JPS61110059A - Immunological analysis - Google Patents

Immunological analysis

Info

Publication number
JPS61110059A
JPS61110059A JP23135984A JP23135984A JPS61110059A JP S61110059 A JPS61110059 A JP S61110059A JP 23135984 A JP23135984 A JP 23135984A JP 23135984 A JP23135984 A JP 23135984A JP S61110059 A JPS61110059 A JP S61110059A
Authority
JP
Japan
Prior art keywords
antibody
antigen
carrier
labeled
labelled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23135984A
Other languages
Japanese (ja)
Other versions
JPH0610678B2 (en
Inventor
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP23135984A priority Critical patent/JPH0610678B2/en
Publication of JPS61110059A publication Critical patent/JPS61110059A/en
Publication of JPH0610678B2 publication Critical patent/JPH0610678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Abstract

PURPOSE:To perform a required analysis at a high accuracy, by a method wherein in an antibody labelled by a specified substance is made to react with a carrier which has an antibody in solic phase on the surface thereof and is larger than the labelled antibody and then, the labelled antibodies bonded to the carrier in a reaction liquid and those not are separated by gel chromatography. CONSTITUTION:An antibody 3 labelled by a specified substance 4 and a carrier 1 having an antibody 2 in solid phase larger than the labelled antibody 3 are used to cause a reaction by adding a reaction buffer liquid containing a sample antigen 5. Then, with a chromatograph equipment, an antigen-antibody composite (Bound 6) in the reaction liquid is separated from the labelled antibody 3 (Free 7) having a labelling substance 4 not involved in an antigen-antibody reaction so called B-F separa tion. Then, changes in the quantity of scattering light and transmission light are detected with the chromatograph equipment together with the intensity of fluorescent light. At first, the fluorescent peak of the Bound 6 is obtained and that of the Free 7 one later. Thus, the density of the sample antigen is analyzed at a high accuracy from the calibration curve of the intensity of fluorescence and the density of the antigen obtained from an antigen with the known density based on the initial fluores cent peak.

Description

【発明の詳細な説明】 (技術分骨) 本発明は免疫学的分析方法に関するものである。[Detailed description of the invention] (Technical bone) The present invention relates to an immunological analysis method.

(従来技wi) 血液、体液等に含まれるグロブリン、酵素等のタンパク
質、またはホルモン、細菌、ウィルス等はその分子構造
が類似していたり、極く微量であるために通常の分析方
法では同定、定量が内鍵である。そこで、これらの物質
の分゛析には、一般に゛す抗体、抗原あるいはレクチン
等を利用した免疫学的な分析方法が用いられている。
(Conventional technique wi) Proteins such as globulins and enzymes, hormones, bacteria, viruses, etc. contained in blood, body fluids, etc. have similar molecular structures and are extremely small in amount, so it is difficult to identify them using normal analysis methods. Quantification is the inner key. Therefore, immunological analysis methods using antibodies, antigens, lectins, etc. are generally used to analyze these substances.

