JPS61133133A - Method for controlling briquetting type - Google Patents

Method for controlling briquetting type

Info

Publication number
JPS61133133A
JPS61133133A JP59253432A JP25343284A JPS61133133A JP S61133133 A JPS61133133 A JP S61133133A JP 59253432 A JP59253432 A JP 59253432A JP 25343284 A JP25343284 A JP 25343284A JP S61133133 A JPS61133133 A JP S61133133A
Authority
JP
Japan
Prior art keywords
roll
granulator
strength
burr
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253432A
Other languages
Japanese (ja)
Inventor
Satoru Ohashi
悟 大橋
Susumu Horiuchi
進 堀内
Hiroyuki Tsuchiya
弘行 土屋
Jun Kikuchi
菊池 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59253432A priority Critical patent/JPS61133133A/en
Publication of JPS61133133A publication Critical patent/JPS61133133A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/005Control arrangements
    • B30B11/006Control arrangements for roller presses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To enable to change the rigidity of burr without impairing the strength of the pellets themselves by maintaining a product of the roll linear load and driving power of the roll in a briquetting type granulator at a fixed value and adjusting the both variably. CONSTITUTION:Concentrated waste liquid produced in an atomic power station and received in a feed tank 9 is dried and pulverized by a dryer 13 and granulated with a briquetting type granulator 12. Immediately after granulation, the screened pellets 7 via a screening machine 14 is packed in a vessel 8. As for the operation condition, the linear load of the roll P of the granulator is controlled by setting a set value at a high value, and the driving power W of the roll of the granulator is controlled so as to satisfy the formula (I), thus, the strength of the pellet is held at a desired fixed value. The linear load P of the roll is controlled by the adjustment of pressure of a roll 4 of the granulator, and the driving power W of the roll is controlled by the adjustment of the forcing amt. of a forcing screw 3 of the granulator.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、粉体の造粒、例えば原子力発電所等の放射性
物質取扱い施設から発生する放射性廃棄物粉体をペレッ
トに造粒する場合において、造粒物の整粒特性を制御す
る方法釦関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a method for granulating powder, for example, when radioactive waste powder generated from facilities handling radioactive materials such as nuclear power plants is granulated into pellets. This invention relates to a method for controlling the granulation properties of granules.

〔発明の背景〕[Background of the invention]

本発明は原子力発電所等の放射性物質取扱い施設から発
生する放射性廃棄物の造粒に限定されるものではないが
、これを例にとって以上述べる。
Although the present invention is not limited to the granulation of radioactive waste generated from facilities handling radioactive materials such as nuclear power plants, this will be described above as an example.

かかる放射性廃棄物は管理保管後処分されることになっ
ている。放射性廃棄物は、一般に管理保管及び処分にか
かる費用の低減、並びに管理保管スペースの削減を目的
として各種の処理が為される。
Such radioactive waste is to be managed and stored and then disposed of. Radioactive waste is generally processed in various ways for the purpose of reducing management, storage and disposal costs, and reducing management and storage space.

これら放射性廃棄物の処理技術は、放射性廃棄物の性状
により適切なものが選択されるが、現在実用化しており
、かつ放射性廃棄物の減容比の最も高い処理技術の1つ
として、造粒処理技術がある。
The appropriate treatment technology for these radioactive wastes is selected depending on the properties of the radioactive waste, but granulation is currently in practical use and is one of the treatment technologies with the highest volume reduction ratio for radioactive waste. There is processing technology.

造粒処理技術は、放射性廃棄物の5ちの大部分を占める
濃縮廃液、使用済イオン交換樹脂、可燃性雑固体を対象
としたものであシ、濃縮廃液及び使用済イオン交換樹脂
は乾燥粉体化後、可燃性雑固体は焼却後、4レフトに造
粒される。
The granulation treatment technology targets concentrated waste liquid, used ion exchange resin, and flammable miscellaneous solids, which account for the majority of the five types of radioactive waste. Concentrated waste liquid and used ion exchange resin are processed into dry powder. The combustible miscellaneous solids are incinerated and then granulated into 4 left particles.

