JPS61132591A - Device for controlling intensity of particle beam in particle beam epitaxial apparatus - Google Patents

Device for controlling intensity of particle beam in particle beam epitaxial apparatus

Info

Publication number
JPS61132591A
JPS61132591A JP25474184A JP25474184A JPS61132591A JP S61132591 A JPS61132591 A JP S61132591A JP 25474184 A JP25474184 A JP 25474184A JP 25474184 A JP25474184 A JP 25474184A JP S61132591 A JPS61132591 A JP S61132591A
Authority
JP
Japan
Prior art keywords
particle beam
particle
substrate
intensity
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25474184A
Other languages
Japanese (ja)
Inventor
Yukiaki Katayama
片山 幸昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP25474184A priority Critical patent/JPS61132591A/en
Publication of JPS61132591A publication Critical patent/JPS61132591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To control the mixed crystal ratio of a compound semiconductor in high accuracy, and to obtain a crystal having high quality, by detecting the fluorescent light emitted from the particle beam excited with monochromatic light radiation, and controlling the intensity of the particle beam according to the detected signal. CONSTITUTION:The beam-source chamber 12 and the growth chamber 13 of the vacuum chamber 10 of a particle beam epitaxial growth apparatus are evacuated, the cooling wall 11 separating both chambers is filled with a refrigerant such as liquid N2, etc., and the substrate 2 is heated at a prescribed temperature via the substrate-supporting table. Particle beams are emitted from the particle beam sources 30, 40, and only the desired kinds of particle beams 26a, 26b are transmitted through the shutter 20 and the holes 16 to the surface of the substrate 2. The particle beams 26a, 26b are irradiated with monochromatic light 54 emitted from the light source 50 such as a xenon lamp, etc., and monochromatized with a spectrometer 52, and the emitted fluorescent light is detected by the fluorescent light detectors 56a, 56b, and fed back through the optical fiber 57a, 57b and the photometers 58a, 58b to the mass-flow controllers 31, 41 to effect the growth of the crystal under definite particle beam intensity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基板上に四−v族などの化合物半導体をエピタ
キシャル成長させる装置において、その混晶比を制御す
るために粒子線源の粒子線発生強度を制御する装置に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is an apparatus for epitaxially growing a compound semiconductor such as a group IV compound semiconductor on a substrate. This invention relates to a device for controlling intensity.

(従来の技術) 超高真空下で分子、原子、イオン又はラジカルなどの粒
子線を基板に照射してエピタキシャル成長させる粒子線
エピタキシャル装置が提案されている。そのような粒子
線エピタキシャル装置で化合物を成長させようとすれば
、その混晶比を正、確に制御するために成分元素ごとの
粒子線強度を正確に制御しなくてはならない。
(Prior Art) A particle beam epitaxial apparatus has been proposed in which a particle beam of molecules, atoms, ions, or radicals is irradiated onto a substrate to cause epitaxial growth under an ultra-high vacuum. If a compound is to be grown using such a particle beam epitaxial apparatus, the particle beam intensity for each component element must be precisely controlled in order to accurately control the mixed crystal ratio.

(発明が解決しようとする問題点) 一般に、蒸着法や分子線エピタキシャル成長法で析出膜
厚や成長膜厚を制御するには、水晶発振式の膜厚モニタ
やヌードイオンゲージ、四重極マスアナライザが使用さ
れている。これらの膜厚モニタ等は蒸着用や成長用の基
板の側方又は後方に設置される。蒸着法や分子線エピタ
キシャル成長法では蒸発粒子が基板より広い面積にわた
って飛来してくるので、基板外に設置された膜厚モニタ
等で析出速度又は成長速度をモニタすることができるが
5本発明が対象とする粒子線エピタキシャル装置では基
板へ飛来する粒子線は比較的狭い面積に制限されている
ので、基板外に設置される膜厚モニタ等では成長速度を
モニタすることはできない。
(Problems to be Solved by the Invention) Generally, in order to control the deposited film thickness or grown film thickness using the vapor deposition method or the molecular beam epitaxial growth method, a crystal oscillation type film thickness monitor, nude ion gauge, or quadrupole mass analyzer is used. is used. These film thickness monitors and the like are installed on the side or rear of the substrate for vapor deposition or growth. In vapor deposition methods and molecular beam epitaxial growth methods, evaporated particles fly over a wider area than the substrate, so the deposition rate or growth rate can be monitored with a film thickness monitor installed outside the substrate. In the particle beam epitaxial apparatus, the particle beam that flies to the substrate is limited to a relatively narrow area, so the growth rate cannot be monitored with a film thickness monitor or the like installed outside the substrate.