このような抗原抗体反応を利用する免疫学的分析方法に
は、大別して標識物質を用いる標識免疫分析法と、標識
物質を用いずに抗原抗体複合物を直接測定する非標識免
疫分析法とがあるが、非標識免疫分析法は簡便であるが
感度、定量性、再現性の点で精密測定としては不充分で
あるため、最近では標識免疫分析法が主流を成している
。この標識免疫分析法は、標識物質の違いによってラジ
オイムノアッセイ、エンザイムイムノアッ七イ、フルオ
ロイムノアッセイに大別され、また測定系において標識
物質で標識した抗体(抗原)とサンプル中の抗原(抗体
)とが抗原抗体反応を起した抗原抗体複合物(goun
d )と、抗原抗体反応に関与しない標識抗体(抗原)
(Free )とを分離する操作、いわゆるB−F分離
を必要とするヘテロジニアス法と必要としないホモジュ
ニアス法とに分類される。ホモジニアス法はB−F分離
を必要としないところから操作が簡単であり、したがっ
てそれを、自動的に行なうようにした装置も従来種々提
案されているが、ヘテロジニアス法はB−F分離を必要
とするところから、分析手順が煩雑であり、このためそ
れを自動的に行なうようにした装置の提案もホモジニア
ス法に比べて少ない。
Immunological analysis methods that utilize such antigen-antibody reactions can be roughly divided into labeled immunoassay methods that use labeled substances, and non-labeled immunoassay methods that directly measure antigen-antibody complexes without using labeled substances. However, although non-labeled immunoassays are simple, they are insufficient for precise measurements in terms of sensitivity, quantification, and reproducibility, so labeled immunoassays have recently become mainstream. This labeled immunoassay is broadly classified into radioimmunoassay, enzyme immunoassay, and fluoroimmunoassay depending on the difference in the labeling substance, and in the measurement system, the antibody (antigen) labeled with the labeling substance and the antigen (antibody) in the sample are used. The antigen-antibody complex (goun) that caused an antigen-antibody reaction
d) and a labeled antibody (antigen) that does not participate in the antigen-antibody reaction
(Free) and is classified into a heterogeneous method which requires so-called B-F separation, and a homojunius method which does not require it. The homogeneous method is easy to operate because it does not require B-F separation, and various devices have been proposed that automatically perform this process, but the heterogeneous method does not require B-F separation. As a result, the analysis procedure is complicated, and there are fewer proposals for devices that can automatically perform this procedure than in the homogeneous method.

このヘテロジニアス法を採用する免疫学的分析法として
、特開昭58−10495号公報においてカラムクロマ
トグラフィーを利用してB−F分離を行なうようにした
自動化に適した分析法が提案されている。この分析法に
おいて、カラムに充填される吸着剤としては溶液中の遊
離抗原を選択的に吸着し、抗原抗体複合物を吸着しない
、例えばアニオン、カチオンイオン交換樹脂や、分子ふ
るい効果のあるゲルクロマトグラフィー用の充填剤を用
いている。しかしながら、ゲルクロマトグラフィーによ
るB−F分離は、競合法による戸ブテン、七ミハプテン
等の低分子抗原の分析においては有効なものの、分子量
敵方以上の抗原になると、・遊離抗原と抗原抗体複合物
との大きさが近接したり、抗原抗体複合物の大きさや形
状にばらつきがある等して、そのB−F分離が困鑓とな
る。
As an immunological analysis method that employs this heterogeneous method, an analysis method suitable for automation that uses column chromatography to perform B-F separation has been proposed in Japanese Patent Application Laid-open No. 10495/1983. . In this analysis method, the adsorbent packed in the column is a material that selectively adsorbs free antigens in a solution but does not adsorb antigen-antibody complexes, such as anion or cation ion exchange resins or gel chromatography with a molecular sieving effect. A filler for graphics is used. However, although B-F separation by gel chromatography is effective in the analysis of low-molecular antigens such as tobutene and 7-mihapten using a competitive method, when it comes to antigens with a molecular weight higher than that of the enemy, free antigen and antigen-antibody complexes are separated. B-F separation becomes difficult because the size of the antigen-antibody complex is close to that of the antigen-antibody complex, or because the size and shape of the antigen-antibody complex vary.

このため、例えば免疫グロブリン等の試薬として用いる
抗体と同じ分子や、化学的、物理的に類似した分子の測
定には使用できず、分析項目が極めて制限される不具合
がある。
For this reason, it cannot be used to measure molecules that are the same as antibodies used as reagents such as immunoglobulin, or molecules that are chemically or physically similar, and there is a problem that the analytical items are extremely limited.

(発明の目的) 本発明の目的は上述した不具合を解決し、ゲルクロマト
グラフィーによるB−F分離を、分析項目に制限される
ことなく低分子から高分子に至るまで常に確実に行なう
ことができ、所要の分析を高精度でかつ高速にできる免
疫学的分析方法を提供しようとするものである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, and to be able to always reliably perform B-F separation by gel chromatography from low molecules to high molecules without being limited to the analysis items. The purpose of the present invention is to provide an immunological analysis method that allows the required analysis to be carried out with high accuracy and speed.

