JPH0645896B2 - Low temperature plasma processing equipment - Google Patents

Low temperature plasma processing equipment

Info

Publication number
JPH0645896B2
JPH0645896B2 JP61051188A JP5118886A JPH0645896B2 JP H0645896 B2 JPH0645896 B2 JP H0645896B2 JP 61051188 A JP61051188 A JP 61051188A JP 5118886 A JP5118886 A JP 5118886A JP H0645896 B2 JPH0645896 B2 JP H0645896B2
Authority
JP
Japan
Prior art keywords
plasma
reaction gas
sample
current controller
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61051188A
Other languages
Japanese (ja)
Other versions
JPS62228482A (en
Inventor
和夫 鈴木
淳 千葉
正 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61051188A priority Critical patent/JPH0645896B2/en
Publication of JPS62228482A publication Critical patent/JPS62228482A/en
Publication of JPH0645896B2 publication Critical patent/JPH0645896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a plasma processing apparatus.

〔従来の技術〕[Conventional technology]

従来、この種の成膜及び表面処理装置は、プラズマを生
成するのにマイクロ波による電子サイクロトロン共鳴法
を用いているので、生成プラズマの電離度が高く、電子
温度,電子密度とも高い。このため処理基板の温度を低
くすることができ、膜の膜質も緻密な膜が生成できる特
徴があつた。
Conventionally, this type of film forming and surface treatment apparatus uses an electron cyclotron resonance method using microwaves to generate plasma, so that the generated plasma has high ionization degree and high electron temperature and electron density. For this reason, the temperature of the treated substrate can be lowered, and a film having a high film quality can be formed.

しかし、処理基板上に薄膜を形成する場合を例にとる
と、その表面における均一性、すなわち膜厚,膜質の均
一性及び再現性は、プラズマ生成室から試料室に導かれ
たプラズマの諸量(電子温度,電子密度)及び膜生成用
反応ガスの空間的,時間的な均一度に強く依存してい
る。そして次に示す公知例では処理時間内にプラズマの
放電状態が変化しても、それをすぐ前の放電状態に戻す
機能がないため、処理開始直後のプラズマの均一性が処
理終了直前では損なわれており、結果的に基板全面にわ
たる膜厚,膜質の均一性及び再現性が悪い問題があつ
た。また、従来はこの問題を最小限に止めるために、装
置運転者が時々刻々微妙に変化する放電状態を観測し続
けなければならなかつた。
However, taking the case of forming a thin film on a processed substrate as an example, the uniformity on the surface, that is, the uniformity and reproducibility of the film thickness and film quality, depends on the amount of plasma introduced from the plasma generation chamber to the sample chamber. It strongly depends on (electron temperature, electron density) and spatial and temporal homogeneity of the reaction gas for film formation. And in the following known example, even if the discharge state of the plasma changes within the processing time, since there is no function to return it to the immediately preceding discharge state, the uniformity of the plasma immediately after the start of the treatment is impaired just before the end of the treatment. As a result, there was a problem that the film thickness over the entire surface of the substrate, the uniformity of film quality, and the reproducibility were poor. Further, in the past, in order to minimize this problem, the device operator had to keep on observing the discharge state which changes delicately from moment to moment.

第3図にはプラズマ処理装置の従来例が示されている。
同図は電子サイクロトロン共鳴(ECR)型のプラズマ
処理装置(成膜装置)の例(特開昭55-141729号公報参
照)である。同図に示されているようにプラズマ生成室
1にマイクロ波発振器(図示せず)からのマイクロ波2
が導波管3を通して供給され、磁界コイル4の磁界によ
る電子のサイクロトロン運動周波数とマイクロ波2の周
波数とが一致して共鳴現像が生じ、電子がプラズマ生成
用ガス供給管5から供給されるプラズマ生成用ガス6と
衝突して放電させ、低温のプラズマ7を生じる。なお同
図において8は冷却水、9は石英板、10は真空排気で
ある。
FIG. 3 shows a conventional example of a plasma processing apparatus.
This figure shows an example of an electron cyclotron resonance (ECR) type plasma processing apparatus (film forming apparatus) (see Japanese Patent Application Laid-Open No. 55-141729). As shown in the figure, a microwave 2 from a microwave oscillator (not shown) is placed in the plasma generation chamber 1.
Is supplied through the waveguide 3, the cyclotron motion frequency of the electrons due to the magnetic field of the magnetic field coil 4 and the frequency of the microwave 2 coincide with each other, resonance development occurs, and electrons are supplied from the plasma-producing gas supply pipe 5. It collides with the gas for generation 6 and is discharged, and low temperature plasma 7 is generated. In the figure, 8 is cooling water, 9 is a quartz plate, and 10 is vacuum exhaust.