放射性廃棄物のペレットは、その放射性物質という特質
から、一般産業におけるペレットと異なシ、その性状及
び造粒方法に次のような厳しい制約がある。
Radioactive waste pellets are different from pellets used in general industry due to their radioactive nature, and have the following severe restrictions on their properties and granulation methods.

(1)ペレットが、造粒後の取扱いや管理保管時に破壊
飛散しないような充分な強度を有すること。
(1) The pellets must have sufficient strength to prevent them from being broken and scattered during handling and controlled storage after granulation.

(2)造粒方法が自動運転可能な方法であること。(2) The granulation method must be capable of automatic operation.

(3)4レツトが、その後実施される固化方法に適した
寸法形状を有すること。
(3) The 4lets have a size and shape suitable for the solidification method to be performed thereafter.

(4)造粒方法が、各発生源からの放射性廃棄物発生量
に応じた処理量を有することつ 以上の制約から、実際に放射性廃棄物の造粒に適用され
ているのは、圧縮造粒法のみである。この圧縮造粒法の
うち、比較的大処理を要する場合にはブリケッティング
造粒法が採用されている。
(4) The granulation method has a throughput that corresponds to the amount of radioactive waste generated from each source.Due to several constraints, compression granulation is actually applied to the granulation of radioactive waste. Only the grain method is used. Among these compression granulation methods, the briquetting granulation method is employed when relatively large-scale processing is required.

第2図はツリケラティング型造粒機の構造を示すもので
、ホラ・ぐ−1内に貯められた放射性廃棄物の粉体若し
くは焼却灰(以下粉体と総称する)2は、スクリューフ
ィーダ3によって、ペレットに相当する凹みを表面に持
つ回転する2つのロール40間に押し込まれる。ロール
4はスプリング5によって互に加圧されておシ、粉体2
は圧縮されペレット6になる。
Figure 2 shows the structure of the Tsurikerating type granulator, in which radioactive waste powder or incinerated ash (hereinafter collectively referred to as powder) 2 stored in the hora 1 is fed into a screw feeder. 3, the pellets are pushed between two rotating rolls 40 that have depressions corresponding to the pellets on their surfaces. The rolls 4 are pressed together by a spring 5, and the powder 2
is compressed into pellets 6.

第3図に上記造粒機から出て来た造粒物の一般的形状を
示す。ブリケッティング造粒法では、粉体は連続的に造
粒され、また2つのロール間に間隙を有するため、第3
図に示すような(レットが板状に継かった造粒物となる
FIG. 3 shows the general shape of the granulated product coming out of the granulator. In the briquetting granulation method, the powder is granulated continuously, and since there is a gap between two rolls, the third
As shown in the figure, the result is a granulated product in which the pellets are connected in a plate shape.

この板状の造粒物は最終的には単独のペレットに分離さ
れる(整粒という)が、造粒機からペレットの収納場所
までの間の状況によシ、造粒直後に整粒するのが好適な
場合と、ペレット収納場所直前で整粒するのが好適な場
合があシ、これらの場合に夫々に適する整粒特性を持つ
ことが望ましい。すなわち前者の場合には造粒物の各ペ
レット6間の平板状の部分6′(以下バリと称す)の剛
性が充分に低いことが望ましい。逆に後者の場合には造
粒物のバリ6′の剛性が高いことが望ましい。
This plate-shaped granule is ultimately separated into individual pellets (called granulation), but depending on the conditions between the granulator and the pellet storage location, the granulation may be sized immediately after granulation. In some cases, it is preferable to carry out particle grading just before the pellet storage area, and in some cases, it is desirable to have particle grading characteristics suitable for each of these cases. That is, in the former case, it is desirable that the rigidity of the flat plate-shaped portions 6' (hereinafter referred to as burrs) between each pellet 6 of the granule is sufficiently low. Conversely, in the latter case, it is desirable that the burrs 6' of the granules have high rigidity.