(発明の概要) 本発明の免疫学的分析方法は、サンプルと、所定の物質
で標識した標識抗原または抗体と、表面に固相化した抗
原または抗体を有し、少く共前記標識抗原または抗体よ
りも大きさまたは分子量が大きい担体とを反応させた後
、その反応液中の前記担体に結合した標識抗原または抗
体と、結合しないそれとをゲルクロマトグラフィーによ
り分離することを特徴とするものである。
(Summary of the Invention) The immunological analysis method of the present invention comprises a sample, a labeled antigen or antibody labeled with a predetermined substance, and an antigen or antibody immobilized on a surface, and a small amount of the labeled antigen or antibody is immobilized on the surface. After reacting with a carrier having a larger size or molecular weight than the carrier, the labeled antigen or antibody bound to the carrier in the reaction solution is separated from the unbound labeled antigen or antibody by gel chromatography. .

本発明において、抗体または抗原を固相化する担体とし
ては、標識抗体または抗原よりも大きさが大きく、かつ
粒径の均一なラテックス粒子、あるいは標識抗原または
抗体よりも分子量が大きくかつ均一なポリスチレン、デ
キストラン、チトクロム0等の巨大分子等を用いること
ができるが、好適には形状および大きさを均一にしやす
いラテックス粒子が有効である。ラテックス粒子の太き
さけ分析項目やゲルクロマトグラフィーにおける充填剤
等の条件によって異なるが、粒径が0.08μm〜5μ
m程度までの任意の大きさのものが使用でき、また材質
や表面の化学的性状も同様に種々選択できる。この担体
に固相化する抗原または抗体は、例えばサンプル中の抗
原を、これを介して担体と識識抗体とを結合させるいわ
ゆるサンドイツチ法により分析する場合には、抗体とし
てモノクローナル抗体のFabもしくはF(abz) 
 フラクメントが望ましく、これを物理的吸着や共有結
合等の伏字的結合によって固相化する。また、この場合
の標識抗体としては、モノクローナルもしくはぎリフロ
ーナル抗体のFab7ラグメントが望ましく、これを酵
素、螢光特賞、放射性物質、色素、金属等の所定の標識
物質に結合させる。なお、例えば抗体に酵素を標識する
場合には、抗体および酵素の分子を1分子ずつ結合させ
ることが望ましい。また、B−F分離を行なうゲルクロ
マトグラフィーにおけるゲルは、分析項目、担体等によ
って適宜選択でき、そのゲル粒子の材質、大きさ、分子
分画範囲等は任意にフントロールできる。
In the present invention, the carrier on which the antibody or antigen is immobilized may be latex particles that are larger in size than the labeled antibody or antigen and have a uniform particle size, or polystyrene that has a molecular weight larger and more uniform than the labeled antigen or antibody. Although macromolecules such as , dextran, and cytochrome 0 can be used, latex particles are preferably effective because they can be easily made uniform in shape and size. Although it varies depending on the thickness of latex particles and conditions such as the analysis items and the packing material used in gel chromatography, the particle size is 0.08 μm to 5 μm.
It is possible to use a material of any size up to about 1.5 m, and various materials and surface chemical properties can be selected as well. The antigen or antibody immobilized on this carrier is, for example, a monoclonal antibody Fab or F as the antibody, when analyzing the antigen in a sample by the so-called sandwich method in which the carrier and a recognition antibody are bonded via this. (abz)
A fraction is preferable, and this is solidified by physical adsorption or hidden bonding such as covalent bonding. Further, the labeled antibody in this case is preferably a Fab7 fragment of a monoclonal or reflonal antibody, which is bound to a predetermined labeling substance such as an enzyme, a fluorescent substance, a radioactive substance, a dye, a metal, or the like. Note that, for example, when labeling an antibody with an enzyme, it is desirable to bond the antibody and enzyme molecules one molecule at a time. In addition, the gel used in gel chromatography for B-F separation can be appropriately selected depending on the analysis item, carrier, etc., and the material, size, molecular fractionation range, etc. of the gel particles can be arbitrarily selected.