そこで、基板へ飛来する粒子線強度を測定する一方式と
して、原子吸光方式を用いることが提案されている。し
かし、粒子線エピタキシャル成長のように基板に飛来す
る粒子線密度が極度に薄いものになると、原子吸光方式
では感度が不足し実用上問題がある。そのため、更に高
感度の粒子線強度測定装置の開発が要望されている。
Therefore, it has been proposed to use an atomic absorption method as one method for measuring the intensity of particle beams flying toward the substrate. However, when the particle beam density hitting the substrate becomes extremely thin, such as in particle beam epitaxial growth, the atomic absorption method lacks sensitivity and poses a practical problem. Therefore, there is a demand for the development of a particle beam intensity measuring device with even higher sensitivity.

未発明は粒子線エピタキシャル装置において、粒子線強
度測定の感度を向上させ、各成分元素の粒1子線強度を
正確に制御して、高品質の化合物半導体結晶を成長させ
ることのできる粒子線強度制御装置を提供することを目
的とするものである。
What has not yet been invented is a particle beam intensity that can improve the sensitivity of particle beam intensity measurements in particle beam epitaxial equipment, accurately control the single particle beam intensity of each component element, and grow high-quality compound semiconductor crystals. The purpose of this invention is to provide a control device.

(問題点を解決するための手段) 本発明は、粒子線エピタキシャル装置において。(Means for solving problems) The present invention relates to a particle beam epitaxial apparatus.

粒子線に単色光を照射して励起させ1発生した蛍光を検
出することによって粒子線強度を高感度に検出するもの
である0本発明装置を一実施例を示す第1図により説明
すると、基板2に到達する粒子線26a、26bにその
粒子線励起に必要な単色光54を照射する励起源50.
52と、励起された粒子線から発生する蛍光を検出する
検出器5.6a、56b、58a、58bと、その検出
器の検出信号強度をもとに粒子線源30.40の粒子線
発生強度を制御する手段31.41とを備えて構成され
ている。
The apparatus of the present invention, which detects the particle beam intensity with high sensitivity by irradiating monochromatic light onto a particle beam to excite it and detecting the generated fluorescence, will be explained with reference to FIG. 1 showing one embodiment. an excitation source 50.2 that irradiates the particle beams 26a and 26b reaching the particle beams 26a and 26b with monochromatic light 54 necessary for excitation of the particle beams;
52, detectors 5.6a, 56b, 58a, and 58b that detect fluorescence generated from the excited particle beam, and the particle beam generation intensity of the particle beam source 30.40 based on the detection signal intensity of the detectors. and means 31 and 41 for controlling the same.

(作用) 粒子線26a、26bは必要な波長の単色光54で照射
されると、その粒子線26a、26bの元素に固有の波
長をもった蛍光を発するが、この蛍光の強度は粒子線密
度に比例している。そこで、検出器56a、56b、5
8a、58bがその蛍光の強度を検出し、制御手段31
.41を介して蛍光強度が一定になるように粒子線源3
0゜40を制御するので、基板2に飛来する粒子線強度
が一定になる。
(Function) When the particle beams 26a, 26b are irradiated with monochromatic light 54 of the required wavelength, they emit fluorescence with a wavelength specific to the element of the particle beams 26a, 26b, but the intensity of this fluorescence depends on the particle beam density. is proportional to. Therefore, the detectors 56a, 56b, 5
8a and 58b detect the intensity of the fluorescence, and control means 31
.. 41 so that the fluorescence intensity is constant.
Since the particle beam is controlled at 0°40, the intensity of the particle beam hitting the substrate 2 is constant.

