JPS61132856A - Eddy current flaw detecting method by insertion probe coil - Google Patents

Eddy current flaw detecting method by insertion probe coil

Info

Publication number
JPS61132856A
JPS61132856A JP59255452A JP25545284A JPS61132856A JP S61132856 A JPS61132856 A JP S61132856A JP 59255452 A JP59255452 A JP 59255452A JP 25545284 A JP25545284 A JP 25545284A JP S61132856 A JPS61132856 A JP S61132856A
Authority
JP
Japan
Prior art keywords
tube
probe coil
eddy current
flaw detection
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59255452A
Other languages
Japanese (ja)
Inventor
Shigeki Hirakawa
平川 重貴
Yorozu Gonda
権田 萬
Tamekichi Yoshida
吉田 為吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Kobe Steel Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shin Nippon Nondestructive Inspection Co Ltd filed Critical Kobe Steel Ltd
Priority to JP59255452A priority Critical patent/JPS61132856A/en
Publication of JPS61132856A publication Critical patent/JPS61132856A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Abstract

PURPOSE:To execute an eddy current flaw detection in all parts of a tube by inserting an insertion probe coil into the tube, and turning it in the peripheral direction. CONSTITUTION:An insertion probe coil 3 is inserted into a bobbin 4 from a tube expanded part D until a flange plate 6 abuts on a tube plate 2. The probe coil 3 is in parallel to the axial direction, in the side face of the bobbin 4, and to its end face, a pair of coils 5 being parallel to the direction vertical to the axial direction are wound round and formed. Accordingly, when an eddy current flaw detection is executed in the peripheral direction by turning the probe coil centering around the tube axis direction, only a defect generated in the tube can be detected as a discontinuous part without being influenced by a discontinuous part formed in the tube axis direction by the plate 2, the tube expanded part D and a tube end 9, etc., and a flaw detection can be executed in all parts of the tube.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換器管等の内挿プローブコイルによる渦
流探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an eddy current flaw detection method using an interpolated probe coil for heat exchanger tubes and the like.

(従来の技術) 火力・原子力発電プラントにおける復水器冷却管、蒸気
発生器伝熱管、石油化学における各種熱交換器管等は、
腐食による損傷の有無や安全性の確認のために渦流探傷
による定期的な保守検査が広〈実施されている。
(Conventional technology) Condenser cooling pipes in thermal and nuclear power plants, steam generator heat transfer pipes, various heat exchanger pipes in petrochemicals, etc.
Periodic maintenance inspections using eddy current testing are widely carried out to check for damage caused by corrosion and to confirm safety.

その方法は、ベークライトなどの棒形ボビンに一対の検
出コイルが周方向に隣接して形成された自己比較型或い
は絶対値型の内挿プローブコイルを圧縮空気などにより
管内に送り込み、手動或いは巻取装置等によりコードケ
ーブルを巻取り、管内全長に亘り定速走行させつつ探傷
するものである。探傷の基本原理は、「交流電流(周波
数100Hz〜数MHz)を流したコイルを金属材料に
近接させることにより、金属材料に誘導電流、(渦電流
)を生成し、欠陥が存在する場合に生ずる誘導電流の乱
れをコイルのインピーダンス変化(又は誘導電圧の変化
)を検知することにより欠陥を知る」というものである
In this method, a self-comparison type or absolute value type interpolation probe coil, in which a pair of detection coils are formed adjacent to each other in the circumferential direction on a rod-shaped bobbin such as Bakelite, is fed into the tube using compressed air, and then manually or rolled up. This involves winding up a cord cable using a device, etc., and detecting flaws while running it at a constant speed over the entire length of the pipe. The basic principle of flaw detection is ``By bringing a coil through which an alternating current (frequency of 100 Hz to several MHz) is passed close to a metal material, an induced current (eddy current) is generated in the metal material, which occurs when a defect exists. Defects can be identified by detecting disturbances in the induced current and changes in coil impedance (or changes in induced voltage).