(実施例) 第1実施例 第1実施例としてヒ) IgEの分析について説明する
。第1図はヒ) IgEを分析する際の反応模式図であ
る。本例では、担体1として粒径が0.41μmのポリ
スチレンラテックスを使用し、この担体1に固相抗体2
としてモノクローナル抗ヒトエgE抗体を物理的吸着に
より固相化する。また、標識抗体8として担体1よりも
大きさの小さいヤギ抗ヒトIgE抗体のFabフラグメ
ントを使用し、これに標識物質4としてフルオレ七イン
イソチオシアネート(FITO)の螢光物質を結合させ
る。先ず、上記の固相抗体2を有する担体1を含むラテ
ックス試薬60μlと、標識物質番で標識された標識抗
体3を含む標識試薬60μtと、サンプル抗原5を・含
むヒ) IgE溶液10μtとを、0.OIMりん酸緩
衝液(PBS)PH=7.5 / 0.I M HaC
Jt / 0.1%牛血清アルブミン(BSA)10.
oz%NaN、 J:り成るz00μtの反応用緩衝液
に添加して、サンドイツチ法により87°C110分間
抗抗原体反応を起させる。なお、各溶液は全て同時に添
加してもよいし、先ず固相抗体2とサンプル抗原5とを
反応させた後、サンプル抗原5と標識抗体δとを反応さ
せるように各溶液を順次添加してもよい。
(Example) First Example As the first example, (h) IgE analysis will be explained. Figure 1 is a schematic diagram of a reaction when analyzing IgE. In this example, polystyrene latex with a particle size of 0.41 μm is used as carrier 1, and solid phase antibody 2 is used on this carrier 1.
A monoclonal anti-human EggE antibody is immobilized by physical adsorption. Further, a Fab fragment of a goat anti-human IgE antibody, which is smaller in size than the carrier 1, is used as the labeled antibody 8, and a fluorescent substance such as fluoren7ine isothiocyanate (FITO) is bound to this as the labeled substance 4. First, 60 μl of the latex reagent containing the carrier 1 having the solid-phase antibody 2, 60 μt of the labeled reagent containing the labeled antibody 3 labeled with the labeling substance number, and 10 μt of the IgE solution containing the sample antigen 5, 0. OIM phosphate buffer (PBS) PH=7.5/0. I M HaC
Jt/0.1% bovine serum albumin (BSA)10.
It is added to a reaction buffer solution of z00 μt consisting of oz% NaN, J: to cause an anti-antigen reaction at 87° C. for 110 minutes by the Sanderch method. Incidentally, each solution may be added all at the same time, or each solution may be added sequentially so that the solid-phase antibody 2 and the sample antigen 5 are first reacted, and then the sample antigen 5 and the labeled antibody δ are reacted. Good too.