この低温のプラズマ7は試料室11へ拡散磁界により輸
送され、試料室11内へ反応ガス供給管12を通して供
給される反応ガス13を活性化または電離して、試料台
14の上の試料15の表面上に薄膜を形成する。この場
合に試料15の表面上に堆積した薄膜の膜質,膜厚の均
一性および再現性は、堆積直前の反応ガス分子の密度お
よびエネルギーの空間的,時間的分布の均一性に支配さ
れ、仮にこの状態で一時的に空間的分布の均一性がとれ
たとしても、処理時間の経過と共に容器内表面状態の変
化、およびそれに伴う容器内空間の電磁界の変化によ
り、放電々離しているプラズマ諸量の分布が大幅に異つ
てくる。従つて装置運転者はこの状態変化を常時監視
し、放電状態が変化した場合に前の放電状態に戻すた
め、その放電状態の支配的パラメータである磁界コイル
4またはマイクロ波発振器の電流値を調整しなければな
らない問題があつた。また、この調整を怠ると、成膜後
の薄膜の膜質および膜厚の均一性は、初期設定の放電状
態から予想されるものより大幅に異なつてくる不具合が
あるが、これは実験で確認されていることである。
This low-temperature plasma 7 is transported to the sample chamber 11 by a diffusion magnetic field, and activates or ionizes the reaction gas 13 supplied through the reaction gas supply pipe 12 into the sample chamber 11 to remove the sample 15 on the sample table 14. Form a thin film on the surface. In this case, the film quality of the thin film deposited on the surface of the sample 15, the uniformity and reproducibility of the film thickness are controlled by the uniformity of the spatial and temporal distribution of the density and energy of the reaction gas molecules immediately before the deposition. Even if the spatial distribution is temporarily homogenized in this state, due to changes in the surface condition of the container and the accompanying changes in the electromagnetic field in the container space over the treatment time, plasmas that are separated from each other by discharge are separated. The distribution of the amount is significantly different. Therefore, the operator of the apparatus constantly monitors this state change, and adjusts the current value of the magnetic field coil 4 or the microwave oscillator, which is the dominant parameter of the discharge state, in order to return to the previous discharge state when the discharge state changes. There was a problem I had to do. Also, if this adjustment is neglected, there is a problem that the film quality and film thickness uniformity of the thin film after film formation will be significantly different from what is expected from the initially set discharge state, but this has been confirmed by experiments. It is that.

第4図にはプラズマ成膜装置の他の従来例が示されてい
る。同図において16は同軸伝送管、4aはプラズマ流
の径を調整する静磁場発生コイルである。これも第3図
のそれと同様な低温プラズマ処理装置すなわちECR型
成膜装置(特開昭57-79621号公報参照)であり、前述の
場合と同様な作用をするが、前述の場合と同様な不具合
を有していた。なおこれに関するものとして上述の特開
昭55-141729,特開昭57-79621号公報の他に特開昭56-15
5535号公報がある。
FIG. 4 shows another conventional example of the plasma film forming apparatus. In the figure, 16 is a coaxial transmission tube, and 4a is a static magnetic field generating coil for adjusting the diameter of the plasma flow. This is also a low temperature plasma processing apparatus similar to that shown in FIG. 3, that is, an ECR type film forming apparatus (see Japanese Patent Application Laid-Open No. 57-79621), which operates in the same manner as in the above case, but is similar to the above case. Had a glitch. Regarding this, in addition to the above-mentioned JP-A-55-141729 and JP-A-57-79621, JP-A-56-15
There is a publication of 5535.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、成膜および表面処理後の試料の膜厚,
膜質および表面処理の均一性,再現性に直接影響のある
低温プラズマ諸量の空間的分布の経時変化の点について
配慮されておらず、成膜および表面処理後の試料の膜
厚,膜質および表面処理の均一性,再現性更に装置運転
上の作業性に問題があつた。
The above-mentioned prior art is based on the film thickness of the sample after film formation and surface treatment,
No consideration was given to the temporal change in the spatial distribution of low-temperature plasma quantities that directly affect the uniformity and reproducibility of the film quality and surface treatment, and the film thickness, film quality and surface of the sample after deposition and surface treatment were not taken into consideration. There were problems with processing uniformity, reproducibility, and workability during equipment operation.