熱交換器管等は、多数の管支持板で接触支持されており
、この部分において擬似信号を発生するため、この部位
に欠陥があると、擬似信号と欠陥による信号とが複合さ
れて、欠陥信号の振幅、位相などの正確な情報が得られ
ず、欠陥評価があいまいなものとなっ−でいた。
Heat exchanger tubes, etc. are supported in contact with a large number of tube support plates, and pseudo signals are generated at these parts. Therefore, if there is a defect in this part, the pseudo signal and the signal due to the defect are combined, causing the defect to occur. Accurate information such as signal amplitude and phase could not be obtained, making defect evaluation ambiguous.

しかし、この問題については、近年多重周波渦流探傷法
の確立により解決されている。この方法は、単一の渦流
検出コイルに異なるいくつかの試験周波数を同時に入力
し、それぞれの試験周波数に対応する探傷信号を分離し
て取出し、これらの結果を加減乗除して不要な信号を消
去し、必要な欠陥信号のみを取出す方法である。
However, this problem has been solved in recent years with the establishment of multi-frequency eddy current flaw detection. This method involves simultaneously inputting several different test frequencies into a single eddy current detection coil, separating and extracting the flaw detection signals corresponding to each test frequency, and then adding, subtracting, multiplying and dividing these results to eliminate unnecessary signals. This method extracts only the necessary defect signals.

(発明が解決しようとする問題点) 一般に、熱交換器管等の管端は、第5図に示す如く、セ
ートル拡管機を用いて管1内面から拡管接合により管板
2に装着される。拡管接合は、圧力80kgf /al
以下で使用される熱交換器等に管を装着する方法として
最も実用的でかつ経済的な方法であり、復水器などの各
種熱交換器に使用されるアルミプラス管やその他の銅合
金管は殆んどこの方法で接合される。また、非拘束部が
拡管されると、その部分に非常に大きな残留応力が生じ
るので、拡管部りは管坂内に止められるのが通例である
。尚、拡管率はアルミプラス管の場合で3〜5%、キュ
プロニッケル管で5〜lO%である。
(Problems to be Solved by the Invention) Generally, as shown in FIG. 5, the ends of tubes such as heat exchanger tubes are attached to the tube plate 2 by expanding and joining from the inner surface of the tubes 1 using a Settle tube expander. The pressure for expansion joint is 80kgf/al.
This is the most practical and economical method for attaching tubes to heat exchangers, etc. used in the following.Aluminum plastic tubes and other copper alloy tubes used in various heat exchangers such as condensers are joined using this method. Further, when the unrestricted portion is expanded, a very large residual stress is generated in that portion, so the expanded portion is usually stopped within the pipe slope. Note that the tube expansion rate is 3 to 5% in the case of aluminum plastic tubes and 5 to 10% in case of cupronickel tubes.

斯かる管端部分においては、粗大な擬似信号が発生し、
前記多重周波渦流探傷法によって゛も擬似信号と欠陥信
号との分離が困難であり、探傷不能域の存在を余儀無く
されていた。その理由は、管端部においては、管板の信
号、拡管の信号及び管端信号があり、これらの信号が近
接しておりまた複合し、かつ信号レベルが著しく粗大で
あることによっている。
At the end of the tube, a coarse spurious signal is generated,
With the multi-frequency eddy current flaw detection method, it is difficult to separate the pseudo signal from the defect signal, and an area where flaw detection cannot be detected is inevitable. The reason for this is that at the tube end, there are a tube sheet signal, a tube expansion signal, and a tube end signal, and these signals are close to each other, are complex, and have extremely coarse signal levels.