その後、上記の反応液中の抗原抗体複合物すな:わちB
ound 6と、抗原抗体反応に関与しなかったII識
動物質4有する標識抗体3すなわち1rree 7とを
、第2図に示すクロマト装置でB−F分離してサンプル
抗原濃度を測定する。第2図に示すクロマト装置は、ゲ
ルクロマトグラフィー用カラム11の入口をインジェク
タ12およびゼンプ13を介して溶出液タンク14に連
結し、出口を検出器15を介して廃液タンク16に連結
して、検出器x5の出力を記録計17で記録するように
したもので、本例では、溶出液タンク14に0.01 
MPBS pH= 7.5 / 0. I M N&O
tより成る溶出液を収容し、またカラム11への充填剤
としてはセルロファインGCL−20008f(商品名
;生化学工業株式会社製)を用いる。このクロマト装置
のカラム11にインジェクタ12から上記の反応液を注
入してポンプlδにより溶出液を供給すると、Boun
d 6は標識抗体8よりも大きい担体1を有するから高
速に溶出し、遅れてyree 7が溶出してB−F分離
が確実に行なわれる。したがって、検出器15において
散乱光および透過光量の変化を螢光強度と同時に検出し
て記録計17で記舜すると、第8図に示すように最初に
Bound 6のきわめてシャープな螢光ビークaが得
られ、遅れてFree7の螢光ビークbが得られるから
、最初の螢光ビークaに基いて、予じめ既知濃度抗原か
ら求めた゛螢光強度と抗原濃度との関係を表わす検量線
から鵠サンプル抗原濃度を高精度かつ高速に求めること
ができる。
After that, the antigen-antibody complex in the above reaction solution, namely B
ound 6 and the labeled antibody 3 having the II labeling substance 4, which did not participate in the antigen-antibody reaction, ie, 1rree 7, are subjected to B-F separation using the chromatography apparatus shown in FIG. 2, and the sample antigen concentration is measured. The chromatography apparatus shown in FIG. 2 has an inlet of a gel chromatography column 11 connected to an eluate tank 14 via an injector 12 and a semp 13, and an outlet connected to a waste liquid tank 16 via a detector 15. The output of the detector x5 is recorded by the recorder 17, and in this example, 0.01
MPBS pH=7.5/0. I M N&O
Cellulofine GCL-20008f (trade name; manufactured by Seikagaku Corporation) is used as a packing material for the column 11. When the above reaction solution is injected into the column 11 of this chromatography device from the injector 12 and the eluate is supplied by the pump lδ, the Boun
Since d6 has a larger carrier 1 than the labeled antibody 8, it elutes at high speed, and yree 7 elutes later, ensuring B-F separation. Therefore, when the detector 15 detects changes in the amount of scattered light and transmitted light at the same time as the fluorescent light intensity and records them with the recorder 17, the very sharp fluorescent peak a of Bound 6 is first detected as shown in FIG. Since the fluorescence peak b of Free7 is obtained after a delay, we can calculate the result using the standard curve representing the relationship between the fluorescence intensity and the antigen concentration, which was determined in advance from the antigen with a known concentration, based on the initial fluorescence peak a. Sample antigen concentration can be determined with high precision and high speed.

なお、本実施例ではサンプル抗原をサンドイツチ法によ
り分析するようにしたが、標識抗原と適切なカラム充填
剤とを用いることによって、ハプテン等の分析において
適用される競合法によっても分析することができる。
In this example, the sample antigen was analyzed by the Sand-Deutsch method, but by using a labeled antigen and an appropriate column packing material, the sample antigen can also be analyzed by a competitive method applied in the analysis of haptens, etc. .

第2実施例 第2実施例としてヒトインシュリンの分析について説明
する。本例では、担体として粒径が0.22μmのポリ
スチレンラテックスを使用し、この担体に[1m抗体と
してモルモット抗IV−トインシュリン抗体を物理的吸
着により固相化する。また、標識抗原として担体よりも
大きさの小さいブタインシュリンを用い、これをFIT
Cの螢光物質で標識する。上記の固相抗体を有する担体
を含むラテックス試薬60μtと、FITOで標識した
標識抗原を含む標m試薬50 ptと、サンプル抗原の
ヒトインシュリン溶液10μtと)tを、0.01 M
 PBS PH=7.0 / 0.I N Mail 
/ 0.1 % BSA / 0.02%NaN3より
成る200μtの反応用緩衝液に添加して、競合法によ
る抗原抗体反応を87°Cで10分間行なわせた後、第
1実施例と同様に第2図に示す構成のクロマト装置によ
りB−F分離を行なって、BoundとFreeとのそ
れぞれの螢光強度を測定し、それらの螢光強度に基いて
サンプル中のインシュリン濃度を求める。なお、本例に
おいては、カラAの充IEIとしてセルロファイ/Go
−200m(商品名;生化学工業株式会社製)を用いる
Second Example As a second example, analysis of human insulin will be explained. In this example, polystyrene latex with a particle size of 0.22 μm is used as a carrier, and a guinea pig anti-IV-toinsulin antibody as a [1m antibody is immobilized on this carrier by physical adsorption. In addition, porcine insulin, which is smaller in size than the carrier, was used as a labeled antigen, and this was
Label with C fluorophore. 60 μt of the latex reagent containing the carrier with the above-mentioned solid-phase antibody, 50 pt of the standard reagent containing the labeled antigen labeled with FITO, and 10 μt of the human insulin solution of the sample antigen), 0.01 M
PBS PH=7.0/0. I N Mail
/ 0.1% BSA / 0.02% NaN3 was added to 200 μt of reaction buffer, and an antigen-antibody reaction was performed at 87°C for 10 minutes by competitive method, followed by the same procedure as in Example 1. B-F separation is performed using a chromatography apparatus having the configuration shown in FIG. 2, and the respective fluorescence intensities of Bound and Free are measured, and the insulin concentration in the sample is determined based on these fluorescence intensities. In addition, in this example, Cellulophy/Go is used as the filling IEI for Kara A.
-200m (trade name; manufactured by Seikagaku Corporation) is used.