本発明は以上の点に鑑みなされたものであり、処理時間
内に放電状態を監視することなしに膜厚、膜質および表
面処理が均一で、再現性のある成膜および表面処理を行
うことは勿論のことプラズマ諸量の空間的分布の均一性
の確保を可能として低温プラズマ処理装置を提供するこ
とを目的とするものである。
The present invention has been made in view of the above points, and it is possible to perform film formation and surface treatment with uniform and reproducible film thickness, film quality and surface treatment without monitoring the discharge state within the treatment time. Of course, it is an object of the present invention to provide a low temperature plasma processing apparatus that can ensure the uniformity of the spatial distribution of various plasma quantities.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、試料室に、処理中のプラズマまたは反応ガ
スの複数個の放射光スペクトルにより処理中のプラズマ
または反応ガスの放電状態を制御する制御手段を設け、
この制御手段を、試料室内のプラズマまたは反応ガスの
少なくとも一種の複数個の放射光スペクトルを測定する
フィルタ付光センサーと、このフィルタ付光センサーと
第1または第2の電流制御器との間に設け、測定した複
数個の放射光スペクトルの値と予め設定した設定値との
差分、または複数種の複数個の放射光スペクトルの比と
設定値との差分を検出し、この検出した差分を第1また
は第2の電流制御器にフィードバックする差動増幅器と
で形成することにより、達成される。
The above-mentioned object is to provide a control means for controlling the discharge state of the plasma or the reactive gas being processed in the sample chamber by a plurality of synchrotron radiation spectra of the plasma or the reactive gas being processed,
The control means is provided between a photosensor with a filter for measuring a plurality of radiant light spectra of at least one kind of plasma or a reaction gas in the sample chamber, and the photosensor with the filter and the first or second current controller. Provided, the difference between the measured values of the synchrotron radiation spectrum and the preset value, or the difference between the ratio of the plural radiant spectrum of a plurality of types and the preset value is detected, and the detected difference is And a differential amplifier feeding back to the first or second current controller.

〔作用〕[Action]

