JPH0150453B2 - - Google Patents

Info

Publication number
JPH0150453B2
JPH0150453B2 JP58137744A JP13774483A JPH0150453B2 JP H0150453 B2 JPH0150453 B2 JP H0150453B2 JP 58137744 A JP58137744 A JP 58137744A JP 13774483 A JP13774483 A JP 13774483A JP H0150453 B2 JPH0150453 B2 JP H0150453B2
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
gas
reaction
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58137744A
Other languages
Japanese (ja)
Other versions
JPS6031824A (en
Inventor
Junichi Horigaki
Toshio Yoshifuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP13774483A priority Critical patent/JPS6031824A/en
Publication of JPS6031824A publication Critical patent/JPS6031824A/en
Publication of JPH0150453B2 publication Critical patent/JPH0150453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 本発明は、触媒反応塔に関し、さらに詳しくは
触媒層のチヤンネリング、溶着、カーボン堆積等
を防止した触媒反応塔に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalytic reaction tower, and more particularly to a catalytic reaction tower in which channeling, welding, carbon deposition, etc. of a catalyst layer are prevented.

一般に、触媒層にガスを通過させて反応させる
触媒反応塔としては、触媒層を有する塔を数個配
列して、ガスをこれらの触媒層に順次通過させて
反応させるものが知られている。この際触媒層は
固定床であり、また各反応塔における反応により
発生する反応熱は、反応ガスを水等の冷却媒体を
用いて熱交換して回収される。
Generally, as a catalytic reaction tower for causing a reaction by passing a gas through a catalyst layer, one is known in which several towers each having a catalyst layer are arranged and the gas is caused to sequentially pass through these catalyst layers to cause a reaction. At this time, the catalyst bed is a fixed bed, and the reaction heat generated by the reaction in each reaction tower is recovered by heat exchange with the reaction gas using a cooling medium such as water.

しかしながら、このような反応塔では、触媒層
のチヤンネリング、溶着、カーボン堆積、シヨー
トパス等が発生しやすく、また複数の触媒床を用
いるため構造が複雑化する欠点がある。
However, such a reaction tower has disadvantages in that channeling, welding, carbon deposition, shot passes, etc. of the catalyst layer are likely to occur, and the structure is complicated due to the use of a plurality of catalyst beds.

本発明の目的は、上記の従来技術の欠点を除去
し、触媒層のチヤンネリング、溶着、カーボン堆
積等を起こさず、構造が簡単で、かつ一塔で効率
よく反応を行なうことができる触媒反応塔を提供
することにある。
The object of the present invention is to provide a catalytic reaction tower that eliminates the above-mentioned drawbacks of the prior art, does not cause channeling, welding, carbon deposition, etc. of the catalyst layer, has a simple structure, and is capable of efficiently carrying out reactions in one tower. Our goal is to provide the following.

本発明は、触媒層にガスを通過させて反応させ
る触媒反応塔において、触媒層を移動、循環させ
る手段と、該触媒層の内側と外側に設けられたガ
ス流路と、前記触媒層に入るガスの流れが交互に
逆になるように前記内外のガス流路に設けられた
仕切部と、前記触媒層内を通るガス流に対して直
角方向に設けられた冷却管とを有し、前記仕切部
は触媒層をガス流通側に突出させて形成したこと
を特徴とする。
The present invention provides a catalytic reaction tower in which a gas is caused to pass through a catalyst layer to cause a reaction. a partition portion provided in the inner and outer gas flow paths so that the gas flow is alternately reversed; and a cooling pipe provided in a direction perpendicular to the gas flow passing through the catalyst layer; The partition portion is characterized in that it is formed with the catalyst layer protruding toward the gas flow side.