(実施例) まず1本発明が適用される粒子線エピタキシャル装置の
一例の概要を第2図に示す。
(Example) First, FIG. 2 shows an outline of an example of a particle beam epitaxial apparatus to which the present invention is applied.

この粒子線エピタキシャル装置では、真空チェインバ1
0が、傾斜して設けられた冷却壁11により線源室12
と成長室13に分離されている。
In this particle beam epitaxial device, a vacuum chamber 1
0 is connected to the radiation source chamber 12 by the cooling wall 11 provided at an angle.
and a growth chamber 13.

冷却壁11は内部が中空で液体窒素のような冷媒を充填
することができ、冷媒導入口(図示時)と気化した冷媒
のガス排気口(図示時)を備えている。冷却壁11には
線源室12から成長室13へ粒子線を通すための大群1
6や必要に応じてシャッタ操作用の穴などが貫通して開
けられている。
The cooling wall 11 is hollow inside and can be filled with a refrigerant such as liquid nitrogen, and includes a refrigerant inlet (as shown) and a gas exhaust port for vaporized refrigerant (as shown). The cooling wall 11 has a large group 1 for passing the particle beam from the radiation source chamber 12 to the growth chamber 13.
6 and a hole for shutter operation, etc., is drilled through it as necessary.

線源室12には複数の粒子線源、例えば記号28a、2
8bで示されるもの1粒子線を選択するシャッタ20及
び高真空ポンプにつながる排気口21とが設けられてお
り、その排気口21は各粒子線源28a、28bからの
粒子線22の不用部分が冷却壁11又はシャッタ20で
反射されてできる不用な反射粒子線23を有効に排出で
きるように、冷却壁11に傾斜して対向する位置に設け
られている。
The radiation source chamber 12 includes a plurality of particle radiation sources, such as symbols 28a and 2.
8b, a shutter 20 for selecting one particle beam and an exhaust port 21 connected to a high vacuum pump are provided. It is provided at a position slanting and facing the cooling wall 11 so that unnecessary reflected particle beams 23 generated by being reflected by the cooling wall 11 or the shutter 20 can be effectively discharged.

成長室13には基板支持台(図示時)に固着された基板
2と、線源室12の真空系とは独立した高真空ポンプに
つながる排気口25が設けられている。基板2の表面に
は、冷却壁11の大群16を経て粒子線源28a、28
bから有用な粒子線26が入射されるが、その基板2の
表面で反射されてできる不用な反射粒子線27が排気口
25の方向に反射されて有効に排出されるように基板2
の固着角度が設定されている。
The growth chamber 13 is provided with a substrate 2 fixed to a substrate support (as shown) and an exhaust port 25 connected to a high vacuum pump independent of the vacuum system of the radiation source chamber 12. Particle beam sources 28a and 28 are provided on the surface of the substrate 2 through a large group 16 of cooling walls 11.
A useful particle beam 26 is incident from the surface of the substrate 2, but the unnecessary reflected particle beam 27 generated by reflection from the surface of the substrate 2 is reflected in the direction of the exhaust port 25 and is effectively discharged from the substrate 2.
The fixation angle is set.

