JPS61132868A - Immunological analysis - Google Patents

Immunological analysis

Info

Publication number
JPS61132868A
JPS61132868A JP25520584A JP25520584A JPS61132868A JP S61132868 A JPS61132868 A JP S61132868A JP 25520584 A JP25520584 A JP 25520584A JP 25520584 A JP25520584 A JP 25520584A JP S61132868 A JPS61132868 A JP S61132868A
Authority
JP
Japan
Prior art keywords
antibody
antigen
carrier
immune complex
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25520584A
Other languages
Japanese (ja)
Other versions
JPH0588422B2 (en
Inventor
Sachiko Karaki
幸子 唐木
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP25520584A priority Critical patent/JPS61132868A/en
Publication of JPS61132868A publication Critical patent/JPS61132868A/en
Publication of JPH0588422B2 publication Critical patent/JPH0588422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Abstract

PURPOSE:To make possible easily a desired analysis by bringing a labeling antigen (antibody) and a carrier carrying an antigen (antibody) as a solid phase into reaction and separating the reactive liquid to an immune complex and the remaining labeling antibody in accordance with the information on the carrier detected from the reactive liquid. CONSTITUTION:The reactive liquid 13 in which the immune complex and the remaining antibody are mixed is introduced through a needle 12 into a flow cell 11. The scattered light and fluorescence by laser light 14 of the immune complex and remaining and remaining labeling antibody flowing in the needle 12 are detected by detectors 15, 16, by which a sightgramis obtd. from the parameter thereof. The recognition in the measurement of the immune complex and the remaining labeling antibody from the difference in the size of the particles thereof is made easy if the latex immunoassay is used by using the flow sight meter in the above-mentioned manner. The variance in the size and shape of the immune complex is fairly decreased and the analysis with high accuracy is made possible.

Description

【発明の詳細な説明】 (技術分野) 本発明は免疫学的分析方法に関するものである。[Detailed description of the invention] (Technical field) The present invention relates to an immunological analysis method.

(従来技術) 血液、体液等に含まれるグロブリン、酵素等の蛋白質、
ホルモン、細菌、ウィルス等はその分子構造が類似して
いたり、ごく微量であるために、通常の分析方法では同
定、定量が困難である。そこで、これらの物質の分析に
は、一般に抗原抗体反応を利用した免疫学的な分析方法
が用いられている。。
(Prior art) Proteins such as globulins and enzymes contained in blood, body fluids, etc.
Hormones, bacteria, viruses, etc. have similar molecular structures and are very small in amount, so it is difficult to identify and quantify them using normal analytical methods. Therefore, immunological analysis methods that utilize antigen-antibody reactions are generally used to analyze these substances. .

このような免疫学的分析方法には、例えば標識物質を用
いるものとして、RIA(ラジオイムノアッセイ)、E
IA(エンザイムイムノアッセイ)、FIA(フルオロ
イムノアッセイ)等がある。また、これらの標識物質を
用いる分析方法は、測定系において、例えば標識物質で
標識した抗体(抗原)とサンプル中の抗原(抗体)とが
抗原抗体反応を起こした免疫複合体(Bound)と、
抗原抗体反応に関与せず、自由(Free)な状態で残
余する標識抗体(抗原)とを分離する操作、いわゆるB
−F分離を必要とするヘテロジニアス法と、必要としな
いホモジニアス法とに分類される。
Such immunological analysis methods include, for example, RIA (radioimmunoassay), E
Examples include IA (enzyme immunoassay) and FIA (fluoroimmunoassay). In addition, in the analysis method using these labeling substances, in the measurement system, an immune complex (Bound) in which an antibody (antigen) labeled with a labeling substance and an antigen (antibody) in a sample undergoes an antigen-antibody reaction,
An operation to separate the labeled antibody (antigen) that does not participate in the antigen-antibody reaction and remains in a free state, the so-called B
-F separation is classified into a heterogeneous method that requires separation and a homogeneous method that does not require it.