低温プラズマあるいはそれにより活性化または電離した
反応ガス分子の放射光スペクトルは、プラズマ状態にあ
るガス分子の密度およびエネルギー状態を反映してい
る。A,B2種の原子が結合して成膜後の膜組成を形成
する場合にAの典型的線スペクトルAとBの典型的線
スペクトルBとの強度比は、膜組成および膜構造の生
成確率に強く影響することが知られている。一方、低温
プラズマ諸量の空間的分布は、電子サイクロトロン共鳴
電離面を決めるマイクロ波の強度または磁束密度の空間
的分布に支配されている。このため1種または複数個の
放射光スペクトルをフイルタまたは分光器付光センサー
で計測し、その値と予め実測済みの設定値との差分、ま
たは複数個のスペクトルの比と設定値との差分を、増幅
器を通して磁界コイルまたはマイクロ波発振器の電流値
にフイードバツクすれば、放電状態が外部要因で変化し
ても、マイクロ波の強度または磁束密度分布が補正さ
れ、元の低温プラズマ諸量の空間的分布にすることがで
き、処理時間内の成膜条件を一定に保つことができる。
The synchrotron radiation spectrum of the low temperature plasma or the reactive gas molecules activated or ionized by the low temperature plasma reflects the density and energy state of the gas molecules in the plasma state. When the atoms of two kinds of A and B are combined to form a film composition after film formation, the intensity ratio between the typical line spectrum A I of A and the typical line spectrum B 1 of B is determined by the film composition and the film structure. It is known to strongly influence the generation probability. On the other hand, the spatial distribution of low-temperature plasma quantities is governed by the spatial distribution of microwave intensity or magnetic flux density that determines the electron cyclotron resonance ionization surface. For this reason, one or more synchrotron radiation spectra are measured with a filter or an optical sensor with a spectroscope, and the difference between that value and the preset value that has been measured in advance or the difference between the ratio of multiple spectra and the preset value is calculated. If the current value of the magnetic field coil or microwave oscillator is fed back through the amplifier, the microwave intensity or magnetic flux density distribution will be corrected even if the discharge state changes due to external factors, and the original spatial distribution of various low-temperature plasma quantities will be corrected. Therefore, the film forming conditions can be kept constant within the processing time.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明を省略する。同
図に示されているようにマイクロ波発振器17には第1
の電源18が第1の電流制御器19を介して接続され、
磁界コイル4には第2の電源18aが第2の電流制御器
19aを介して接続されている。このように構成された
低温プラズマ処理装置で本実施例では試料室11aに、処
理中のプラズマ7または反応ガス13の複数個の放射光
スペクトルにより処理中のプラズマ7または反応ガス1
3の放電状態を一定に制御する制御手段を設けた。この
ようにすることにより試料室11aに、処理中のプラズ
マ7または反応ガス13の複数個の放射光スペクトルに
より処理中のプラズマ7または反応ガス13の放電状態
を一定に制御する制御手段が設けられるようになつて、
処理中のプラズマ7または反応ガス13の放電状態が一
定となり、処理時間内に放電状態を監視することなしに
膜厚,膜質および表面処理が均一で、再現性のある成膜
および表面処理を行うことを可能とした低温プラズマ処
理装置を得ることができる。
Hereinafter, the present invention will be described based on the illustrated embodiments. FIG. 1 shows an embodiment of the present invention. Since the same parts as those of the prior art are designated by the same reference numerals, the description thereof will be omitted. As shown in the figure, the microwave oscillator 17 has a first
Power source 18 is connected via a first current controller 19,
A second power supply 18a is connected to the magnetic field coil 4 via a second current controller 19a. In the low temperature plasma processing apparatus configured as described above, in the present embodiment, the plasma 7 or the reaction gas 1 being processed is processed in the sample chamber 11a according to a plurality of emission spectra of the plasma 7 or the reaction gas 13 being processed.
Control means for controlling the discharge state of No. 3 to be constant is provided. By doing so, the sample chamber 11a is provided with a control means for controlling the discharge state of the plasma 7 or the reaction gas 13 being processed to be constant according to a plurality of emission spectra of the plasma 7 or the reaction gas 13 being processed. Like this,
The discharge state of the plasma 7 or the reaction gas 13 during processing becomes constant, and film thickness and film quality and surface treatment are uniform and film formation and surface treatment are performed with reproducibility without monitoring the discharge state within the processing time. It is possible to obtain a low-temperature plasma processing device that makes it possible.