本実施例においても、Boundは標識抗原よりも大き
い担体を有するから、その反応液を第2図に示す構成の
クロマト装置に通すと、最初にBoundが高速に溶出
し、遅れてFreeが溶出してB−7分離が確実に行な
われ、第8図と同様な螢光強度が得られる。したがって
、Boundのピーク値とFreeのピーク値とに基い
てサンプル中のインシュリン濃度を高精度かつ高速に求
めることができる。
In this example as well, Bound has a larger carrier than the labeled antigen, so when the reaction solution is passed through the chromatography device configured as shown in Figure 2, Bound elutes at high speed first, and Free elutes later. B-7 separation is reliably carried out, and a fluorescence intensity similar to that shown in FIG. 8 is obtained. Therefore, the insulin concentration in the sample can be determined with high accuracy and high speed based on the Bound peak value and the Free peak value.

第δ実施例 第8実施例としてヒトエgGの分析について説明・す、
る。本例では、担体として分子量30万のデキストラン
を用い、これを臭化シアン(0NBr ) r活性化し
て過剰量の6・アミノカプロン酸を反応させることによ
り、デキストラン分子内にカルボキシル基を導入し、更
にカルボジイミドを用いてデキストランとモノクローナ
ル抗ヒトIgG 抗体の’ab ’ラグメントを架橋す
る。また、標識抗体として担体よりも分子量の小さいヤ
ギ抗ヒ) IgGのFab7ラグメントを使用し、これ
をFITCの螢光物質で標識する。上記の固相抗体を有
する担体を含むデキストラン試薬50μtと、FITC
で標識した標識抗体を含む標識試薬60μtと、サンプ
ル抗原のヒトIgG溶液6μtとを、0.01 M P
BS pH=7,5 / 0.2  M Ha(3t/
 0.1  %BSA / 0.05  %Tw−ee
n 20 / O−02% NaN、より成る2 00
 P&の反応用緩衝液に添加して、サンドイツチ法によ
る抗原抗体反応を87゛Cで5分間行なわせた後、第1
実施例と同様に第2図に示す構成のクロマト装置により
B−F分離を行なって、BO二undと7reeとのそ
れぞれの螢光強度を測定し、サンプル中のIgG濃度を
求める。なお、本例においては、カラムの充填剤として
セルロファインにC−C−7O0商品名;生化学工業株
式会社11!Iりを用いる。
Example δ As the eighth example, we will explain the analysis of human egg G.
Ru. In this example, dextran with a molecular weight of 300,000 is used as a carrier, and by activating this with cyanogen bromide (0NBr) and reacting with an excess amount of 6-aminocaproic acid, a carboxyl group is introduced into the dextran molecule. Carbodiimide is used to crosslink the dextran and the 'ab' fragment of the monoclonal anti-human IgG antibody. Further, as a labeled antibody, a goat anti-human IgG Fab7 fragment having a molecular weight smaller than that of the carrier is used, and this is labeled with the fluorescent substance FITC. 50 μt of dextran reagent containing the carrier with the above solid-phase antibody and FITC.
60 μt of a labeled reagent containing a labeled antibody labeled with 0.01 M P and 6 μt of a sample antigen human IgG solution
BS pH=7.5/0.2M Ha (3t/
0.1%BSA/0.05%Tw-ee
n20/O-02% NaN, 200
After adding it to P& reaction buffer and carrying out an antigen-antibody reaction by the Sand-Deutsch method at 87°C for 5 minutes,
As in the example, BF separation is carried out using a chromatography apparatus having the configuration shown in FIG. 2, and the respective fluorescence intensities of BO2 and 7ree are measured to determine the IgG concentration in the sample. In this example, C-C-7O0 product name; Seikagaku Corporation 11! is used as the column packing material for Cellulofine. Use Iri.