以下、本発明を図面によりさらに詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の触媒反応塔の一実施例を示す
断面図である。この装置は、原料ガス1の導入口
2、反応ガス3の取出口4および循環ガス5の導
入口6を有する反応塔本体7と、該本体内の長手
方向に設けられたガス透過性の内筒10および外
筒11の間に充填された移動触媒層8(以下、触
媒層という)と、該触媒層内の長手方向に設けら
れた冷却管群9と、触媒層の内側(内筒側)と外
側(外筒側)にそれぞれ設けられたガス流路12
AおよびBと、ガス流れが、外筒側から流路12
Bに入り、触媒層8を通つて流路12Aに、さら
に流路12Aから逆方向に触媒層8を通つて流路
12Bに流れるように、前記ガス流路12Aおよ
び12Bに設けられた仕切部30および31とか
ら主として構成される。仕切部30および31
は、図示するように触媒層8が外側および内側の
ガス流路12A,12Bに台形状に突出して形成
されている。反応塔本体7の上部および下部には
それぞれ触媒導入口13および触媒取出口14が
設けられている。また前記冷却管群9は、第2図
に示すように環状の触媒層8に同心状に多数の細
管を内蔵させたものであり、その上下端部は、反
応塔本体7の上下部に設けられた冷却媒体の排出
口15および供給口16にそれぞれ連結されてい
る。なお17は触媒ホツパ、18は触媒再生器、
19は再生触媒ホツパ、20は熱交換器または気
液分離槽である。
FIG. 1 is a sectional view showing an embodiment of the catalytic reaction tower of the present invention. This apparatus includes a reaction tower body 7 having an inlet 2 for a raw material gas 1, an outlet 4 for a reaction gas 3, and an inlet 6 for a circulating gas 5, and a gas permeable inner wall provided in the longitudinal direction of the main body. A moving catalyst layer 8 (hereinafter referred to as a catalyst layer) filled between the cylinder 10 and the outer cylinder 11, a cooling pipe group 9 provided in the longitudinal direction within the catalyst layer, and an inner side of the catalyst layer (inner cylinder side). ) and the gas flow path 12 provided on the outside (outer cylinder side), respectively.
A and B, the gas flow is from the outer cylinder side to the flow path 12.
A partition section provided in the gas passages 12A and 12B so that the gas enters B and flows through the catalyst layer 8 into the passage 12A, and further from the passage 12A in the opposite direction through the catalyst layer 8 and into the passage 12B. 30 and 31. Partition parts 30 and 31
As shown in the figure, the catalyst layer 8 is formed to protrude in a trapezoidal shape from the outer and inner gas channels 12A and 12B. A catalyst inlet 13 and a catalyst outlet 14 are provided at the upper and lower parts of the reaction column body 7, respectively. As shown in FIG. 2, the cooling tube group 9 has a large number of thin tubes concentrically built into the annular catalyst layer 8, and its upper and lower ends are provided at the upper and lower portions of the reaction column main body 7. The cooling medium is connected to a discharge port 15 and a supply port 16, respectively. Note that 17 is a catalyst hopper, 18 is a catalyst regenerator,
19 is a regenerated catalyst hopper, and 20 is a heat exchanger or a gas-liquid separation tank.