すなわちプラズマ7または反応ガス13の複数個の放射
光スペクトルにより処理中のプラズマ7または反応ガス
13の放電状態を一定に制御する制御手段を設けたが、
この制御手段を試料室11aに設け、水平方向の2個の
放射光スペクトル20a,20bを測定するフイルタ付光
センサー21,22と、このフイルタ付光センサー2
1,22に接続し、測定した2個の放射光スペクトル2
0a,20bの比を算出する割算器23と、この割算器
23と第1または第2の電流制御器19,19aとの間
に接続し、割算器23で算出した放射光スペクトル20
a,20bの比と予め設定した設定値24との差分を検
出し、この検出した差分を第1または第2の電流制御器
19,19aにフイードバツクする差動増幅器25とで
形成した。このようにすることにより試料表面近傍のA
種の典型的線スペクトルである放射光スペクトル20a
とB種の典型的線スペクトルである放射光スペクトル20
bとは、フイルタ付光センサー21,22で受光され、
感度調整後に割算器23にとり込まれ、両スペクトル2
0a,20bの比がとられる。これを仮に放射率とすれ
ばこの放射率は更に予め実測し設定してある設定値24
との差分を検出する差動増幅器25に伝送される。そし
て差動増幅器25で検出された両スペクトル20a,2
0bの比と設定値24との差分は、磁界コイル4または
マイクロ波発振器17に夫々電流を供給する第2または
第1の電源18a,18の第2または第1の電流制御器
19a,19にフイードバツクされる。これにより処理
中のプラズマ7または反応ガス13の放電状態は一定に
制御されるようになる。
That is, the control means for controlling the discharge state of the plasma 7 or the reaction gas 13 being processed to be constant according to a plurality of radiant light spectra of the plasma 7 or the reaction gas 13 is provided.
This control means is provided in the sample chamber 11a, and photosensors 21 and 22 with filters for measuring two radiant light spectra 20a and 20b in the horizontal direction and the photosensors 2 with filters are provided.
Two synchrotron radiation spectra measured by connecting to 1, 2
The radiant light spectrum 20 calculated by the divider 23 is connected between the divider 23 for calculating the ratio of 0a, 20b and the divider 23 and the first or second current controller 19, 19a.
The differential amplifier 25 detects the difference between the ratio of a and 20b and a preset setting value 24, and feeds the detected difference to the first or second current controller 19 or 19a with feedback feedback. By doing this, A near the sample surface
Synchrotron radiation spectrum 20a which is a typical line spectrum of a species
And synchrotron radiation spectrum, which is a typical line spectrum of B type 20
b is received by the optical sensors with filters 21 and 22,
After adjusting the sensitivity, it is taken into the divider 23, and both spectra 2
A ratio of 0a, 20b is taken. If this is assumed to be the emissivity, this emissivity is further measured and set to a preset value 24
It is transmitted to the differential amplifier 25 which detects the difference between and. Then, both spectra 20a, 2 detected by the differential amplifier 25
The difference between the ratio of 0b and the set value 24 is applied to the second or first current controller 19a, 19 of the second or first power supply 18a, 18 for supplying a current to the magnetic field coil 4 or the microwave oscillator 17, respectively. Feed back. As a result, the discharge state of the plasma 7 or the reactive gas 13 during processing is controlled to be constant.

すなわち電子サイクロトロン共鳴により電離の強く進展
する共鳴電離面は、マイクロ波の強度または磁束密度の
強度および分布に支配されるので、放射光スペクトル比
の変化分は電離面の形状および強度の変化として現わ
れ、放射光スペクトル比の設定値を保つように制御され
る。この結果、放射光スペクトル比が一定であれば膜組
成が同一である事実(菅野卓雄編著,産業図書,半導体
プラズマプロセス技術,P165〜P178)より、装
置運転者の監視なしに膜質,膜厚とも初期の設定値24
通りに処理可能となり、装置本体として最適条件が設定
できれば膜質,膜厚とも均一で、再現性のある成膜が可
能となる。
That is, the resonance ionization surface where ionization strongly progresses due to electron cyclotron resonance is dominated by the intensity and distribution of the microwave intensity or magnetic flux density, so the change in the synchrotron radiation spectrum ratio appears as a change in the shape and intensity of the ionization surface. , The synchrotron radiation spectrum ratio is controlled so as to maintain the set value. As a result, from the fact that the film composition is the same if the synchrotron radiation spectrum ratio is constant (Takuo Sugano ed., Sangyo Tosho, Semiconductor Plasma Process Technology, P165-P178), both film quality and film thickness are monitored without the operator's supervision. Initial setting 24
If the optimum conditions can be set for the apparatus main body, the film quality and film thickness will be uniform and reproducible film formation will be possible.