バリの剛性の制御方法としては一般的には下記の2つが
考えられる。すなわち、造粒機における造粒時に、 (1)粉体の押し込み力を制御してバリの強度、即ち造
粒物自体の強度を制御すること、(2)バリの厚さを制
御すること。
Generally, the following two methods can be considered for controlling the rigidity of the burr. That is, during granulation in the granulator, (1) the strength of the burr, that is, the strength of the granulated product itself, is controlled by controlling the pushing force of the powder, and (2) the thickness of the burr is controlled.

上記(1)は、具体的にはロール駆動電力を制御する方
法によシ実現されるが、この方法はバリ自体の強度を変
几ると共にペレット自体の強度も変えるという欠点を有
する。また、(2)は、具体的にはロール線圧を制御す
る方法によシ実現されるが、この方法は、ロール線圧を
下げてバリ厚さを厚くする場合に、ペレットの強度を弱
めるという欠点を有する。第4図にロール駆動電力とバ
リ強度(従って4レツト強度)との関係を、第5図にロ
ール線圧とバリ強度(従ってペレット強度)との関係を
示す。(なお第5図中に、本発明者らが見出したロール
線圧とバリ厚さとの関係も示した。)以上のように、造
粒機運転/4’ラメータのうち単独にロール駆動電力ま
たはロール線圧という・ぐラメータを制御する方法では
、バリの剛性は制御可能となっても、同時忙ペレットの
強度にも影響を与えるという欠点を有している。そうか
といって、複数のノ(ラメータを同時に制御する方法は
、そのようにした場合のバリの剛性、4レツト強度がど
うなるかが不明であったため、従来その採用は困難であ
った。
The above (1) is specifically achieved by a method of controlling the roll driving power, but this method has the disadvantage that it changes the strength of the burr itself and also changes the strength of the pellet itself. In addition, (2) is specifically achieved by a method of controlling the roll linear pressure, but this method weakens the strength of the pellet when lowering the roll linear pressure and increasing the burr thickness. It has the following drawback. FIG. 4 shows the relationship between roll drive power and burr strength (therefore, 4-let strength), and FIG. 5 shows the relationship between roll linear pressure and burr strength (therefore, pellet strength). (In addition, Fig. 5 also shows the relationship between the roll linear pressure and burr thickness that the inventors found.) As described above, among the granulator operation/4' parameters, roll driving power or Although the rigidity of the burr can be controlled by the method of controlling a parameter called roll linear pressure, it also has the disadvantage that it also affects the strength of the pellet. However, it has been difficult to adopt a method of controlling multiple parameters at the same time because it was unclear what would happen to the burr rigidity and 4-ret strength in such a case.

なお、整粒を適切に行うために整粒機の運転条件を制御
する方法がある。しかしながら、整粒機の原理は、造粒
物に所定の衝撃を与えバリを破壊するというものである
から、バリの剛性が充分に大きい場合には、造粒物に与
えるべき衝撃は過大なものとなシ、ペレットに与える衝
撃も過大となシ、(レット自体を損う可能性も犬となる
In addition, there is a method of controlling the operating conditions of the sizing machine in order to properly perform sizing. However, the principle of a granulating machine is to apply a predetermined impact to the granules to destroy the burrs, so if the burrs are sufficiently rigid, the impact that should be applied to the granules may be excessive. However, the impact given to the pellet is also excessive (there is also the possibility of damaging the pellet itself).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ブリケッティング型造粒においてペレ
ット自体の強度を損うことなく、造粒物の整粒特性、即
ちバリの剛性変える制御方法を提供することにある。
An object of the present invention is to provide a control method for changing the granulation properties of granules, that is, the rigidity of burrs, without impairing the strength of the pellets themselves in briquetting type granulation.

〔発明の概要〕[Summary of the invention]

先に述べたように、造粒物の整粒特性を制御し、しかも
ペレット自体の強度及び性状を損うことのない方法を提
供するという目的にとっては、整粒機の運転条件を制御
する方法は採用し得ない。
As mentioned above, for the purpose of providing a method for controlling the sizing characteristics of the granulated material without impairing the strength and properties of the pellets themselves, there is a method for controlling the operating conditions of the sizing machine. cannot be adopted.