この粒子線エピタキシャル装置の動作中は、線源室I2
では、冷却ff1llの大群16を通過しない不用な粒
子線はシャッタ20又は冷却壁11で反射されて排気口
21へ排出されるか、液体窒素その他の冷媒温度に冷却
されている冷却壁11に吸着されることにより線源室1
2の高真空が維持される。成長室13では大群16を通
過してきた有用な粒子線26により基板2上で結晶成長
が行なわれるが1粒子線26のうち結晶成長に使用され
なかった不用な粒子線は反射粒子線27となって排気口
25へ排出されるか、冷却壁11に吸着されることによ
り、成長室13の高真空が維持される。そして、成長室
13では大群16を経て入射される粒子線26の量が線
源室12へ入射される粒子線22の量よりも少なく、ま
た、成長室13と線源室12とは大群16でつながって
いるが、この大群16の径が冷却壁11の全面積に比べ
ると極めて小さいので成長室13と線源室12の間で差
動排気が行なわれて、成長室13の方が高真空となり、
基板2の周辺が例えば10−”Torrというような高
真空に保たれる。
During operation of this particle beam epitaxial apparatus, the source chamber I2
Then, unnecessary particle beams that do not pass through the large group 16 of the cooling ff1ll are reflected by the shutter 20 or the cooling wall 11 and are discharged to the exhaust port 21, or are adsorbed to the cooling wall 11 which is cooled to the temperature of liquid nitrogen or other refrigerant. Source room 1
A high vacuum of 2 is maintained. In the growth chamber 13, crystal growth is performed on the substrate 2 by the useful particle beam 26 that has passed through the large group 16, but unnecessary particle beams that are not used for crystal growth among the single particle beams 26 become reflected particle beams 27. The high vacuum of the growth chamber 13 is maintained by being exhausted to the exhaust port 25 or being adsorbed by the cooling wall 11. In the growth chamber 13, the amount of the particle beam 26 that enters through the large group 16 is smaller than the amount of the particle beam 22 that enters the source chamber 12, and the growth chamber 13 and the source chamber 12 are separated from each other by the large group 16. However, since the diameter of this large group 16 is extremely small compared to the total area of the cooling wall 11, differential pumping is performed between the growth chamber 13 and the radiation source chamber 12, so that the growth chamber 13 has a higher height. It becomes a vacuum,
The area around the substrate 2 is maintained at a high vacuum of, for example, 10-'' Torr.

第1図は第2図に示された粒子線エピタキシャル装置に
一実施例の粒子線強度制御装置が設けられた状態を概略
的に示したものである。基板2に到達する粒子線26a
、26bにその粒子線励起に必要な単色光54を照射す
る励起源は、強力な光源50と、その光源50からの光
を分光して単色光54とする分光器52とからなってい
る。光源50としては、例えばキセノンランプ、低圧水
銀灯、中圧水銀灯又は超高圧水銀灯を使用することがで
きる。単色光54を照射する励起源としてレーザ装置を
使用することもできる。分光器52からの単色光54は
石英の窓(図示時)を経て成長室13内に照射される。
FIG. 1 schematically shows the particle beam epitaxial apparatus shown in FIG. 2 in which a particle beam intensity control device of one embodiment is provided. Particle beam 26a reaching substrate 2
, 26b is composed of a powerful light source 50 and a spectrometer 52 that separates the light from the light source 50 into monochromatic light 54. As the light source 50, for example, a xenon lamp, a low pressure mercury lamp, a medium pressure mercury lamp, or an ultra-high pressure mercury lamp can be used. A laser device can also be used as an excitation source for emitting monochromatic light 54. Monochromatic light 54 from the spectrometer 52 is irradiated into the growth chamber 13 through a quartz window (as shown).

56a、56bはそれぞれ粒子線26a、26bが単色
光54により励起されて発する蛍光を受光する蛍光検出
端であり、蛍光を有効に受光できるように先端がそれぞ
れ粒子線26a、26bの方向に向ってキャップ状に広
がっている。 蛍光検出端56a、56bにより受光さ
れた蛍光は。
Reference numerals 56a and 56b are fluorescence detection ends that receive fluorescence emitted by the particle beams 26a and 26b when excited by the monochromatic light 54, and the tips thereof are oriented toward the particle beams 26a and 26b, respectively, so that the fluorescence can be effectively received. It spreads out like a cap. The fluorescence received by the fluorescence detection ends 56a and 56b.

それぞれ光ファイバ57a、57bにより光度計 58
a、58bに導かれる。光度計58a、58bはフィル
タを備え、光ファイバ57a、57bにより導かれた光
から散乱光を遮蔽する。光度計58a、58bの出力信
号はそれぞれ粒子線源30.40のマスフローコントロ
ーラ31.41に入力され、マスフローコントローラ3
1.41は光度計58a、58bの出力信号が一定にな
るようにそれぞれの粒子線源30.40の粒子線発生量
を制御する。
Photometer 58 by optical fibers 57a and 57b, respectively
a, led to 58b. The photometers 58a, 58b are equipped with filters to block scattered light from the light guided by the optical fibers 57a, 57b. The output signals of the photometers 58a and 58b are respectively input to the mass flow controller 31.41 of the particle beam source 30.40, and the mass flow controller 3
1.41 controls the particle beam generation amount of each particle beam source 30.40 so that the output signals of the photometers 58a and 58b are constant.