上記構成において、原料ガス1は導入口2から
ガス流路12Bに導入され、第1図に矢印で表示
されるように、環状の触媒層8内を求心方向に通
過し、中央部のガス流路12Aに到り、ここから
上方に方向転換し、次いで前記と逆方向(遠心方
向)に触媒層を通過し、外側のガスの流路12B
に到り、ここで再び上方に方向変換し、次いで前
記と同様に触媒層を求心方向に通過し、以下同様
にして、触媒層8内を求心方向と遠心方向に交互
に通過しながら上昇し、触媒層の触媒と反応して
目的とする反応ガス3となり、取出口4から系外
に取り出される。なお、循環ガス5は導入口6か
らガス流路12Aへ導入され、原料を釈放し上方
に運搬する。触媒は再生触媒ホツパ19から触媒
導入口13を経て触媒層8内に導入され、重力の
作用により一定速度で上方から下方に移動し、触
媒取出口14から外部に排出される。排出された
触媒は、触媒ホツパ17を経て触媒再生器18に
導入され、スチーム等により加熱再生されたの
ち、コンベア等で機械的に、またはエアーリフト
やスチームリフト等で上方の再生触媒ホツパ19
に運ばれる。冷却管群9には、冷却媒体が供給口
16から導入され、反応熱により加熱された冷却
媒体は排出口15から排出され、熱交換器20で
他の熱媒体と熱交換され、有効利用されるか、ま
たは気液分離槽20でスチームと水に分離され、
スチームは外部へ導かれて有効利用される。
In the above configuration, the raw material gas 1 is introduced into the gas flow path 12B from the inlet 2, passes through the annular catalyst layer 8 in a centripetal direction as indicated by the arrow in FIG. It reaches channel 12A, changes direction upward from here, then passes through the catalyst layer in the opposite direction (centrifugal direction) to the outer gas channel 12B.
At this point, the direction changes upward again, then passes through the catalyst layer in the centripetal direction in the same manner as described above, and thereafter rises while passing through the catalyst layer 8 alternately in the centripetal and centrifugal directions. , reacts with the catalyst in the catalyst layer to become the target reaction gas 3, which is taken out of the system through the outlet 4. Note that the circulating gas 5 is introduced into the gas flow path 12A from the inlet 6, releases the raw material, and transports it upward. The catalyst is introduced into the catalyst layer 8 from the regenerated catalyst hopper 19 through the catalyst inlet 13, moves from above to below at a constant speed by the action of gravity, and is discharged to the outside from the catalyst outlet 14. The discharged catalyst is introduced into the catalyst regenerator 18 via the catalyst hopper 17, and after being heated and regenerated by steam or the like, it is transferred to the upper regenerated catalyst hopper 19 mechanically on a conveyor or the like, or by an air lift, a steam lift, etc.
carried to. A cooling medium is introduced into the cooling pipe group 9 from the supply port 16, and the cooling medium heated by the reaction heat is discharged from the discharge port 15, and is exchanged with another heat medium in the heat exchanger 20, so that it can be used effectively. or separated into steam and water in a gas-liquid separation tank 20,
The steam is led outside and used effectively.

本発明の触媒塔は、触媒層8を移動床として働
かせることが好ましいが、触媒の供給を一時中止
して、触媒層8を固定床として働かせることも可
能である。
In the catalyst column of the present invention, it is preferable that the catalyst bed 8 works as a moving bed, but it is also possible to temporarily stop supplying the catalyst and let the catalyst bed 8 work as a fixed bed.

本発明による触媒反応塔は、例えば一酸化炭素
を原料とする種々の触媒反応、すなわちCO転化
反応、メタノールの合成反応またはメタンの合成
反応のほか、他の原料ガスを用いる種々の触媒反
応に用いることができる。
The catalytic reaction tower according to the present invention can be used, for example, for various catalytic reactions using carbon monoxide as a raw material, such as CO conversion reactions, methanol synthesis reactions, or methane synthesis reactions, as well as various catalytic reactions using other raw material gases. be able to.

本発明によれば、触媒層が従来のように分割さ
れておらず、連続して形成されているので、固定
床としてのみならず、移動床として用いることが
でき、反応中に触媒を連続的または間欠的に再生
して循環させることができる。
According to the present invention, the catalyst layer is not divided as in conventional methods, but is formed continuously, so it can be used not only as a fixed bed but also as a moving bed, and the catalyst can be continuously applied during the reaction. Or it can be regenerated and circulated intermittently.

また触媒とガスの流れが向流となつているの
で、塔の上方に近い程、新しい触媒と反応のより
進んだガスとが接触することとなり、反応効率を
高めることができる。
In addition, since the catalyst and gas flow in countercurrent flow, the closer to the top of the tower the fresher the catalyst comes into contact with the gas in which the reaction has progressed, making it possible to increase the reaction efficiency.