本発明者らは、ツリケソティング型造粒においてバリの
厚さ及びバリの強度を同時に制御することによシ、バリ
の剛性を制御する方法に着目した。
The present inventors have focused on a method of controlling burr rigidity by simultaneously controlling burr thickness and burr strength in Turike soting type granulation.

ところで従来の一般産業におけるブリケッティング型の
造粒法では、放射性廃棄物の造粒法と異なシ、人間の近
接による監視等が極めて容易であシ、不整粒の発生がシ
ステム全体に与えるインパクトは、全自動運転を余儀な
くされる放射性廃棄物の造粒法に較べて著しく低かった
。したがって、造粒機の運転ノ4ラメータとペレットの
整粒特性の関係については、特に着目されていなかった
。すなわち、従来は、造粒機の運転パラメータとペレッ
トの整粒特性については、第4図に示すロール駆動電力
とバリ強度(即ちペレット強度)との関係、および第5
図に示すロール線圧とバリ強度(即ち4レフト強度)と
の関係しか確認されておらず、しかも注目されていたの
はバリの強度ではなく(レットの強度であった。
By the way, the conventional briquetting type granulation method used in general industry is different from the granulation method for radioactive waste, and it is extremely easy to monitor by close proximity of humans, and the occurrence of irregular granules has an impact on the entire system. This was significantly lower than in the radioactive waste granulation method, which requires fully automatic operation. Therefore, no particular attention has been paid to the relationship between the operating parameters of the granulator and the sizing characteristics of pellets. That is, conventionally, the operating parameters of the granulator and the pellet sizing characteristics were determined based on the relationship between roll drive power and burr strength (i.e. pellet strength) shown in Figure 4, and the relationship between roll drive power and burr strength (i.e. pellet strength) shown in Figure 5.
Only the relationship between the roll linear pressure and the burr strength (ie, 4 left strength) shown in the figure was confirmed, and what was attracting attention was not the burr strength but the let strength.

本発明者らは、バリの厚さ及びバリの強度を同時に制御
する方法を実現するため、ロール線圧とバリ厚さとの関
係を実験的に解明した(これによって見出したロール線
圧とバリ厚さとの関係は第5図中に示される)。そして
、従来知られていたロール駆動電力とバリ強度との関係
(第3図)及び、上記の本発明者らが見出したロール線
圧とバリ厚さとの関係から、ペレット強度を適切な値と
しながらバリの剛性をロール駆動電力及びロール線圧の
両者の制御によって制御する方法を創案したO 以下に本発明の詳細な説明する。ブリケッティング型造
粒機では、第4図及びWXS図に示したところから、バ
リ強度σ、バリ厚さt10−ル駆動電力W、ロール線圧
Pとの間には次の3つの関係が独立にある。
The present inventors experimentally clarified the relationship between roll linear pressure and burr thickness in order to realize a method for simultaneously controlling burr thickness and burr strength. (The relationship between the two is shown in FIG. 5). The pellet strength was determined to be an appropriate value based on the conventionally known relationship between roll drive power and burr strength (Figure 3) and the relationship between roll linear pressure and burr thickness that the inventors found above. However, the present invention will be described in detail below. In the briquetting type granulator, as shown in Fig. 4 and WXS diagram, there are the following three relationships among burr strength σ, burr thickness t10 - roll driving power W, and roll linear pressure P. Be independent.

σ=AIW              (1)σ=A
2P              (2)t =A3−
A4 P           (3)したがってロー
ル電力Wとロール+I!圧の両者を同時に変化させた場
合にはバリ強度、即ちペレット強度σは σ=B、FW            (4)となる。
σ=AIW (1) σ=A
2P (2)t =A3-
A4 P (3) Therefore, roll power W and roll +I! When both pressures are changed at the same time, the burr strength, that is, the pellet strength σ becomes σ=B, FW (4).

またバリの剛性、即ちバリの整粒特性Hはバリ強度σと
バリ厚さtの積で表わされるのでH= σ t = B 2 PW  B 3 P2W       (
5)となる。
In addition, the rigidity of the burr, that is, the granulation property H of the burr, is expressed as the product of the burr strength σ and the burr thickness t, so H= σ t = B 2 PW B 3 P2W (
5).