第5図及び第6図に、一対のコイル21.21が棒状ボ
ビン22の周方向に隣接して形成された自己比較型内挿
プローブコイル23を用いて管板2付近を探傷した試験
例を示す。管板2として厚さ351mのネーバル黄銅を
用い、管1として外径31.75 txi、肉厚1.2
51のアルミプラス管を用いて、該管1を前記管板2中
に拡管率3%で拡管接合した場合、探傷不能域Bは、管
板2の裏面からC=約10mの位置より始まり、この範
囲内に生じた欠陥は検出されない。図中Aは探傷可能範
囲、Dは管板2中に形成された拡管部である。また、第
6図により探傷信号は探傷不能域Bで極めて大きくスケ
ールオーバの状態となっていることが判る。尚、図中A
、 Bは第5図A、Bに対応している。
5 and 6 show a test example in which the vicinity of the tube plate 2 was inspected using a self-comparison type interpolation probe coil 23 in which a pair of coils 21 and 21 were formed adjacent to each other in the circumferential direction of the rod-shaped bobbin 22. show. The tube plate 2 is made of naval brass with a thickness of 351 m, and the tube 1 has an outer diameter of 31.75 txi and a wall thickness of 1.2 m.
When the tube 1 is expanded and joined to the tube sheet 2 at a tube expansion rate of 3% using a No. 51 aluminum plastic tube, the undetectable area B starts at a position C = approximately 10 m from the back surface of the tube sheet 2, Defects occurring within this range will not be detected. In the figure, A indicates a flaw detectable range, and D indicates an enlarged tube portion formed in the tube plate 2. Furthermore, it can be seen from FIG. 6 that the flaw detection signal is extremely overscaled in the undetectable area B. In addition, A in the figure
, B correspond to FIG. 5A and B.

叙上の管端部分に生じる探傷不能域Bは、特に復水器冷
却管海水入口側で問題となっている。すなわち、冷却管
入口部においては、インレフトアタックと呼ばれる腐食
が集中して発生する。これは、冷却管入口部における海
水の乱渦流によって管内に生成される耐食性被膜が損傷
を受け、潰食が促進されるためである。インレフトアタ
ックは管板直下その近傍に発生するため、探傷不能域B
の形成を除去することが強く望まれている。
The undetectable area B that occurs at the end of the pipe described above is a problem, especially on the seawater inlet side of the condenser cooling pipe. That is, corrosion called inleft attack occurs in a concentrated manner at the cooling pipe inlet. This is because the corrosion-resistant coating formed inside the tube is damaged by the turbulent flow of seawater at the inlet of the cooling tube, promoting erosion. Inleft attack occurs directly under and near the tube plate, so it is impossible to detect flaws in the area B.
It is highly desirable to eliminate the formation of

本発明は上記問題に鑑み、簡単な方法で管のすべての部
分において渦流探傷が可能な内挿プローブコイルによる
渦流探傷法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide an eddy current flaw detection method using an interpolated probe coil that allows eddy current flaw detection to be performed in all parts of a pipe in a simple manner.

(問題点を解決するための手段) 本発明は上記目的を達成するために次の手段を講じる。(Means for solving problems) The present invention takes the following measures to achieve the above object.

すなわち、一対のコイルが隣接して巻回形成された内挿
プローブコイルを管内に挿入し、該内挿プローブコイル
を移動させて、管に存する欠陥を探傷する内挿プローブ
コイルによる渦流探傷方法において、前記内挿プローブ
コイルはボビンの側面では軸方向に平行とし、かつその
端面では軸方向と垂直な方向に平行として一対のコイル
が巻回形成され、該プローブコイルを管軸方向を中心と
して回動させることにより探傷する。
That is, in an eddy current flaw detection method using an interpolation probe coil, an interpolation probe coil in which a pair of coils are wound adjacently is inserted into a pipe, and the interpolation probe coil is moved to detect defects in the pipe. , the interpolation probe coil has a pair of coils wound in parallel to the axial direction on the side surface of the bobbin and parallel to the axial direction on the end surface thereof, and the probe coil is wound around the tube axis direction. Detect flaws by moving.