さらに触媒層内のガスの流れが交互に求心方向
と遠心方向とに変化して、触媒層の内外でガスが
再混合され、また仕切部の触媒層がガス流路側に
突出し、ここで触媒が一旦分散後集合して下方に
移動するので、触媒層のチヤンネリング、溶着、
カーボン堆積、シヨートパス等が発生しにくい。
Furthermore, the gas flow within the catalyst layer changes alternately between the centripetal direction and the centrifugal direction, and the gas is remixed inside and outside the catalyst layer.The catalyst layer in the partition portion also protrudes toward the gas flow path, where the catalyst Once dispersed, they aggregate and move downward, resulting in channeling and welding of the catalyst layer.
Carbon deposition, shot passes, etc. are less likely to occur.

またガスの流れが、冷却管群と直角方向になる
ので、冷却管の設置に伴うチヤンネリング等が防
止され、さらにガスが冷却管群と接触する機会が
多いので、反応温度の均一化を図ることも容易で
ある。さらに冷却管の外面が、直接触媒層に接す
るため、冷却効果を上げることが容易で、冷却管
の外面にメツキ、メタリコン、ライニング等の表
面被覆や、アルカリ処理等の表面処理を施して、
触媒作用を持たせることもできる。
In addition, since the gas flow is perpendicular to the cooling tube group, channeling caused by the installation of the cooling tubes is prevented, and since there are many opportunities for gas to come into contact with the cooling tube group, the reaction temperature can be made uniform. is also easy. Furthermore, since the outer surface of the cooling tube is in direct contact with the catalyst layer, it is easy to increase the cooling effect.
It can also have a catalytic effect.

本発明の触媒反応塔は、多管式反応塔に比較し
て、触媒層の容積比率が大で、しかも構造がきわ
めて簡単であるため、高圧、高温反応や高圧スチ
ームの発生に適している。
The catalytic reaction tower of the present invention has a larger volume ratio of the catalyst layer than a multi-tubular reaction tower and has an extremely simple structure, so it is suitable for high-pressure, high-temperature reactions and generation of high-pressure steam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す触媒反応塔
の断面図、第2図は第1図の〜線に沿つた矢
視方向の断面図である。図中、1は原料ガス、3
は反応ガス、5は循環ガス、7は反応塔本体、8
は触媒層、9は冷却管群、12A,12Bはガス
流路、13は触媒導入口、14は触媒取出口、1
8は触媒再生器である。
FIG. 1 is a cross-sectional view of a catalytic reaction tower showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line - in FIG. 1 in the direction of the arrows. In the figure, 1 is the raw material gas, 3
is the reaction gas, 5 is the circulating gas, 7 is the reaction tower main body, 8
1 is a catalyst layer, 9 is a group of cooling pipes, 12A and 12B are gas flow paths, 13 is a catalyst inlet, 14 is a catalyst outlet, 1
8 is a catalyst regenerator.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒層にガスを通過させて反応させる触媒反
応塔において、触媒層を移動、循環させる手段
と、該触媒層の内側と外側に設けられたガス流路
と、前記触媒層に入るガスの流れが交互に逆にな
るように前記内外のガス流路に設けられた仕切部
と、前記触媒層内を通るガス流に対して直角方向
に設けられた冷却管とを有し、前記仕切部は触媒
層をガス流路側に突出させて形成したことを特徴
とする触媒反応塔。
1. In a catalytic reaction tower in which gas is caused to pass through a catalyst layer for reaction, means for moving and circulating the catalyst layer, gas passages provided inside and outside the catalyst layer, and a flow of gas entering the catalyst layer. and a cooling pipe provided in a direction perpendicular to the gas flow passing through the catalyst layer. A catalytic reaction tower characterized in that a catalyst layer is formed to protrude toward a gas flow path.
JP13774483A 1983-07-29 1983-07-29 Catalytic reaction tower Granted JPS6031824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13774483A JPS6031824A (en) 1983-07-29 1983-07-29 Catalytic reaction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13774483A JPS6031824A (en) 1983-07-29 1983-07-29 Catalytic reaction tower

Publications (2)