よって、いかなる運転条件下でもにレット強度を一定に
保つための必要条件は σ= B IPW : const、        
(6)したがってロール線圧Pとロール駆動電力をそれ
ら両者間に条件 ”              (71が成立つように
制御することによってにレット強度σを一定に保ち得る
。ここで定数C1は造粒機のハードに応じて定まるもの
である。
Therefore, the necessary condition to keep the let strength constant under any operating conditions is σ = B IPW : const,
(6) Therefore, by controlling the roll linear pressure P and the roll drive power so that the condition ``(71) is satisfied between them, the let strength σ can be kept constant.Here, the constant C1 is the hardness of the granulator. It is decided according to.

この場合バリの剛性は、 H= Cz −Cs P           t81
となるので、(7)の制御条件下では、ロール線圧Pの
値のみを変えることによって一意的にバリの剛性Hを所
望の値忙制御し得る。
In this case, the stiffness of the burr is H= Cz −Cs P t81
Therefore, under the control condition (7), the rigidity H of the burr can be uniquely controlled to a desired value by changing only the value of the roll linear pressure P.

第6図はロール駆動電力Wのみの制御による整粒特性制
御法の場合の、第7図はロール線圧Pのみの制御による
整粒特性制御法の場合の、第8図に上記のロール駆動電
力W及びロール線圧Pの両者の制御による本発明の整粒
特性制御法の場合の、ペレット強度σおよび整粒特性H
の様子を示すっ第6図〜第8図から明らかなようにロー
ル駆動電力のみ、あるいはロール線圧のみの制御による
整粒特性制御法では、ペレットの整粒特性を変えるとペ
レットの強度も変わるのは避は難いが、本発FiAKよ
るロール駆動電力及びロール線圧の両者の制御による整
粒特性制御法では、ペレット強度を一定に確保したまま
ペレットの整粒特性を変える制御が可能となる。
Figure 6 shows the method for controlling the grain size characteristics by controlling only the roll drive power W, Figure 7 shows the method for controlling the grain size characteristics by controlling only the roll linear pressure P, and Figure 8 shows the method for controlling the grain size characteristics by controlling only the roll linear pressure P. Pellet strength σ and particle size property H in the case of the particle size property control method of the present invention by controlling both electric power W and roll linear pressure P
As is clear from Figures 6 to 8, which show the situation, in the method of controlling particle size characteristics by controlling only the roll drive power or only the roll linear pressure, changing the particle size characteristics of the pellets also changes the strength of the pellets. Although this is unavoidable, the method of controlling the particle size characteristics by controlling both the roll drive power and the roll linear pressure using the developed FiAK makes it possible to control the particle size characteristics of the pellet while maintaining a constant pellet strength. .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図に示す。本実施例は、原子力発
電所から発生し供給タンク9に受入れられた濃縮廃液を
乾燥機13で乾燥粉末化してツリケラティング型造粒機
12で造粒し、造粒直後に整粒機14を経て整粒された
ペレット7を容器8に充填するシステムである。本シス
テムでは容器8内での4レツト7の充填効率を向上する
ために、4レツト7は整粒機14で完全に分離されるこ
とが望ましく、そのためには造粒物(第3図)のバリ6
′は低い剛性を持つことが望ましい。したがって〔発明
の詳細な説明したととろく基づき、運転条件としては、
第8図において造粒機ロール線圧Pは高い設定値に制御
され、そして前記の式(7)が成立つよう造粒機のロー
ル駆動電力Wを制御することによって、4レット強度を
所要の一定値に保つ。このロール線圧Pは造粒機ロール
4の加圧力の!i#整によって、またロール駆動電力W
は造粒機の押込みスクリュー3による押込量の調整によ
って調節されるもので、前記制御はフィードバック制御
演算機11によって行われる。10はその操作盤である
。自動制御の代りに手動制御を用いてもよい。
An embodiment of the invention is shown in FIG. In this embodiment, concentrated waste liquid generated from a nuclear power plant and received in a supply tank 9 is dried and powdered in a dryer 13 and granulated in a pulverizing type granulator 12. Immediately after granulation, a granulator 14 This is a system for filling a container 8 with pellets 7 that have been sized through the process. In this system, in order to improve the filling efficiency of the 4-lets 7 in the container 8, it is desirable that the 4-lets 7 be completely separated by the granulator 14. Bali 6
′ is desirable to have low stiffness. Therefore, [based on the detailed description of the invention, the operating conditions are as follows:
In FIG. 8, the granulator roll linear pressure P is controlled to a high set value, and the granulator roll drive power W is controlled so that the above equation (7) is satisfied, so that the 4-let strength is adjusted to the required value. Keep it at a constant value. This roll linear pressure P is equal to the pressing force of the granulator roll 4! By adjusting i#, the roll driving power W
is adjusted by adjusting the pushing amount by the pushing screw 3 of the granulator, and the control is performed by the feedback control computer 11. 10 is its operation panel. Manual control may be used instead of automatic control.