(作  用) 本発明において、内挿プローブコイルはボビンの側面で
は軸方向に平行とし、その端面では軸方向と垂直な方向
に平行として一対のコイルが巻回形成して構成されてい
るから、管軸方向を中心として前記プローブコイルを回
動させることにより、円周方向に渦流探傷すれば、管板
、拡管部、管端、管支持板等により管軸方向に形成され
た不連続部の影響を受けることなく、管に生じている欠
陥のみを不連続部として検出することができ、管のすベ
ての部分で探傷が可能になる。
(Function) In the present invention, since the interpolation probe coil is formed by winding a pair of coils parallel to the axial direction on the side surface of the bobbin and parallel to the direction perpendicular to the axial direction on the end surface, By rotating the probe coil around the tube axis, eddy current flaw detection in the circumferential direction can detect discontinuities formed in the tube axis direction by the tube sheet, tube expansion section, tube end, tube support plate, etc. Only defects occurring in the tube can be detected as discontinuities without being affected, and flaw detection can be performed in all parts of the tube.

(実施例) 次に本発明の実施例について図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第3図(1) (2)は本発明に係る管端部の探傷専用
の自己比較型内層プローブコイル3である。該プローブ
コイル3は第1図の如く管板2に拡管結合された管端に
挿入されるものであり、段付棒状のボビン4と一対のコ
イル5,5とフランジ板6とから構成されている。
FIGS. 3(1) and 3(2) show a self-comparison type inner layer probe coil 3 exclusively used for flaw detection at the end of a tube according to the present invention. The probe coil 3 is inserted into the end of the tube expanded and joined to the tube plate 2 as shown in FIG. There is.

前記ボビン4は、ベークライト等の絶縁材を用いて、管
端部すなわち拡管部り及びその近傍の内面に一定のクリ
アランスを保ち係合するように段付棒状に形成されてい
る。該クリアランスの大きさは、通常0.5〜1.Ow
程度とされる。また、ボビン4の先端は、第5図におけ
る探傷可能範囲Aに位置するように、ボビンの長さを決
定する。これは、該プローブコイル3は管端部専用であ
るので、管端部以外は従来の内挿プローブコイル23に
より渦流探傷するためである。尚、第1図中のA。
The bobbin 4 is made of an insulating material such as Bakelite and is formed into a stepped rod shape so as to be engaged with the tube end, that is, the tube expansion portion, and the inner surface of the vicinity thereof while maintaining a certain clearance. The size of the clearance is usually 0.5 to 1. Ow
It is considered to be a degree. Further, the length of the bobbin 4 is determined so that the tip of the bobbin 4 is located in the flaw detectable range A in FIG. This is because the probe coil 3 is used exclusively for the tube end, and the conventional interpolated probe coil 23 is used for eddy current flaw detection in areas other than the tube end. Note that A in Figure 1.

B、Cは、第5図の各領域を参照容易にするため転記し
たものである。
B and C have been transcribed to facilitate reference to each area in FIG.

前記ボビン4には、その側面で軸方向に平行とされ、そ
の端面で軸方向と垂直な方向に平行とされた一対のコイ
ル5.5が隣接して巻回形成されている。一対のコイル
5.5は、いわゆる自己比較型コイルとして作用するも
ので、拡管率のバラツキやコイル回動時のリフトオフ効
果による外乱を抑制することができる。絶対値型とした
コイルも試作したが、前記外乱により、探傷の目的には
実用的でないことがわかった。
A pair of coils 5.5 are wound adjacent to each other on the bobbin 4, the side surfaces thereof being parallel to the axial direction, and the end surfaces thereof being parallel to the direction perpendicular to the axial direction. The pair of coils 5.5 act as so-called self-comparison type coils, and can suppress disturbances due to variations in tube expansion rate and lift-off effects when rotating the coils. An absolute value type coil was also prototyped, but it was found to be impractical for the purpose of flaw detection due to the disturbance.

前記コイル5.5が巻回形成されたボビン4の管端側に
は、絶縁材質で形成されたフランジ板6が設けられてお
り、該フランジ板6には、管1の管端フランジ部9と係
合可能な凹部8が前記ボビン4と同心状に形成されてい
る。
A flange plate 6 made of an insulating material is provided on the tube end side of the bobbin 4 on which the coil 5.5 is wound. A recess 8 that can be engaged with the bobbin 4 is formed concentrically with the bobbin 4.