Publication Number Publication Date
JPS6031824A JPS6031824A (en) 1985-02-18
JPH0150453B2 true JPH0150453B2 (en) 1989-10-30

Family

ID=15205811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13774483A Granted JPS6031824A (en) 1983-07-29 1983-07-29 Catalytic reaction tower

Country Status (1)

Country Link
JP (1) JPS6031824A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8627897D0 (en) * 1986-11-21 1986-12-31 Shell Int Research Reactor
US6267941B1 (en) * 1997-01-08 2001-07-31 Nec Corporation Catalyst system for deodorization of a mixture of sulfur compounds and compounds such as aldehydes, alcohols and/or hydrocarbons
JP5538023B2 (en) * 2010-03-29 2014-07-02 東洋エンジニアリング株式会社 Reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199672A (en) * 1975-02-28 1976-09-02 Sumitomo Chemical Co IDOSHOSHIKI HANNOKI
JPS5343680A (en) * 1976-10-02 1978-04-19 Takeda Chem Ind Ltd Cleaning apparatus of gas containing organic solvent
JPS53133572A (en) * 1977-04-27 1978-11-21 Ebara Corp Method and apparatus for preventing deterioration of catalyst in denitrating process
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199672A (en) * 1975-02-28 1976-09-02 Sumitomo Chemical Co IDOSHOSHIKI HANNOKI
JPS5343680A (en) * 1976-10-02 1978-04-19 Takeda Chem Ind Ltd Cleaning apparatus of gas containing organic solvent
JPS53133572A (en) * 1977-04-27 1978-11-21 Ebara Corp Method and apparatus for preventing deterioration of catalyst in denitrating process
JPS55149640A (en) * 1979-04-03 1980-11-21 Toyo Eng Corp Reactor and its application

Also Published As

Publication number Publication date
JPS6031824A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
US3666423A (en) Heat exchange apparatus
US4147523A (en) Apparatus for continuously treating gas with activated carbon
RU2435639C2 (en) Isothermal reactor
US7252693B2 (en) Carbon monoxide conversion process and reactor
JPS59109242A (en) Chemical synthetic method under gaseous phase and heterogeneous catalyst and under high pressure and its device
JPS5949850A (en) Fluidized catalyst regenerating method and apparatus
JP4842805B2 (en) Method and apparatus for distributing two fluids into and out of a channel of a multichannel monolithic structure and their use
US3516800A (en) Synthesis reaction apparatus equipped with means for temperature control of catalyst bed
FI101133B (en) Equipment for chemical and physical processes
JPS60106527A (en) Double pipe reactor for exothermic reaction
SU1577686A3 (en) Device for regeneration of used particles of catalyst
RU2372572C2 (en) Heat-exchange apparatus (versions)
RU97118856A (en) METHOD AND REACTOR FOR HETEROGENEOUS EXOTHERMIC SYNTHESIS FORMALDEHYDE
WO2022062129A1 (en) Multi-pass radial reactor
JPH0150453B2 (en)
KR890017517A (en) Heat exchange apparatus and method between solid particles and heat exchange medium
US2198795A (en) Tray type sulphuric acid converter
RU97118855A (en) METHOD AND REACTOR FOR HETEROGENEOUS EXOTHERMIC SYNTHESIS FORMALDEHYDE
JPH02277540A (en) Exothermic catalytic synthesis reactor in heterogeneous system
JPH05501379A (en) Apparatus for carrying out catalysis in granular beds
RU2002131458A (en) CATALYTIC REACTOR FOR EXOTHERMAL PROCESSES PROCESSING IN A GAS-SOLID PHASE WITH A DIFFERENT TEMPERATURE DIFFERENCE
US3711253A (en) Apparatus for synthesis of formaldehyde
EP0075056A1 (en) Synthesis system and process for the production of ammonia
RU2366499C2 (en) Reactor for implementation of heterogeneous catalytical reactions
RU2009712C1 (en) Apparatus for catalytic conversion of hydrocarbons