このように本実施例によれば放電状態を常時監視するこ
となしに形成薄膜の膜質,膜厚および表面処理精度の均
一性,再現性を大幅に向上することができる。またプラ
ズマ諸量の空間的分布の均一性が向上できる。
As described above, according to this embodiment, the uniformity and reproducibility of the film quality, film thickness and surface treatment accuracy of the formed thin film can be greatly improved without constantly monitoring the discharge state. Further, the uniformity of the spatial distribution of various plasma quantities can be improved.

第2図には本発明の他の実施例が示されている。本実施
例では垂直方向の2個の放射光スペクトル20a,20
b、すなわち試料台14上方の放射光スペクトル20
a,20bを全てフイルタ付光センサー21,22に取
り込むようにしたものである。この場合には試料台14
上方の放射光スペクトル20a,20bが全てフイルタ
付光センサー21,22に取り込まれるようになつて、
前述の場合よりも検出精度を向上させることができる。
FIG. 2 shows another embodiment of the present invention. In this embodiment, two radiant light spectra 20a, 20 in the vertical direction are used.
b, that is, the synchrotron radiation spectrum 20 above the sample table 14
All of a and 20b are taken into the optical sensors with filters 21 and 22. In this case, the sample table 14
As the upper radiant light spectrums 20a and 20b are all taken into the filter-attached optical sensors 21 and 22,
The detection accuracy can be improved as compared with the case described above.

なおこれら実施例で光センサーにフイルタ付光センサー
21,22を使用したが、分光器付光センサーを使用し
てもよい。
Although the optical sensors with filters 21 and 22 are used as the optical sensors in these embodiments, optical sensors with a spectroscope may be used.