尚、7は前記フランジ板6の裏面よりコイル5゜5に連
結されているコードである。
Note that 7 is a cord connected to the coil 5.5 from the back side of the flange plate 6.

叙上の如く構成された内挿プローブコイル3は第1図の
如く、フランジ板6が管板2に当接するまで、拡管部り
より管内に挿入される。その後、該内挿プローブコイル
3を管軸方向を中心として手動若しくは機械的回動手段
にて少なくとも180回動させて管端部に形成された欠
陥を探傷する。
The interpolation probe coil 3 constructed as described above is inserted into the tube from the expanded tube portion until the flange plate 6 comes into contact with the tube plate 2, as shown in FIG. Thereafter, the interpolation probe coil 3 is rotated at least 180 turns about the tube axis direction manually or mechanically to detect defects formed at the tube end.

前記内挿プローブコイル3の回動速度は、通常約6Or
pm 〜500 rpmとする。
The rotation speed of the interpolation probe coil 3 is usually about 6 Or
pm to 500 rpm.

本発明は、叙上の如く、円周方向に渦流探傷するので、
管板、拡管部、管端等によって管軸方向に形成された不
連続部の影響を受けることなく、管に生じた欠陥のみを
不連続部分として検出できる。
As mentioned above, since the present invention performs eddy current flaw detection in the circumferential direction,
Only defects occurring in the tube can be detected as discontinuous portions without being affected by discontinuous portions formed in the tube axis direction by the tube plate, tube expansion portion, tube end, etc.

第2図は、斯かる方法により、管端下部に生じた欠陥1
0を探傷した場合の探傷信号(IVP−P)を示した。
Figure 2 shows the defect 1 caused in the lower part of the tube end by this method.
The flaw detection signal (IVP-P) when 0 was detected is shown.

内挿プローブコイル3は、端面でコイル5,5が水平と
なる状態を基準(0°)とし、左(又は右)へ、回転速
度60rpmで回動して検出したものである。
The interpolation probe coil 3 is detected by rotating to the left (or right) at a rotational speed of 60 rpm, with the coils 5, 5 being horizontal at the end face as a reference (0°).

第4図は、本発明の第2実施例を示す。同図においては
、内挿プローブコイル3“は、円柱状のボビン4°にコ
イル5゛、5”が軸方向及びその垂直方向に平行に巻回
形成され、かつボビン4°の一端には支持棒12が管軸
方向に固着されている。該プローブコイル3゛を用いて
、探傷するには、支持棒12を用いて管内へ押し進めつ
つ、各所で回動させて探傷を行う。押し進めピッチは、
該プローブコイル3”の長さしよりやや小さくするが、
Lの寸法は欠陥の位置決め精度により適宜決定すること
ができる。この方法では、管支持板が接触しているとこ
ろでも、高度な多重周波渦流探傷法を適用することなく
容易に欠陥部を発見でき好適である。
FIG. 4 shows a second embodiment of the invention. In the figure, the interpolation probe coil 3'' has coils 5'' and 5'' wound around a cylindrical bobbin 4° parallel to the axial direction and the perpendicular direction thereof, and a support at one end of the bobbin 4°. A rod 12 is fixed in the tube axis direction. To perform flaw detection using the probe coil 3', the support rod 12 is used to push it into the tube and rotate it at various locations. The pushing pitch is
The length of the probe coil is slightly smaller than 3", but
The dimension of L can be appropriately determined depending on the positioning accuracy of the defect. This method is suitable because defects can be easily found even in areas where the tube support plates are in contact, without applying sophisticated multi-frequency eddy current testing.

