisting of the inner diameter am and the center pipe outer diameter d3. The pipe diameter of the region simulating the catalyst and gas is set to d1≧d2, and the pipe diameter is freely adjusted without any upper limit. Naturally, the diameter of the pipe in the region in contact with the catalyst and gas can be made to vary in the radial and longitudinal directions of the reactor. Naturally, increasing the diameter of the cooling pipe in the same space reduces the remaining space area, resulting in a decrease in the amount of catalyst packed and an increase in the space velocity, but these are related to the amount of heat generated, and under appropriate conditions. This can be handled by setting the diameter of the cooling pipe.

ま九、未反応ガス(メタノール濃度は実質的にゼロ)が
触媒に接した時は反応平衡濃度との差が大きい几め大き
い反応速度(発熱速度)で反応が進行し、ガス中のメタ
ノール濃度の上昇と共に反応速度が低下して行く九め、
本発明反応器を使用してガス中のメタノール濃度の小さ
い未反応ガスを第1図の中心管5円へ供給し、ガスが円
環形触媒床19i内周から外周へ流動させて反応初期に
於いては空間速度を大に、反応後期に於いては空間速度
を小にさせることにより反応管15の熱負荷を均等化を
計ることができ、更に上述の冷却管15の管径を変化さ
せることによシ、従来公知技術に比し著しくすぐれた等
温型反応を行わせることができる。
9. When unreacted gas (methanol concentration is essentially zero) comes into contact with the catalyst, the reaction proceeds at a much higher reaction rate (exothermic rate) with a large difference from the reaction equilibrium concentration, and the methanol concentration in the gas decreases. Nine, the reaction rate decreases as the value increases.
Using the reactor of the present invention, unreacted gas with a low methanol concentration in the gas is supplied to the center tube 5 in FIG. The heat load on the reaction tubes 15 can be equalized by increasing the space velocity during the reaction period and decreasing the space velocity during the latter stages of the reaction, and further by changing the diameter of the cooling tube 15 described above. Furthermore, it is possible to carry out an isothermal reaction that is significantly superior to conventionally known techniques.

又、本発明反応器の工業的な適用形態として、発明者等
がこれま次漬簀先に特願昭59−144162号及び特
願昭59−180727号で提案した後流側反応器に本
発明反応器を適用することも大きい効果かある。即ち、
本発明反応器におけるように冷却管内に飽和温度の水、
該管外に粒状触媒とガスを位置させ九反応器においては
未反応ガス(メタノール濃度が実質的にゼロ)が触媒と
接して大きい反応速度(熱発生速度)で反応を生じる反
応初期における熱発生速度に比し、冷却管の冷却能力が
小となる(伝熱面積不足)ことが多く、本発明反応器に
於ける冷却管径増大もその対応策の一つであるが、上記
の既提案で述べtように、反応後期に於いては反応生成
物濃度が上昇している几め反応平衡濃度との差が大きく
ないので反応速度が小さくなり、冷却管伝熱面積は大と
する必要はない。
In addition, as an industrial application form of the reactor of the present invention, the present inventors have proposed a downstream reactor in Japanese Patent Application No. 59-144162 and Japanese Patent Application No. 59-180727. Applying the invented reactor also has a great effect. That is,
Water at saturated temperature in the cooling tube as in the reactor of the present invention,
In the nine reactors in which a granular catalyst and gas are placed outside the tube, unreacted gas (methanol concentration is essentially zero) comes into contact with the catalyst and reacts at a high reaction rate (heat generation rate). Heat generation at the initial stage of the reaction. The cooling capacity of the cooling pipe is often small compared to the speed (insufficient heat transfer area), and one countermeasure is to increase the diameter of the cooling pipe in the reactor of the present invention, but the above-mentioned existing proposal As mentioned in t, in the late stage of the reaction, the reaction product concentration increases and the difference from the equilibrium concentration of the reduced reaction is not large, so the reaction rate decreases, and the heat transfer area of the cooling tube does not need to be large. do not have.

従って、本発明反応器を後流側反応器に適用することは
工業的に大きい価値がある。
Therefore, it is of great industrial value to apply the reactor of the present invention to the downstream reactor.

このように、本発明は触媒充填、取出しが容易である等
の利点を有する反応器に係るものであって、メタノール
合成など粒状触媒にガスを接触させて発熱反応を行わさ
せる熱交換器内蔵等温型反応器として工業的に適用して
大きい価値を有するものであシ、その用途はメタノール
合成に限定し定ものではなく、広い用途に適用し得るも
のである。
As described above, the present invention relates to a reactor that has advantages such as ease of loading and unloading of catalyst, and is an isothermal reactor with a built-in heat exchanger that brings gas into contact with a granular catalyst to perform an exothermic reaction such as methanol synthesis. It has great value when applied industrially as a type reactor, and its use is not limited to methanol synthesis, but can be applied to a wide range of uses.

ま友、反応器の径、高さく長さ)、ガス圧力。(diameter, height and length of the reactor), gas pressure.