〔発明の効果〕〔The invention's effect〕

上述のように本発明は試料室に、処理中のプラズマまた
は反応ガスの複数個の放射光スペクトルにより処理中の
プラズマまたは反応ガスの放電状態を制御する制御手段
を設け、この制御手段を、試料室内のプラズマまたは反
応ガスの少なくとも一種の複数個の放射光スペクトルを
測定するフィルタ付光センサーと、このフィルタ付光セ
ンサーと第1または第2の電流制御器との間に設け、測
定した複数個の放射光スペクトルの値と予め設定した設
定値との差分、または複数種の複数個の放射光スペクト
ルの比と設定値との差分を検出し、この検出した差分を
第1または第2の電流制御器にフィードバックする差動
増幅器とで形成したので、放電状態が外部要因で変化し
てもマイクロ波の強度または磁束密度分布が補正され、
元の低温プラズマ諸量の空間的分布にすることができ、
処理時間内の成膜条件を一定に保つことができるように
なり、処理時間内に放電状態を監視することなしに膜
厚、膜質および表面処理が均一で、再現性のある成膜お
よび表面処理を行うことは勿論のことプラズマ諸量の空
間的分布の均一性の確保を可能とした低温プラズマ処理
装置を得ることができる。
As described above, in the present invention, the sample chamber is provided with the control means for controlling the discharge state of the plasma or the reactive gas being processed by a plurality of radiant light spectra of the plasma or the reactive gas being processed, and the control means is provided for the sample. An optical sensor with a filter for measuring a plurality of emission spectra of at least one kind of plasma or a reaction gas in the room, and a plurality of the optical sensors provided between the optical sensor with the filter and the first or second current controller The difference between the value of the synchrotron radiation spectrum and the preset value, or the difference between the ratio of the plural radiant spectrums of a plurality of types and the preset value is detected, and the detected difference is used as the first or second current. Since it is formed with a differential amplifier that feeds back to the controller, even if the discharge state changes due to external factors, the microwave intensity or magnetic flux density distribution is corrected,
The original spatial distribution of low-temperature plasma quantities can be
It becomes possible to keep the film formation conditions within the processing time constant, and the film thickness, film quality and surface treatment are uniform without monitoring the discharge state within the processing time, and reproducible film formation and surface treatment. It is of course possible to obtain a low-temperature plasma processing apparatus capable of ensuring the uniformity of the spatial distribution of various plasma amounts.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の低温プラズマ処理装置の一実施例の装
置構成を示す線図、第2図は本発明の低温プラズマ処理
装置の他の実施例の装置構成を示す線図、第3図は従来
の低温プラズマ処理装置の装置構成を示す線図、第4図
は従来の低温プラズマ処理装置の他の例の装置構成を示
す線図である。 1……プラズマ生成室、2……マイクロ波、3……導波
管、4……磁界コイル、7……低温のプラズマ、11a…
…試料室、12……反応ガス供給管、13……反応ガ
ス、14……試料台、15……試料、17……マイクロ
波発振器、18……第1の電源、18a……第2の電
源、19……第1の電流制御器、19a……第2の電流
制御器、20a,20b……放射光スペクトル、21,
22……フイルタ付光センサー、23……割算器、24
……設定値、25……差動増幅器。
FIG. 1 is a diagram showing an apparatus configuration of an embodiment of a low temperature plasma processing apparatus of the present invention, FIG. 2 is a diagram showing an apparatus configuration of another embodiment of a low temperature plasma processing apparatus of the present invention, and FIG. FIG. 4 is a diagram showing an apparatus configuration of a conventional low temperature plasma processing apparatus, and FIG. 4 is a diagram showing an apparatus configuration of another example of the conventional low temperature plasma processing apparatus. 1 ... Plasma generation chamber, 2 ... Microwave, 3 ... Waveguide, 4 ... Magnetic field coil, 7 ... Low temperature plasma, 11a ...
... sample chamber, 12 ... reaction gas supply pipe, 13 ... reaction gas, 14 ... sample stage, 15 ... sample, 17 ... microwave oscillator, 18 ... first power supply, 18a ... second Power source, 19 ... First current controller, 19a ... Second current controller, 20a, 20b ... Radiant light spectrum, 21,
22 ... Optical sensor with filter, 23 ... Divider, 24
…… Set value, 25 …… Differential amplifier.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 C (72)発明者 園部 正 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (56)参考文献 特開 昭62−89869(JP,A) 特開 昭62−93382(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01L 21/31 C (72) Inventor Tadashi Sonobe 3-1-1 Sachimachi, Hitachi City, Ibaraki Stock Hitachi, Ltd., Hitachi Works (56) References JP 62-89869 (JP, A) JP 62-93382 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低温のプラズマを発生させるプラズマ生成
室と、このプラズマ生成室に接続され、かつ前記プラズ
マを導入する試料室とを備え、前記プラズマ生成室はそ
の上部に第1の電源に第1の電流制御器を介して接続さ
れたマイクロ波発振器、このマイクロ波発振器からのマ
イクロ波を導入する導波管、その外周に第2の電源に第
2の電流制御器を介して接続され、かつ前記マイクロ波
による電子サイクロトロン共鳴放電を発生させる磁界を
発生する磁界コイルを有し、前記試料室はその内部に試
料を乗置する試料台、その側壁に反応ガスが供給される
反応ガス供給管を有しており、前記試料室内に導入され
た前記反応ガスを前記プラズマで活性化または電離して
前記試料の表面を処理する低温プラズマ処理装置におい
て、前記試料室に、前記処理中のプラズマまたは反応ガ
スの複数個の放射光スペクトルにより前記処理中のプラ
ズマまたは反応ガスの放電状態を制御する制御手段を設
け、この制御手段を、試料室内の前記プラズマまたは反
応ガスの少なくとも一種の複数個の放射光スペクトルを
測定するフィルタ付光センサーと、このフィルタ付光セ
ンサーと前記第1または第2の電流制御器との間に設
け、測定した複数個の放射光スペクトルの値と予め設定
した設定値との差分、または複数種の複数個の放射光ス
ペクトルの比と設定値との差分を検出し、この検出した
差分を前記第1または第2の電流制御器にフィードバッ
クする差動増幅器とで形成したことを特徴とする低温プ
ラズマ処理装置。
1. A plasma generation chamber for generating a low-temperature plasma, and a sample chamber connected to the plasma generation chamber for introducing the plasma, the plasma generation chamber being provided with a first power source on top of the plasma generation chamber. 1, a microwave oscillator connected via a current controller, a waveguide for introducing microwaves from the microwave oscillator, and a second power source connected to a second power source on the outer periphery thereof via a second current controller, Further, the sample chamber has a magnetic field coil for generating a magnetic field for generating an electron cyclotron resonance discharge by the microwave, and the sample chamber has a sample stand on which a sample is placed, and a reaction gas supply pipe for supplying a reaction gas to a side wall thereof. In the low temperature plasma processing apparatus for treating the surface of the sample by activating or ionizing the reaction gas introduced into the sample chamber with the plasma, The control means is provided for controlling the discharge state of the plasma or the reaction gas under the processing by a plurality of emission spectra of the plasma or the reaction gas under the processing, and the control means is provided for at least the plasma or the reaction gas in the sample chamber. An optical sensor with a filter for measuring a plurality of radiant light spectra, and a plurality of measured radiant light spectrum values provided between the optical sensor with a filter and the first or second current controller. A difference for detecting a difference from a preset setting value or a difference between a ratio of a plurality of types of synchrotron radiation spectra and a setting value and feeding back the detected difference to the first or second current controller. A low-temperature plasma processing apparatus formed by a dynamic amplifier.
JP61051188A 1986-03-08 1986-03-08 Low temperature plasma processing equipment Expired - Lifetime JPH0645896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051188A JPH0645896B2 (en) 1986-03-08 1986-03-08 Low temperature plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051188A JPH0645896B2 (en) 1986-03-08 1986-03-08 Low temperature plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS62228482A JPS62228482A (en) 1987-10-07
JPH0645896B2 true JPH0645896B2 (en) 1994-06-15