上記のへテロジニアス法による分析方法としては、特開
昭53−10495号公報において、カラムクロマトグ
ラフィーを利用してB−F分離をけうよにうしたものが
提案されている。これは、例えば溶液中の遊離物f(F
ree)を選択的に吸着し、免疫複合体(Bound)
を吸収しないイオン交換樹脂や、分子ふるい効果を有す
るゲルクロマトグラフィー用の充填剤を吸着剤として用
いてB−F分離を行うというものである。
As an analytical method based on the above-mentioned heterogeneous method, JP-A-53-10495 proposes a method in which B-F separation is effectively achieved using column chromatography. This is, for example, an educt f(F
selectively adsorbs immune complexes (Bound).
B-F separation is carried out using an ion exchange resin that does not absorb ions or a packing material for gel chromatography that has a molecular sieving effect as an adsorbent.

しかし、このようにB−F分離をカラムクロマトグラフ
ィーを用いて行うものにおいては、免疫複合体の大きさ
や形状にばらつきがあったり、免疫複合体と遊離物質と
の大きさが近接しているとB−F分離が困難となり、精
度が悪くなる。このため、例えば免疫グロブリン等の試
薬として用いる抗体と同じ分子や、化学的、物理的に類
似した分子の測定には使用できず、分析項目が極めて制
限される。
However, when B-F separation is performed using column chromatography, it is possible that the sizes and shapes of immune complexes vary, or that the sizes of immune complexes and free substances are close to each other. B-F separation becomes difficult and accuracy deteriorates. For this reason, it cannot be used to measure molecules that are the same as antibodies used as reagents such as immunoglobulin, or molecules that are chemically or physically similar, and the analytical items are extremely limited.

(発明の目的) 本発明の目的は、上述した不具合を解決し、B−F分離
を常に確実に行うことができ、所望の分析を容易かつ高
精度にできる免疫学的分析方法を提供しようとするもの
である。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems and to provide an immunological analysis method that can always perform B-F separation reliably and perform desired analysis easily and with high precision. It is something to do.

(発明の概要) 本発明の免疫学的分析方法は、サンプルと、抗原または
抗体を所定の物質で標識した標識抗原または抗体と、抗
原または抗体を固相化した担体とを反応させた後、その
反応液を流しながら前記担体を順次検出し、この検出し
た担体情報に基づいて前記担体に結合した標識抗原また
は抗体と、結合しないそれとを分離することを特徴とす
るものである。
(Summary of the Invention) The immunological analysis method of the present invention involves reacting a sample with a labeled antigen or antibody obtained by labeling the antigen or antibody with a predetermined substance, and a carrier on which the antigen or antibody is immobilized. The method is characterized by sequentially detecting the carriers while flowing the reaction solution, and separating labeled antigens or antibodies bound to the carrier from unbound ones based on the detected carrier information.

(実施例) 第1図は本発明の分析方法における反応模式図   ゛
の一例を示すものである。本例において、符号1は担体
に用いるラテックスで、例えば5μの均一な径のポリス
チレン製のものに物理的吸着により固相抗体2が固相化
されている。符号3はサンプルである血清等に含まれて
いる分析対象となる抗原で、符号4は抗原3に特異的に
結合する抗体をFITC等の螢光物質で標識した標識抗
体である。
(Example) FIG. 1 shows an example of a reaction schematic diagram in the analytical method of the present invention. In this example, reference numeral 1 denotes a latex used as a carrier, and the solid-phase antibody 2 is immobilized on a polystyrene material having a uniform diameter of, for example, 5 μm by physical adsorption. Reference numeral 3 is an antigen to be analyzed contained in a sample such as serum, and reference numeral 4 is a labeled antibody obtained by labeling an antibody that specifically binds to antigen 3 with a fluorescent substance such as FITC.

また、符号5は抗原抗体反応後の免疫複合体(Boun
d)であり、符号6は残余の標識抗体(Free)であ
る。
In addition, numeral 5 indicates an immune complex (Boun) after antigen-antibody reaction.
d), and numeral 6 is the remaining labeled antibody (Free).

以下、ヒトIgEの分析を例にとって説明する。The analysis of human IgE will be explained below as an example.