組成、冷却管径、管数などの具体的仕様についてはその
用途毎に異なるため特に拘束しないものである。
Specific specifications such as composition, diameter of cooling pipes, number of pipes, etc. are not particularly restricted as they vary depending on the application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明反応器の一実施態様の断面図、第2図は
同装置の径方向の平面図、第5図は中心言下部の構造の
一例を示す図、第4図は本発明反応器の他の使用態様の
説明図、第5図は本発明反応器に適用して有利な冷却管
を説明する几めの図、第6図はメタノール平衡濃度に対
する圧力と温度の関係を示すグラフ、第7図は従来のこ
の種反応装置の断面図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − f 束反爬ガス ↓ 反応終了がス 第5図 圧力(6Ltyn)
FIG. 1 is a sectional view of an embodiment of the reactor of the present invention, FIG. 2 is a radial plan view of the same device, FIG. 5 is a diagram showing an example of the structure of the lower part of the center column, and FIG. 4 is a diagram of the present invention. An explanatory diagram of another mode of use of the reactor, Figure 5 is a schematic diagram explaining a cooling pipe that is advantageous when applied to the reactor of the present invention, and Figure 6 shows the relationship between pressure and temperature for methanol equilibrium concentration. The graph and FIG. 7 are cross-sectional views of a conventional reactor of this type. Subagent 1) Clearance agent Ryo Hagiwara - f Bundle reaction gas ↓ The reaction ends at Figure 5 Pressure (6Ltyn)

Claims (2)

【特許請求の範囲】[Claims] (1)管外に固形粒状触媒と反応させようとするガスを
位置させて発熱反応を行わせると共に管内にガス温度よ
りも低い飽和温度の加圧水を位置させて蒸発潜熱により
反応熱を取り去ることによりガス温度を制御するように
した反応器に於いて、該反応器の中央に多孔中心管を位
置させると共に該中心管と同心円状でかつ反応器外殼と
の間にガス流路を構成させた多孔円筒を位置させ、該中
心管と円筒で構成される円環状空間を触媒充填部とし、
該触媒充填部の上部には着脱自在の蓋板を取付け、反応
させようとするガスを円環状触媒充填層内を径方向に流
動させるようにし、かつ反応器の下方に位置する管板に
上端に蓋を有する冷却管を垂直方向に固定し、該管の中
央に中心管を位置させて該管と中心管で構成される円環
状空間を水が上昇し、中心管内を水蒸気が下降するよう
にしたことを特徴とする反応器。
(1) By placing the gas to be reacted with the solid particulate catalyst outside the tube to cause an exothermic reaction, and by placing pressurized water with a saturation temperature lower than the gas temperature inside the tube to remove the reaction heat using the latent heat of vaporization. In a reactor designed to control gas temperature, a porous central tube is located in the center of the reactor, and a porous hole is formed concentrically with the central tube and forms a gas flow path between the reactor outer shell and the reactor. A cylinder is positioned, and an annular space constituted by the central pipe and the cylinder is used as a catalyst filling part,
A removable cover plate is attached to the upper part of the catalyst filling part to allow the gas to be reacted to flow in the radial direction inside the annular catalyst packed bed, and the upper end is attached to the tube plate located below the reactor. A cooling tube with a lid is fixed in a vertical direction, and a center tube is positioned in the center of the tube so that water rises through the annular space formed by the tube and the center tube, and water vapor descends inside the center tube. A reactor characterized by:
(2)外表面にガスと触媒が位置する領域の冷却管の管
径を、管板挿入部の管径よりも大にした特許請求の範囲
(1)記載の反応器。
(2) The reactor according to claim (1), wherein the diameter of the cooling pipe in the area where the gas and catalyst are located on the outer surface is larger than the diameter of the tube plate insertion part.
JP25173784A 1984-11-30 1984-11-30 Reactor Pending JPS61133136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25173784A JPS61133136A (en) 1984-11-30 1984-11-30 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25173784A JPS61133136A (en) 1984-11-30 1984-11-30 Reactor

Publications (1)

Publication Number Publication Date
JPS61133136A true JPS61133136A (en) 1986-06-20

Family

ID=17227188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25173784A Pending JPS61133136A (en) 1984-11-30 1984-11-30 Reactor

Country Status (1)

Country Link
JP (1) JPS61133136A (en)

Similar Documents

Publication Publication Date Title
US7314603B2 (en) Heterogeneous catalytic reactor with a modular catalytic cartridge
JPH0551336B2 (en)
US7767171B2 (en) Shell-type reactor with radial baffles
MX2013003834A (en) Radial bed vessels having uniform flow distribution.
RU2229333C2 (en) Method of mass exchange between a liquid and a gaseous phases, column with a filler for the method realization and a method of upgrading the column for mass exchange
US4522252A (en) Method of operating a liquid-liquid heat exchanger
JPH07284656A (en) Liquid phase catalyst assembly for chemical process tower
US2534859A (en) Method and apparatus for hydrocarbon conversion
US2751756A (en) Cooling walls with fluidized solids and liquid vaporization
JPS61133136A (en) Reactor
JP2004535286A (en) Reactor for testing catalyst systems
RU2002131458A (en) CATALYTIC REACTOR FOR EXOTHERMAL PROCESSES PROCESSING IN A GAS-SOLID PHASE WITH A DIFFERENT TEMPERATURE DIFFERENCE
US2089038A (en) Catalytic converter
EP4043424A1 (en) Chemical reaction method and chemical reaction device
CN209663242U (en) Reaction unit
US2219214A (en) Contact chamber
US2499305A (en) Apparatus for gaseous conversions in presence of a moving contact material
US2433670A (en) Catalytic reaction apparatus
CN109908841A (en) Reaction unit
JPH0150453B2 (en)
CN217856054U (en) Catalyst bearing tower plate for tower reactor
CN215277236U (en) Fixed bed reactor for Fischer-Tropsch synthesis
US2854155A (en) Arrangement for feeding solid granular material
JPS5924657B2 (en) Gas-liquid contact reactor
JPH0121949Y2 (en)