Family

ID=12879890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051188A Expired - Lifetime JPH0645896B2 (en) 1986-03-08 1986-03-08 Low temperature plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH0645896B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205520A (en) * 1988-02-12 1989-08-17 Shimadzu Corp Film-formation apparatus
JPH0390576A (en) * 1989-08-31 1991-04-16 Raimuzu:Kk Formation of metal nitride coating film
JP2787006B2 (en) * 1995-05-10 1998-08-13 株式会社日立製作所 Processing method and processing apparatus and plasma light source
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
TW200742506A (en) 2006-02-17 2007-11-01 Noritsu Koki Co Ltd Plasma generation apparatus and work process apparatus
US7921804B2 (en) 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289869A (en) * 1985-10-15 1987-04-24 Sumitomo Electric Ind Ltd Method for synthesizing hard carbon film in vapor phase
JPS6293382A (en) * 1985-10-21 1987-04-28 Mitsubishi Electric Corp Thin film forming device

Also Published As

Publication number Publication date
JPS62228482A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
US5374327A (en) Plasma processing method
US5554255A (en) Method of and apparatus for a direct voltage arc discharge enhanced reactive treatment of objects
US5851600A (en) Plasma process method and apparatus
US7326937B2 (en) Plasma ion implantation systems and methods using solid source of dopant material
EP0060627A2 (en) Apparatus for regulating substrate temperature in a continuous plasma deposition process
US20020025388A1 (en) Plasma processing apparatus
EP0402867A2 (en) Apparatus for microwave processing in a magnetic field
US4897281A (en) Process for the formation of a functional deposited film by way of microwave plasma CVD method
JPH09192479A (en) Plasma treating device and method therefor
JP3531511B2 (en) Plasma processing equipment
JPH0645896B2 (en) Low temperature plasma processing equipment
JP3084243B2 (en) Method of depositing dielectric layer by PECVD method
JP2003224112A (en) Plasma treatment device and plasma treatment method
EP0060625A2 (en) Plasma deposition of amorphous materials
JP2005535131A (en) Removal of plasma deposited surface layer by sputtering of dilution gas
EP0803588B1 (en) Vapor phase growth method and growth apparatus
EP0060626A2 (en) Isolation valve
JPH09199485A (en) Plasma processing device and method
JPS58161774A (en) Sputtering method
JPH07105893A (en) Ion beam treating device, and method for working it
JPH06224183A (en) Plasma utilizing apparatus
JP3050295B2 (en) Film forming method and apparatus by plasma CVD with etching reaction
JPH0697119A (en) Etching system
KR101096490B1 (en) Plasma doping method and device used to the same
JPH04291713A (en) Plasma cvd apparatus