原子力発電所における放射性廃棄物のペレットは、通常
圧潰強度が50に9/ケ〜150kliF/ケの範囲と
なるように造粒されるものであシ、#縮廃液ペレットの
場合の運転条件としては、処理量100に9 / hr
の造粒機の場合でロール線圧8ton/cm〜12 t
on /anが望ましく、ロール電力は、8 kW〜1
2 kWが望ましい。本実施例の場合には、整粒性を良
好にする為、ロール線圧を12 ton/m、ロール電
力を8kWVc設定する。
Radioactive waste pellets in nuclear power plants are usually granulated to have a crushing strength in the range of 50 to 150kliF/kg, and the operating conditions for waste liquid pellets are: , throughput 100 to 9/hr
In the case of a granulator, the roll pressure is 8 ton/cm to 12 t.
on/an is desirable, and the roll power is 8 kW to 1
2 kW is desirable. In the case of this example, the roll linear pressure is set at 12 ton/m and the roll power is set at 8 kWVc in order to improve particle size regulation.

もし何らかの理由で造粒物の整粒性を悪くしたい(即ち
バリの剛性を高くしたい)場合〈は、式(7)を依然満
足させたままでロール線圧を下げ(例えば8ton/c
Inにする)、ロール電力を上げる(例えば12 kW
とする)ことによシ、ペレット強度を損うことなくバリ
の剛性を高くすることが可能となる。
If for some reason you want to worsen the granulation properties of the granules (that is, increase the rigidity of the burrs), lower the roll linear pressure (for example, 8 ton/c) while still satisfying equation (7).
In), increase the roll power (e.g. 12 kW
In particular, it becomes possible to increase the rigidity of the burr without impairing the pellet strength.

なお本発明の応用として、廃液の組成の著しい変動によ
シイレット自体の強度が変化した場合には、ロール線圧
を一定としたままでロール駆動電力を変化させることに
より、バリの剛性に影響なしにペレット強度を回復する
よう対応できる。例えば、ロール線圧12 ton /
an 、ロール電力10 kWで運転していた場合にペ
レット自体の強度を低下させる成分が流入してきたとき
は、ロール駆動電力を12 kWに増加させ、逆の場合
には、a−ル駆動電力を8 kWに低下させればよい。
As an application of the present invention, if the strength of the sealet itself changes due to a significant change in the composition of the waste liquid, the rigidity of the burr will not be affected by changing the roll drive power while keeping the roll linear pressure constant. can be used to recover pellet strength. For example, roll linear pressure 12 ton/
An, when operating at a roll power of 10 kW, if a component that reduces the strength of the pellet itself flows in, the roll drive power is increased to 12 kW, and in the opposite case, the roll drive power is increased to 12 kW. It is sufficient to reduce the power to 8 kW.