この場合、ラテックス1には抗ヒトIgEモノクロナル
抗体2を吸着させる。モノクロナル抗体の使用はラテッ
クス粒子同志の凝集を防止し、より特異的に抗原と結合
させる目的による。サンプルとしての抗原はヒトIgE
 3とし、標識抗体4には、FITC[識抗ヒトIgB
抗体を用いる。なお、標識抗体4は非特異吸着を少なく
、また反応速度を高める目的で、Fabフラグメントを
用いるのが望ましい。反応は、反応用緩衝液200μl
に固相抗体結合ラテレクス溶液50μlと、サンプル1
0μlと、標識抗体溶液50μlとを添加してjテわせ
る。
In this case, anti-human IgE monoclonal antibody 2 is adsorbed onto latex 1. The purpose of using monoclonal antibodies is to prevent latex particles from aggregating with each other and bind to antigens more specifically. The antigen used as a sample is human IgE.
3, and for labeled antibody 4, FITC [anti-human IgB
Use antibodies. Note that it is preferable to use a Fab fragment for the labeled antibody 4 in order to reduce nonspecific adsorption and increase the reaction rate. For the reaction, use 200 μl of reaction buffer.
Add 50 μl of solid-phase antibody-bound latex solution to sample 1.
0 μl and 50 μl of labeled antibody solution were added.

なお、これらの試薬類は、全て同時に添加しても、また
抗原を固相抗体と反応させて後、標識抗体と反応させる
ように逐次添加しても良い。
Note that these reagents may be added all at the same time, or may be added sequentially such that the antigen is reacted with the solid-phase antibody and then reacted with the labeled antibody.

ここで、例えば37℃、10分間反応させると、固相抗
体−抗原−標識抗体の免疫複合体5と残余の標識抗体6
とが生成される。本例では、これを第2図に示すフロー
サイトメータに流して電気的にB−F分離する同時に測
定する。
Here, for example, when reacting at 37°C for 10 minutes, the solid-phase antibody-antigen-labeled antibody immune complex 5 and the remaining labeled antibody 6
is generated. In this example, this is passed through a flow cytometer shown in FIG. 2 to electrically separate B and F and simultaneously measure it.

フローサイトメータは既に知られているように、細胞の
分析専用機であり、フローセルll中のニードル12に
反応液13を流し、レーザ光14をその流れに照射して
細胞から発する散乱光や螢光を測定する。通常、前方散
乱光はレーザ入射光とほぼ水平に位置するディテクタ1
5で検知され、主に細胞サイズの測定に用いられる。螢
光は、レーザ光−14の入射角に対して垂直方向に位置
するディテクタ16で検知され、細胞表面の螢光物質等
の測定に用いられる。レーザ光14は単一波長であるた
め、使用できる螢光色素に制限があるが、本例の分析方
法において用いる螢光色素FITCは波長489no+
近くの光を吸収して波長515na+の螢光を発するの
で、この場合は波長488nmの光を発するArレーザ
を用いれば良い。
As is already known, a flow cytometer is a machine dedicated to cell analysis, in which a reaction solution 13 is flowed through a needle 12 in a flow cell 11, and a laser beam 14 is irradiated onto the flow to detect scattered light and fluorescent light emitted from cells. Measure light. Normally, the forward scattered light is detected by the detector 1 located almost horizontally with the laser incident light.
5 and is mainly used to measure cell size. The fluorescent light is detected by a detector 16 located perpendicular to the incident angle of the laser beam 14, and is used to measure fluorescent substances on the cell surface. Since the laser beam 14 has a single wavelength, there are restrictions on the fluorescent dyes that can be used. However, the fluorescent dye FITC used in the analysis method of this example has a wavelength of 489no+.
Since it absorbs nearby light and emits fluorescent light with a wavelength of 515 na+, in this case, an Ar laser that emits light with a wavelength of 488 nm may be used.