本実施例においては、Boundは標識抗体よりも分子
量が大きい担体を有するから、その反応液を第2図に示
す構成のクロマト装置に通すと、最初にBoundが高
速に溶出し、遅れて1rreeが溶出してB−F分離が
確実に行なわれ、第8図と同様な螢光強度が得られる。
In this example, Bound has a carrier with a larger molecular weight than the labeled antibody, so when the reaction solution is passed through the chromatography device configured as shown in Figure 2, Bound elutes at high speed first, and 1rree elutes later. By elution, B-F separation is performed reliably, and a fluorescence intensity similar to that shown in FIG. 8 is obtained.

したがって、本例においてもサンプル中のIgG濃度を
、上述した実施例と同様に高精度かつ高速に求めること
ができる。
Therefore, in this example as well, the IgG concentration in the sample can be determined with high precision and at high speed, as in the above-mentioned example.

なお、本発明は上述したヒトIgE 、ヒトインシュリ
ン、と) IgGの分析のみでなく、酵素等のタンパク
質、ホルモン、細菌、ウィルス等の種々の分析にも有効
に適用することができると共に、標識物質も螢光物質に
限らず、酵素、放射性物質、色素、金属等の種々のもの
を用いるごとができる。
The present invention can be effectively applied not only to the above-mentioned analysis of human IgE, human insulin, and IgG, but also to various analyzes of proteins such as enzymes, hormones, bacteria, viruses, etc. In addition to fluorescent substances, various substances such as enzymes, radioactive substances, dyes, and metals can be used.

(発明の効果) 以上述べたように、本発明によればゲルクロマトグラフ
ィーによりB−F分離を行なう標識免疫・分析法におい
て、標識抗原または抗体よりも大きさまたは分子量の大
きい担体を用いるようにしたから、分析項目に制限され
ることなく低分子から高分子に至るまで常に確実にB−
F分離することができ、これにより所要の分析を高精度
かつ高速に行なうことができる。
(Effects of the Invention) As described above, according to the present invention, a carrier having a larger size or molecular weight than the labeled antigen or antibody is used in a labeled immunoassay/analysis method that performs B-F separation by gel chromatography. Therefore, regardless of the analysis items, you can always reliably perform B-
F can be separated, thereby enabling the required analysis to be performed with high precision and high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は標識免疫分析法の一例の反応模式図、第2図は
本発明によってB−F分離を行なうクロマト装置の一例
の構成を示す図、 第8図は第2図に示すクロマト装置から得られる出力波
形の一例を示す図である。 1・・・担体        2・・・抗体8・・・標
識抗体     令・・・標識物質5・・・サンプル抗
原   6・・・Bound7・・・Free    
    11・・・カラム12・・・インジェクタ  
 18・・・ポンプ14・・・溶出液タンク   15
・・・検出器16・・・廃液タンク    17・・・
記録計第1図 第2図    第3図
Fig. 1 is a schematic reaction diagram of an example of the labeled immunoassay method, Fig. 2 is a diagram showing the configuration of an example of a chromatography apparatus for performing B-F separation according to the present invention, and Fig. 8 is a diagram showing the configuration of an example of the chromatography apparatus shown in Fig. 2. It is a figure which shows an example of the output waveform obtained. 1... Carrier 2... Antibody 8... Labeled antibody Age... Labeled substance 5... Sample antigen 6... Bound 7... Free
11... Column 12... Injector
18... Pump 14... Eluate tank 15
...Detector 16...Waste liquid tank 17...
Recorder Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、サンプルと、所定の物質で標識した標識抗原または
抗体と、表面に固相化した抗原または抗体を有し、少く
共前記標識抗原または抗体よりも大きさまたは分子量が
大きい担体とを反応させた後、その反応液中の前記担体
に結合した標識抗原または抗体と、結合しないそれとを
ゲルクロマトグラフィーにより分離することを特徴とす
る免疫学的分析方法。
1. Reacting a sample with a labeled antigen or antibody labeled with a predetermined substance and a carrier having the antigen or antibody immobilized on the surface and having a size or molecular weight slightly larger than the labeled antigen or antibody. After that, the labeled antigen or antibody bound to the carrier in the reaction solution and the unbound labeled antigen or antibody are separated by gel chromatography.
JP23135984A 1984-11-05 1984-11-05 Immunological analysis method Expired - Lifetime JPH0610678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23135984A JPH0610678B2 (en) 1984-11-05 1984-11-05 Immunological analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23135984A JPH0610678B2 (en) 1984-11-05 1984-11-05 Immunological analysis method