またロール駆動電力の変動巾は、ペレット強度の変動巾
に比例する為、廃液の組成から推定されるペレット強度
の変動予測中に応じて、遠隔操作でロール駆動電力を変
動させれば、廃液の組成にかかわらず一定の強度のペレ
ットを生成することができる。この場合にロール線圧は
一定とした1まであるので造粒物の整粒特性すなわちそ
のバリの剛性には影響はない。
In addition, since the range of variation in roll drive power is proportional to the range of variation in pellet strength, if the roll drive power is varied remotely according to the prediction of fluctuations in pellet strength estimated from the composition of waste liquid, it is possible to It is possible to produce pellets of constant strength regardless of composition. In this case, since the roll linear pressure is constant up to 1, there is no effect on the granulation properties of the granules, that is, the rigidity of the burrs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来と同一の仕様を有するブリケッテ
ィング型造粒機忙おいて、ペレット強度な損うことなく
造粒物の整粒特性すなわちそのバリ剛性を所望の値に変
更する制御が可能となる。
According to the present invention, in a briquetting type granulator having the same specifications as the conventional one, control is performed to change the granulation properties of the granulated product, that is, the burr rigidity, to a desired value without deteriorating the pellet strength. becomes possible.

従って、造粒機の下流側のシステムの如何に応じ異った
整粒特性が要求される異ったプラントに対しても同一仕
様の造粒機が適用可能となる。また廃棄物粉体などの場
合、その組成など粉体特有の性状変化に対しても、造粒
機運転条件の設定値を変更することで簡便に対応可能と
なる。
Therefore, a granulator with the same specifications can be applied to different plants that require different granulation characteristics depending on the downstream system of the granulator. Furthermore, in the case of waste powder, changes in properties specific to the powder, such as its composition, can be easily accommodated by changing the set values of the granulator operating conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る放射性廃液処分システム
のフロー図、第2図はブリケッティング型造粒機主要部
分の概略正面図、第3図は該造粒機から生ずる造粒物の
斜視図、第4図、第5図は該造粒機の運転パラメータと
造粒物特性との関係を示したグラフ、第6図、第7図は
単独のパラメータ調節による制御法のペレット強度と整
粒特性のグラフ、第8図は本発明の制御法によるペレッ
ト強度と整粒特性のグラフである。 1:ホッパー、    2:粉体、 3ニスクリユーフイーダ、 4:ロール、     5:加圧スプリング、6:にレ
ット、     6I;バリ、7:整粒されたペレット
、 8二容器、       9:供給タンク、】0:操作
盤、 11:フィードバック制御演算機、 12:造粒機、    13:乾燥機、14:整粒機。 第1図 第2図 第4図 ロール電力W 第5図 ロー゛ル線圧 P− 第  6  :”ン! ロール電力W− 0−ルaf P − 0−tbMl& P −(、儂) ←ロール曖力W
Fig. 1 is a flow diagram of a radioactive waste liquid disposal system according to an embodiment of the present invention, Fig. 2 is a schematic front view of the main parts of a briquetting type granulator, and Fig. 3 is a granulated product produced from the granulator. Figures 4 and 5 are graphs showing the relationship between the operating parameters of the granulator and the characteristics of the granulated product, and Figures 6 and 7 are graphs showing the pellet strength of the control method by adjusting individual parameters. FIG. 8 is a graph of pellet strength and particle size regulating characteristics according to the control method of the present invention. 1: Hopper, 2: Powder, 3 Niscrew feeder, 4: Roll, 5: Pressure spring, 6: Nilet, 6I: Burr, 7: Sized pellets, 8 Two containers, 9: Supply tank, ]0: operation panel, 11: feedback control computer, 12: granulator, 13: dryer, 14: granulator. Fig. 1 Fig. 2 Fig. 4 Roll power W Fig. 5 Roll linear pressure P- No. 6: ``N! Power W

Claims (1)