(発明の効果) 以上説明した通り、本発明の内挿プローブコイルによる
渦流探傷方法は、ボビンの側面では軸方向に平行とし、
かつその端面では軸方向と垂直な方向に平行として一対
のコイルが隣接して巻回形成された内挿プローブコイル
を管内に挿入して回動させることにより探傷するから、
管の周方向に配置されている管板、拡管部、管端及び管
支持板等による管軸方向の不連続部の影響を受けること
なく、管に生じている欠陥のみを不連続部分として検出
でき、探傷不能域を皆無にすることができる。しかも、
多重周波渦流探傷法の如く高度な信号処理も不要であり
、従って本発明方法に通用される信号処理装置、も通常
の渦流探傷法で使用されるもので足り、経済性、作業性
にも優れる。
(Effects of the Invention) As explained above, in the eddy current flaw detection method using the interpolated probe coil of the present invention, the side surface of the bobbin is parallel to the axial direction,
Moreover, flaws are detected by inserting and rotating an interpolated probe coil, which has a pair of coils wound adjacent to each other parallel to the axial direction on the end face, into the tube.
Detects only defects occurring in the pipe as discontinuous parts without being affected by discontinuities in the pipe axis direction due to tube sheets, tube expansion parts, pipe ends, tube support plates, etc. arranged in the circumferential direction of the pipe. It is possible to completely eliminate the undetectable area. Moreover,
There is no need for sophisticated signal processing as in the multi-frequency eddy current testing method, and therefore, the signal processing device used in the method of the present invention can be one that is used in normal eddy current testing methods, and is excellent in economy and workability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の第1実施例を示す渦流探傷中の管
端部分の縦断面図、第2図は本発明方法による探傷信号
を示した図、第3図(1) +2)は本発明方法に係る
内挿プローブコイルの側面図及び正面図、第4図は本発
明方法の第2実施例を示す切欠縦断面図、第5図は従来
の内挿プローブコイルによる渦流探傷中の管端部分の縦
断面図、第6図は第5図の渦流探傷信号を示す図ある。 1・・・管、2・・・管板、3,3°・・・内挿プロー
ブコイル、4.4゛・・・ボビン、5.5”・・・コイ
ル。 特 許 出 願 人  株式会社神戸製鋼所同   上
    新日本非破壊検査 株式会社 lI2図 flk6■
Fig. 1 is a vertical cross-sectional view of the tube end portion during eddy current flaw detection showing the first embodiment of the method of the present invention, Fig. 2 is a diagram showing flaw detection signals by the method of the present invention, and Fig. 3 (1) +2) A side view and a front view of an interpolation probe coil according to the method of the present invention, FIG. 4 is a cutaway longitudinal cross-sectional view showing a second embodiment of the method of the present invention, and FIG. FIG. 6, which is a longitudinal cross-sectional view of the tube end portion, is a diagram showing the eddy current flaw detection signal of FIG. 5. 1...tube, 2...tube plate, 3,3°...interpolation probe coil, 4.4''...bobbin, 5.5"...coil. Patent applicant: Co., Ltd. Kobe Steel, Ltd. Same as above New Japan Nondestructive Inspection Co., Ltd.I2 Figure flk6■

Claims (1)

【特許請求の範囲】[Claims] 1、一対のコイルが隣接して巻回形成された内挿プロー
ブコイルを管内に挿入し、該内挿プローブコイルを移動
させて、管に存する欠陥を探傷する内挿プローブコイル
による渦流探傷方法において、前記内挿プローブコイル
はボビンの側面では軸方向に平行とし、かつその端面で
は軸方向と垂直な方向に平行として一対のコイルが巻回
形成され、該プローブコイルを管軸方向を中心として回
動させることにより探傷することを特徴とする内挿プロ
ーブコイルによる渦流探傷方法。
1. In an eddy current flaw detection method using an interpolation probe coil, in which a pair of coils are wound adjacent to each other and an interpolation probe coil is inserted into a pipe, and the interpolation probe coil is moved to detect defects in the pipe. , the interpolation probe coil has a pair of coils wound in parallel to the axial direction on the side surface of the bobbin and parallel to the axial direction on the end surface thereof, and the probe coil is wound around the tube axis direction. An eddy current flaw detection method using an interpolated probe coil, which detects flaws by moving them.
JP59255452A 1984-12-01 1984-12-01 Eddy current flaw detecting method by insertion probe coil Pending JPS61132856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255452A JPS61132856A (en) 1984-12-01 1984-12-01 Eddy current flaw detecting method by insertion probe coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255452A JPS61132856A (en) 1984-12-01 1984-12-01 Eddy current flaw detecting method by insertion probe coil