このようにして、反応後の第1図に示す免疫複合体5と
残余の標識抗体6とが、混ざり合った反応液13をニー
ドル12からフローセル11中に導入し、ニードル12
中を流れる免疫複合体と残余の標識抗体等の各成分のレ
ーザ光14による散乱光および螢光をディテクタ15お
よび16でそれぞれ検知すれば、それらのパラメータに
よって第3図A、Bに示すようなサイトグラムが得られ
る。なお、第3図Aは抗原抗体が行われた場合のサイト
グラムを示し、この実施例では抗ヒトIgH[i!li
抗体が、サンプル中のIgEと結合した抗ヒトIgE 
MCA固相ラテックスのxgg部、に結合し、その免疫
複合体の発する螢光がラテックス粒子の粒径に対応する
位置21に検出されている。一方、抗原抗体反応にあず
からなかった残余の標識抗体は粒子径が極小なので、位
置22あたりに検出される。このようにして、螢光量測
定値が得られれば、予め既知濃度抗原から同様にして求
めた螢光強度と抗原濃度との関係を表す検量線に基づい
てサンプル中のIBE濃度を求めることができる。
In this way, the reaction solution 13 in which the immune complex 5 shown in FIG.
If the scattered light and fluorescent light caused by the laser beam 14 of each component such as the immune complex flowing therein and the remaining labeled antibody are detected by the detectors 15 and 16, the results will be as shown in FIGS. 3A and 3B depending on these parameters. A cytogram is obtained. In addition, FIG. 3A shows a cytogram when antigen-antibody testing was performed, and in this example, anti-human IgH [i! li
Anti-human IgE that the antibody binds to IgE in the sample
The fluorescent light emitted by the immune complex bound to the xgg portion of the MCA solid-phase latex is detected at position 21 corresponding to the particle size of the latex particle. On the other hand, the remaining labeled antibody that did not participate in the antigen-antibody reaction is detected around position 22 because its particle size is extremely small. In this way, if the measured value of the fluorescence intensity is obtained, the IBE concentration in the sample can be determined based on a calibration curve representing the relationship between the fluorescence intensity and the antigen concentration, which was previously determined from antigen concentrations of known concentration. .

また、サンプル中にIgBが少なかった場合は、第3図
Bに示すように、残余の標識抗体が位置22に集中し、
抗体結合ラテックスからは螢光は検出されない。
In addition, if there is little IgB in the sample, the remaining labeled antibody will concentrate at position 22, as shown in Figure 3B.
No fluorescence is detected from the antibody-conjugated latex.

このように、フローサイトメータを使って測定するラテ
ックスイムノアッセイを用いると、免疫複合体と残余の
標識抗体との粒子としての大きさが大きく異なるため、
測定上の識別が容易である。
As described above, when using latex immunoassay, which is measured using a flow cytometer, since the particle size of the immune complex and the remaining labeled antibody differs greatly,
Easy to identify in measurements.

また、抗原や抗体の大きさに比べ、ラテックス粒゛子の
大きさがかなり大きいから免疫複合体の大きさ、形状の
バラツキがかなり小さくなり、したがって高精度に分析
できる。更に、反応溶液を機械的にではなく電気的にB
−F分離するものであるから、そのまま測定することが
でき、したがって高速で、多検体測定が可能である。
Furthermore, since the size of latex particles is considerably larger than the size of antigens and antibodies, variations in the size and shape of immune complexes are considerably reduced, allowing highly accurate analysis. Furthermore, the reaction solution is heated electrically rather than mechanically.
Since it separates -F, it can be measured as is, and therefore high speed and multi-analyte measurement is possible.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変更または変形が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or modified in many ways.

例えば、担体はラテックスに限らず、分子量の均一な人
工細胞等、測定対象に応じそ任意の形状や大きさのもの
を用いることができる。また、フローサイドメータにソ
ーティング機能を付加して免疫複合体、残余の標識抗体
をB−F分離してから測定を行うこともできる。このよ
うにすれば、螢光物質以外の各種の標識物質を用いるこ
とができる。更に、フローサイトメータに反応装置やオ
ートサンプラ等を付加することによって自動測定も容易
に行うことができる。この場合、フローサイトメータに
おける測定速度は約5.000粒子/secであるから
、1つのサンプルについてlXl0”粒子を測定したと
しても、3分前後で高速に分析することができる。また
、本発明は競合法による分析にも有効に適用することが
できる。
For example, the carrier is not limited to latex, but may be of any shape or size depending on the object to be measured, such as artificial cells with uniform molecular weight. Alternatively, measurement can be performed after adding a sorting function to a flow side meter to perform B-F separation of the immune complex and the remaining labeled antibody. In this way, various labeling substances other than fluorescent substances can be used. Furthermore, by adding a reaction device, an autosampler, etc. to the flow cytometer, automatic measurements can be easily performed. In this case, since the measurement speed in a flow cytometer is about 5,000 particles/sec, even if one sample is measured for lXl0'' particles, the analysis can be performed at a high speed in about 3 minutes. can also be effectively applied to competitive analysis.