第1図にはまた、本発明で制御される粒子線源のうち、
特に好ましい粒子線源としてガス状原料を用いる方式の
ものが例示されている。
FIG. 1 also shows, among the particle beam sources controlled by the present invention,
A system using a gaseous raw material is exemplified as a particularly preferable particle beam source.

30は粒子線として電子衝撃により発生するイオンを使
用する電子イオン化線源であり、原料ガスの流量を制御
するマスフローコントローラ31、その制御された原料
ガスをビーム状にする粒子線発生絞り32、その粒子線
に電子線を照射してイオン化するイオン化室33、イオ
ン化された粒子線を加速し収束させる電極34、不用な
粒子線を排出する排気口35、及び磁場を印加してイオ
ンを分離する磁場印加手段36を備えている。
30 is an electron ionization source that uses ions generated by electron bombardment as a particle beam, and includes a mass flow controller 31 that controls the flow rate of source gas, a particle beam generation aperture 32 that converts the controlled source gas into a beam, and An ionization chamber 33 that ionizes a particle beam by irradiating it with an electron beam, an electrode 34 that accelerates and converges the ionized particle beam, an exhaust port 35 that discharges unnecessary particle beams, and a magnetic field that applies a magnetic field to separate ions. An application means 36 is provided.

この電子イオン化線源30では1粒子線発生絞り32で
ビーム状になった粒子線がイオン化室33を通るときに
イオン化され、電極34で加速され収束され、磁場で不
用なイオンが分離されて有用なイオンのみが粒子線とな
って成長室13へ導入される。
In this electron ionization radiation source 30, a particle beam formed into a beam by a single particle beam generation aperture 32 is ionized as it passes through an ionization chamber 33, accelerated and focused by an electrode 34, and unnecessary ions are separated by a magnetic field, making it useful. Only these ions become particle beams and are introduced into the growth chamber 13.

40は粒子線として光照射により発生するイオンやラジ
カルを使用する光イオン化線源であり、電子イオン化線
源30と同様に、マスフローコントローラ41、粒子線
発生絞り42を備えるが、この線源の場合は光イオン化
室43を備え、電子線照射に代えてArレーザ光のよう
な光を照射して粒子線をイオン化又はラジカル化する。
40 is a photoionization radiation source that uses ions and radicals generated by light irradiation as a particle beam, and like the electron ionization radiation source 30, it is equipped with a mass flow controller 41 and a particle beam generation aperture 42; includes a photoionization chamber 43, which irradiates light such as Ar laser light instead of electron beam irradiation to ionize or radicalize the particle beam.

44はイオンを分離し選択するための四重極マスフィル
タ、45は不用な粒子を排出する排気口である。
44 is a quadrupole mass filter for separating and selecting ions, and 45 is an exhaust port for discharging unnecessary particles.

この光イオン化線源40では、光イオン化室43でイオ
ン化又はラジカル化された粒子線のうち不用なイオンが
四重極マスフィルタ44で分離され、有用なイオン及び
ラジカルの粒子線のみが粒子線となって成長室13へ導
入される。
In this photoionization radiation source 40, unnecessary ions from the particle beam ionized or radicalized in the photoionization chamber 43 are separated by a quadrupole mass filter 44, and only useful ions and radicals are separated from the particle beam. Then, it is introduced into the growth chamber 13.