Publications (1)

Publication Number Publication Date
JPS61132856A true JPS61132856A (en) 1986-06-20

Family

ID=17278962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255452A Pending JPS61132856A (en) 1984-12-01 1984-12-01 Eddy current flaw detecting method by insertion probe coil

Country Status (1)

Country Link
JP (1) JPS61132856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634607A (en) * 1992-07-16 1994-02-10 Osaka Gas Co Ltd Device and method for testing eddy-current detection
JP2007062821A (en) * 2005-08-31 2007-03-15 Yoshino Kogyosho Co Ltd Container having mechanism for jetting liquid or the like
EP2515106A1 (en) * 2009-12-18 2012-10-24 Mitsubishi Heavy Industries, Ltd. Inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634607A (en) * 1992-07-16 1994-02-10 Osaka Gas Co Ltd Device and method for testing eddy-current detection
JP2007062821A (en) * 2005-08-31 2007-03-15 Yoshino Kogyosho Co Ltd Container having mechanism for jetting liquid or the like
EP2515106A1 (en) * 2009-12-18 2012-10-24 Mitsubishi Heavy Industries, Ltd. Inspection device
EP2515106A4 (en) * 2009-12-18 2013-07-03 Mitsubishi Heavy Ind Ltd Inspection device
KR101368092B1 (en) * 2009-12-18 2014-02-27 미츠비시 쥬고교 가부시키가이샤 Inspection device
US8779762B2 (en) 2009-12-18 2014-07-15 Mitsubishi Heavy Industries, Ltd. Inspection device

Similar Documents

Publication Publication Date Title
US5963030A (en) Pipe inspection apparatus and process
JPH01123143A (en) Method and apparatus for detection of flaw by eddy current
JP4284663B2 (en) Eddy current flaw detection method for inner finned tube, differential coil for eddy current flaw detection, and probe for eddy current flaw detection
CN103713054B (en) A kind of guide wave characteristic signal extraction method near weld zone defect of pipeline
JPS61132856A (en) Eddy current flaw detecting method by insertion probe coil
CN110006992B (en) Pass-through vortex sensor and detection method
CN112415088A (en) Inner-through transverse pulse eddy current detection probe and use method thereof
US10788456B2 (en) Eddy current inspection device for nondestructive testing
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
CN211206377U (en) Sensitivity calibration sample tube for detecting defects of non-ferromagnetic heat exchanger tube bundle
Bertoncini et al. Pipeline long-range inspection and monitoring by an innovative magnetic collar for magnetostrictive guided-wave systems
Birchall et al. Internal ultrasonic pipe and tube inspection-IRIS
CN105738465A (en) Equipment and method for detecting defect of boiler water cooling wall tube on basis of low-frequency electromagnetic technique
CN108827864A (en) Natural gas station ground industrial pipeline internal corrosion characterization processes
JP2010048817A (en) Nondestructive inspection device and method using guide wave
JP3165804U (en) Eddy current testing probe for tube end inspection
JPH0634607A (en) Device and method for testing eddy-current detection
CN213398333U (en) System for detecting circumferential defects on inner arc surface of small-diameter pipe elbow
CN211553856U (en) Ring type eddy current testing probe
Bönisch et al. Magnetic flux and SLOFEC inspection of thick walled components
JPS599502A (en) Method for inspecting pipe whose inner surface is painted
Vivekanand et al. Nde techniques for reliable inspection of carbon steel tubes
JP2000258397A (en) Nondestructive inspection device of pipe
JPH06249836A (en) Insertion eddy current flaw detecting method for double pipe
Han et al. Research on Application of Pulsed Eddy Current Testing in Nuclear Power Plant Pipelines