(発明の効果) 以上述べたように、本発明によれば、担体を用いるから
その免疫複合体と残余の標識抗体との大きさが大きく異
なり、したがって測定上の分離が簡単にできると共に、
免疫複合体の大きさ、形状のばらつきを極めて小さくで
きるから精度の高い分析を行うことができる。また、担
体は任意の大きさ、形状のものを選ぶことができるから
、サンプル分子の種類や大きさに制限されない。更に、
上述した実施例によれば、反応液を電気的にB−F分離
しながら同時に測定できるから、高速度、多検体測定を
目的とした自動比が可能である。
(Effects of the Invention) As described above, according to the present invention, since a carrier is used, the size of the immune complex and the remaining labeled antibody is greatly different, and therefore measurement separation can be easily performed.
Since variations in the size and shape of immune complexes can be extremely reduced, highly accurate analysis can be performed. Further, since the carrier can be selected to have any size and shape, it is not limited by the type or size of the sample molecule. Furthermore,
According to the above-mentioned embodiment, since the reaction solution can be electrically separated from B-F and measured at the same time, automatic ratioing for the purpose of high-speed, multi-analyte measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一例の反応模式図、第2図はフ
ローサイトメータを説明するための図、 第3図AおよびBは測定データのサイトグラムを示す図
である。 1−  ラテックス    2・−・固相抗体3−・抗
原       4−標識抗体5−・免疫複合体   
 6−残余の標識抗体11− フローセル    12
−・ニードル13−反応液      14・−レーザ
光15.16−ディテクタ 第1図 第2図 第3図 殺径□ aa→
FIG. 1 is a schematic reaction diagram of an example of the present invention, FIG. 2 is a diagram for explaining a flow cytometer, and FIG. 3 A and B are diagrams showing cytograms of measurement data. 1- Latex 2--Solid phase antibody 3--Antigen 4-Labeled antibody 5--Immune complex
6-Remaining labeled antibody 11-Flow cell 12
- Needle 13 - Reaction liquid 14 - Laser beam 15.16 - Detector Fig. 1 Fig. 2 Fig. 3 Diameter killing □ aa→

Claims (1)

【特許請求の範囲】 1、サンプルと、抗原または抗体を所定の物質で標識し
た標識抗原または抗体と、抗原または抗体を固相化した
担体とを反応させた後、その反応液を流しながら前記担
体を順次検出し、この検出した担体情報に基づいて前記
担体に結合した標識抗原または抗体と、結合しないそれ
とを分離することを特徴とする免疫学的分析方法。 2、前記反応液をフローサイトメータに流して、前記担
体に結合した標識抗原または抗体と、結合しないそれと
を電気的に分離すると同時に、前記担体に結合した標識
抗原または抗体を測定するこを特徴とする特許請求の範
囲第1項記載の免疫学的分析方法。 3、前記担体に結合した標識抗原または抗体と、結合し
ないそれとを分離した後、前記担体に結合した標識抗原
または抗体を測定することを特徴とする特許請求の範囲
第1項記載の免疫学的分析方法。
[Claims] 1. After reacting a sample, a labeled antigen or antibody obtained by labeling an antigen or antibody with a predetermined substance, and a carrier on which the antigen or antibody is immobilized, the 1. An immunological analysis method comprising sequentially detecting carriers and separating labeled antigens or antibodies bound to the carrier from unbound labeled antigens or antibodies based on the detected carrier information. 2. The reaction solution is passed through a flow cytometer to electrically separate the labeled antigen or antibody bound to the carrier from that which is not bound, and at the same time, the labeled antigen or antibody bound to the carrier is measured. An immunological analysis method according to claim 1. 3. The immunological method according to claim 1, wherein the labeled antigen or antibody bound to the carrier is separated from the unbound labeled antigen or antibody, and then the labeled antigen or antibody bound to the carrier is measured. Analysis method.
JP25520584A 1984-12-03 1984-12-03 Immunological analysis Granted JPS61132868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25520584A JPS61132868A (en) 1984-12-03 1984-12-03 Immunological analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25520584A JPS61132868A (en) 1984-12-03 1984-12-03 Immunological analysis