粒子線源としてはその粒子線の出射強度が制御できるタ
イプであれば例示のようなガス状原料を使用するタイプ
のほか、従来の分子線エピタキシャル装置で使用されて
いるような固体原料を使用するクヌードセンセルを使用
することもできる。ガス状原料を用いる場合には高真空
ポンプとして連続運転可能なターボ分子ポンプが最も好
ましい。
As a particle beam source, as long as the emission intensity of the particle beam can be controlled, in addition to a type that uses a gaseous raw material as shown in the example, a solid source such as that used in conventional molecular beam epitaxial equipment can be used. Knudsencel can also be used. When a gaseous raw material is used, a turbo-molecular pump capable of continuous operation is most preferable as a high-vacuum pump.

このような粒子線エピタキシャル装置に設けられる粒子
線源の種類と数は、成長させる結晶の種類に応じて任意
に選ぶことができる。
The type and number of particle beam sources provided in such a particle beam epitaxial apparatus can be arbitrarily selected depending on the type of crystal to be grown.

この粒子線強度制御装置を備えた第1図の粒子線エピタ
キシャル装置でエピタキシャル成長を行なうには、線源
室12及び成長室13を真空排気し、冷却壁11に液体
窒素のような冷媒を充填して、基板支持台を通じて基板
2を所定温度に加熱する。しかる後、粒子線源30.4
0から粒子線を飛ばし、シャッタで所望の大群16を開
けて所望の種類の粒子線26a、26bのみを基板2の
表面へ入射させる。このとき、キセノンランプ等の光源
50からの光を分光器52で単色光54として粒子線2
6a、26bに照射し、それによる粒子線26a、26
bからの蛍光を蛍光検出端56a、56b、光ファイバ
57a、57b及び3’6m計58 a 、 58 b
を経てマスフローコントーラ31,41にフィードバッ
クして粒子線源30゜40からの粒子線発生強度を一定
にしつつ成長を行なわせる。その粒子線26a、26b
による成長が所定量行なわれると、次にシャッタを操作
して開けるべき大群16を変更して次の粒子線を選択し
、再び単色光54の励起による粒子線からの蛍光を検出
しその粒子線の発生強度を一定に制御しつつ再び成長を
行なわせる。という操作を繰り返して化合物のエピタキ
シャル層を成長させる。
To perform epitaxial growth using the particle beam epitaxial apparatus shown in FIG. 1 equipped with this particle beam intensity control device, the source chamber 12 and the growth chamber 13 are evacuated, and the cooling wall 11 is filled with a coolant such as liquid nitrogen. Then, the substrate 2 is heated to a predetermined temperature through the substrate support. After that, particle beam source 30.4
Particle beams are emitted from zero, a desired large group 16 is opened with a shutter, and only desired types of particle beams 26a and 26b are incident on the surface of the substrate 2. At this time, light from a light source 50 such as a xenon lamp is converted into monochromatic light 54 by a spectrometer 52 as a particle beam 2.
6a, 26b, and the resulting particle beams 26a, 26
Fluorescence from b is detected by fluorescence detection ends 56a, 56b, optical fibers 57a, 57b, and 3'6m total 58a, 58b.
The particles are then fed back to the mass flow controllers 31 and 41 to perform growth while keeping the particle beam generation intensity from the particle beam sources 30 and 40 constant. The particle beams 26a, 26b
When a predetermined amount of growth has been achieved, the next particle beam is selected by operating the shutter to change the group 16 to be opened, and the fluorescence from the particle beam due to the excitation of the monochromatic light 54 is detected again. Growth is performed again while controlling the generation intensity to a constant value. This operation is repeated to grow an epitaxial layer of the compound.