Publications (2)

Publication Number Publication Date
JPS61110059A true JPS61110059A (en) 1986-05-28
JPH0610678B2 JPH0610678B2 (en) 1994-02-09

Family

ID=16922381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23135984A Expired - Lifetime JPH0610678B2 (en) 1984-11-05 1984-11-05 Immunological analysis method

Country Status (1)

Country Link
JP (1) JPH0610678B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228557A (en) * 1988-04-25 1990-01-30 Wako Pure Chem Ind Ltd Novel method for measuring trace component
JPH03206964A (en) * 1990-01-09 1991-09-10 Wako Pure Chem Ind Ltd Fractional measurement of minor component
JPH03221865A (en) * 1990-01-26 1991-09-30 Wako Pure Chem Ind Ltd Novel fractional measurement method for trace component
JP2012026729A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Analytical method of biological sample

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185529A (en) * 2007-01-31 2008-08-14 Japan Advanced Institute Of Science & Technology Hokuriku Method and device for detecting substance to be detected

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228557A (en) * 1988-04-25 1990-01-30 Wako Pure Chem Ind Ltd Novel method for measuring trace component
JPH03206964A (en) * 1990-01-09 1991-09-10 Wako Pure Chem Ind Ltd Fractional measurement of minor component
JPH0765988B2 (en) * 1990-01-09 1995-07-19 和光純薬工業株式会社 Fractional measurement method for trace components
JPH03221865A (en) * 1990-01-26 1991-09-30 Wako Pure Chem Ind Ltd Novel fractional measurement method for trace component
JP2012026729A (en) * 2010-07-20 2012-02-09 Hitachi High-Technologies Corp Analytical method of biological sample

Also Published As

Publication number Publication date
JPH0610678B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
EP1075661B1 (en) Ligand binding assay and kit with a separation zone for disturbing sample components
KR920005963B1 (en) Method for the determination of a specific binding substance
US4894347A (en) Erythrocyte agglutination assay
JPH03502244A (en) Test method and reagent kit
JPS5949545B2 (en) Antibody, antigen or antibody: reagent for antigen complex analysis
EP0122695B1 (en) Immunoassay for antigens employing supported binder
KR920000056B1 (en) Process for the determination of a specifically bindable substance
JPS61277059A (en) Analysis of plural items
US4865997A (en) Assay for ligands by separating bound and free tracer from sample
AU592971B2 (en) Solid phase diffusion assay
JP3908272B2 (en) Solid phase assay for detection of ligands
US4138213A (en) Agglutination immunoassay of immune complex with RF or Clq
JPS61110059A (en) Immunological analysis
JPH09500962A (en) Testing equipment
NO164135B (en) IMMUNOMETRIC METHOD FOR DETERMINING A HAPTEN, AND ANALYTICAL METHOD FOR PERFORMING THE METHOD.
US20030073126A1 (en) Competitive immunoassay using complexed analyte derivatives02
JPH0326787B2 (en)
GB2078953A (en) Two site cross-reaction immunometric sandwich assay method
JP2501960B2 (en) Methods and reagents for immunologically measuring ligands
JP2709296B2 (en) Immunological analysis method
JPH08327629A (en) Pretreatment of specimen
AU2003200222B2 (en) Ligand binding assay and kit with a separation zone for disturbing analytes
JP2729917B2 (en) Method of measuring analyte free portion in biological fluid
JPS61132868A (en) Immunological analysis
JPS6082966A (en) Assay of antigen