Publications (2)

Publication Number Publication Date
JPS61132868A true JPS61132868A (en) 1986-06-20
JPH0588422B2 JPH0588422B2 (en) 1993-12-22

Family

ID=17275478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25520584A Granted JPS61132868A (en) 1984-12-03 1984-12-03 Immunological analysis

Country Status (1)

Country Link
JP (1) JPS61132868A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215815A (en) * 1975-07-23 1977-02-05 Coulter Electronics Measurement of presence of antigen or antibody within sample
JPS5616872A (en) * 1979-07-13 1981-02-18 Ortho Diagnostics Automatized identification and counting method of and apparatus for subclass of specified blood cell
JPS5821166A (en) * 1981-07-30 1983-02-07 Fujitsu Ltd Separation of material to be measured
JPS5826268A (en) * 1981-07-22 1983-02-16 インタ−ナシヨナル・リモ−ト・イメ−ジング・システムズ Method of analyzing distribution of reactive substance between grain and liquid in suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215815A (en) * 1975-07-23 1977-02-05 Coulter Electronics Measurement of presence of antigen or antibody within sample
JPS5616872A (en) * 1979-07-13 1981-02-18 Ortho Diagnostics Automatized identification and counting method of and apparatus for subclass of specified blood cell
JPS5826268A (en) * 1981-07-22 1983-02-16 インタ−ナシヨナル・リモ−ト・イメ−ジング・システムズ Method of analyzing distribution of reactive substance between grain and liquid in suspension
JPS5821166A (en) * 1981-07-30 1983-02-07 Fujitsu Ltd Separation of material to be measured

Also Published As

Publication number Publication date
JPH0588422B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
CA1128856A (en) Simultaneous heterogeneous specific binding assay of different ligands in a single sample
US5674699A (en) Two-phase optical assay
JP3458860B2 (en) Sensor device for sandwich analysis
KR101159383B1 (en) Device for the determination of advanced glycosylated end products(AGEs)
US5132097A (en) Apparatus for analysis of specific binding complexes
US5571728A (en) Method for analyzing particle-enhanced agglutination reactions in centrifugal analyzers by determining the brightening of turbidity
US8956823B2 (en) Anti-antibody reagent
SE443660B (en) PROCEDURE AND REAGENT FOR IMMUNAL ANALYSIS WITH RF OR CLQ ADSORBED TO FIXED BEARERS
JPH03504276A (en) Analysis method
US5389523A (en) Liposome immunoanalysis by flow injection assay
JP3908272B2 (en) Solid phase assay for detection of ligands
JP4274944B2 (en) Particle-based ligand assay with extended dynamic range
US4865997A (en) Assay for ligands by separating bound and free tracer from sample
US20210156856A1 (en) Systems, devices, and methods for amplifying signals of a lateral flow assay
US4436826A (en) Tagged immunoassay
AU592971B2 (en) Solid phase diffusion assay
US4138213A (en) Agglutination immunoassay of immune complex with RF or Clq
JP2005510706A5 (en)
Price et al. Light scattering immunoassay
Deverill et al. Light scattering and absorption—developments in immunology
CN116413445A (en) Detection card, kit and detection method for detecting total thyroxine content
JP2709296B2 (en) Immunological analysis method
JPS61110059A (en) Immunological analysis
JPS61132868A (en) Immunological analysis
JPS61132869A (en) Immunological analysis