、(発明の効果) 本発明の粒子線強度制御装置を使用すれば、極低濃度の
粒子線を検出して化合物半導体の混晶比を精度よく制御
し、高品質の結晶作成を行なうことが可能になる。
(Effects of the Invention) By using the particle beam intensity control device of the present invention, it is possible to detect extremely low concentration particle beams, accurately control the mixed crystal ratio of compound semiconductors, and create high-quality crystals. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を備えた粒子線エピタキシャ
ル装置を示す概略断面図、第2図は本発明が適用される
粒子線エピタキシャル装置を示す概略断面図である。 2・・・・・・基板、  12・・・・・・線源室、 
 13・・・・・・成長室、 26a、26b−粒子線
、 30,40・・・・・・粒子線源、 31,32・
・・・・・マスフローコントローラ、 50・・・・・
・光源、 52・・・・・・分光器。 54・・・・・・単色光、 56a、56b・・・・・
・蛍光検出端、  57a、57b・・・・・・光ファ
イバ、  58a。 58b・・・・・・光度計。
FIG. 1 is a schematic cross-sectional view showing a particle beam epitaxial apparatus equipped with an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing a particle beam epitaxial apparatus to which the present invention is applied. 2... Board, 12... Source room,
13...growth chamber, 26a, 26b-particle beam, 30,40...particle beam source, 31,32.
...Mass flow controller, 50...
・Light source, 52... Spectrometer. 54... Monochromatic light, 56a, 56b...
- Fluorescence detection end, 57a, 57b... Optical fiber, 58a. 58b...Photometer.

Claims (1)

【特許請求の範囲】[Claims] (1)粒子線エピタキシャル装置において基板に到達す
る粒子線にその粒子線励起に必要な単色光を照射する励
起源と、 励起された粒子線から発生する蛍光を検出する検出器と
、 その検出器の検出信号強度をもとに粒子線源の粒子線発
生強度を制御する手段と、を備えた粒子線強度制御装置
(1) An excitation source that irradiates a particle beam reaching a substrate with monochromatic light necessary for excitation of the particle beam in a particle beam epitaxial device, a detector that detects fluorescence generated from the excited particle beam, and the detector. A particle beam intensity control device comprising: means for controlling the particle beam generation intensity of a particle beam source based on the detection signal intensity of the particle beam source.
JP25474184A 1984-11-30 1984-11-30 Device for controlling intensity of particle beam in particle beam epitaxial apparatus Pending JPS61132591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25474184A JPS61132591A (en) 1984-11-30 1984-11-30 Device for controlling intensity of particle beam in particle beam epitaxial apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25474184A JPS61132591A (en) 1984-11-30 1984-11-30 Device for controlling intensity of particle beam in particle beam epitaxial apparatus

Publications (1)

Publication Number Publication Date
JPS61132591A true JPS61132591A (en) 1986-06-20

Family

ID=17269217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25474184A Pending JPS61132591A (en) 1984-11-30 1984-11-30 Device for controlling intensity of particle beam in particle beam epitaxial apparatus

Country Status (1)

Country Link
JP (1) JPS61132591A (en)

Similar Documents

Publication Publication Date Title
CA1194385A (en) Device fabrication using gas-solid processes
Goyette et al. Swan band emission intensity as a function of density
JP2804873B2 (en) Particle analysis device and particle analysis method
US6975393B2 (en) Method and apparatus for implementing an afterglow emission spectroscopy monitor
JPH02307043A (en) Analysis sensor for gas within vacuum chamber
JPS61132591A (en) Device for controlling intensity of particle beam in particle beam epitaxial apparatus
JP2015522208A (en) Assembly for use in vacuum processing methods
US5153674A (en) Semiconductor production control and/or measuring unit
JP4127435B2 (en) Atomic radical measurement method and apparatus
US7719681B2 (en) Apparatus and method for measuring vapor flux density
JPH0622217B2 (en) Surface treatment apparatus and surface treatment method
US6060391A (en) Vapor phase growth method
JPS6272590A (en) Particle beam intensity detector for particle beam epitaxial device
JPH0645896B2 (en) Low temperature plasma processing equipment
JPS61219792A (en) Detecting and controlling device for intensity of particle beam in epitaxial apparatus using particle beam
JPS60210596A (en) Method for controlling crowing speed in corpuscular radiation epitaxial apparatus
JPH0146588B2 (en)
JPS621868A (en) Apparatus for forming film
JPS61219791A (en) Detecting and controlling device for intensity of particle beam in epitaxial apparatus using particle beam
WO2002023160A1 (en) Afterglow emission spectroscopy monitor
JPS60241226A (en) Dry etching method
JP2004354055A (en) Atomic radical density measuring device
JPH09306842A (en) In-process film forming monitor device and vacuum monitor device and method
JPS6257069B2 (en)
JPH0123937B2 (en)