【特許請求の範囲】 1、ブリケッティング型造粒機のロール線圧とロール駆
動電力との積を一定に保ちつつ両者を可変に調節するこ
とによって、造粒物のペレット強度を一定に保ちながら
造粒物のバリの剛性(バリの強度とバリの厚さとの積)
を可変にすることを特徴とするブリケッティング型造粒
機の制御方法。 2、上記ロール線圧の調節はロール加圧力の調節によっ
て、また上記ロール駆動電力の調整はロール間への粉体
押込み量の調節によって行う特許請求の範囲第1項記載
のブリケッティング型造粒機の制御方法。
[Claims] 1. By keeping the product of the roll linear pressure and roll drive power of the briquetting type granulator constant and variably adjusting both, the pellet strength of the granulated product can be kept constant. While the burr stiffness of the granules (product of burr strength and burr thickness)
A control method for a briquetting type granulator, characterized by making variable the briquetting type granulator. 2. The briquetting mold structure according to claim 1, wherein the roll linear pressure is adjusted by adjusting the roll pressing force, and the roll driving power is adjusted by adjusting the amount of powder pushed between the rolls. How to control a grain machine.
JP59253432A 1984-11-30 1984-11-30 Method for controlling briquetting type Pending JPS61133133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253432A JPS61133133A (en) 1984-11-30 1984-11-30 Method for controlling briquetting type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253432A JPS61133133A (en) 1984-11-30 1984-11-30 Method for controlling briquetting type

Publications (1)

Publication Number Publication Date
JPS61133133A true JPS61133133A (en) 1986-06-20

Family

ID=17251315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253432A Pending JPS61133133A (en) 1984-11-30 1984-11-30 Method for controlling briquetting type

Country Status (1)

Country Link
JP (1) JPS61133133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1690658A2 (en) 2005-02-12 2006-08-16 S & B Industrial Minerals GmbH Method and apparatus for manufacturing swellable coarse grains
WO2009017019A1 (en) * 2007-07-31 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Method for reducing electric furnace dust
CN108995282A (en) * 2018-07-23 2018-12-14 河南科技大学 A kind of triangle horizontally-inclined is to roll-in ball machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1690658A2 (en) 2005-02-12 2006-08-16 S & B Industrial Minerals GmbH Method and apparatus for manufacturing swellable coarse grains
EP1690658B1 (en) * 2005-02-12 2015-03-04 S & B Industrial Minerals GmbH Use of pellets based on clay minerals
WO2009017019A1 (en) * 2007-07-31 2009-02-05 Kabushiki Kaisha Kobe Seiko Sho Method for reducing electric furnace dust
US8101007B2 (en) 2007-07-31 2012-01-24 Kobe Steel Ltd. Method for reduction treatment of electric furnace dust
CN108995282A (en) * 2018-07-23 2018-12-14 河南科技大学 A kind of triangle horizontally-inclined is to roll-in ball machine

Similar Documents

Publication Publication Date Title
US6635093B1 (en) Method of making pelletized fuel
US20100116181A1 (en) Method of making cellulose/plastic pellets having a low plastic content
JPS61133133A (en) Method for controlling briquetting type
TW464694B (en) Production of reduced iron and apparatus thereof
WO1995009079A1 (en) Process for producing sponge iron briquettes from fine ore
WO2018116657A1 (en) Palm trunk processing method and palm trunk processing apparatus
JPS6345615B2 (en)
JPH06114282A (en) Method for controlling grain size distribution of crushing machine
JP2518982B2 (en) Vertical mill crusher
JPH1086155A (en) Granulating method of waste synthetic resin material
JPS59247B2 (en) Granulation method of fine powder
JP3477582B2 (en) Granulation method
JPS6254200A (en) Granulator for radioactive waste
JPS5876133A (en) Compressive granulator for powder
JPS5918343B2 (en) Sintering method of fly ash granules
JPH08318B2 (en) Constant load operation method of powder compactor
JP3681458B2 (en) Roller mill pressure control method
JPS63125309A (en) Granulating method of thermosetting resin
JPH03180800A (en) Incineration ash caking method
JPH07185Y2 (en) Vertical roller mill
JPS63255699A (en) Incinerated-ash volume-reduction processing facility
JPH0450560B2 (en)
JPH01207127A (en) Dry process granulator
JPS63166446A (en) Method of operating crusher
Johnson Production of granular products by roll compaction