JPS6113250A - Manufacture of electrophotographic sensitive body - Google Patents
Manufacture of electrophotographic sensitive bodyInfo
- Publication number
- JPS6113250A JPS6113250A JP13329384A JP13329384A JPS6113250A JP S6113250 A JPS6113250 A JP S6113250A JP 13329384 A JP13329384 A JP 13329384A JP 13329384 A JP13329384 A JP 13329384A JP S6113250 A JPS6113250 A JP S6113250A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- resin
- charge
- charge generation
- generation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は電子写真感光体の製造方法に関し、特にレーザ
ービームプリンター用電子写真感光体の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an electrophotographic photoreceptor, and particularly to a method for manufacturing an electrophotographic photoreceptor for a laser beam printer.
従来の技術
従来、レーザーを光源とする電子写真方式ブリ、ン夕の
感光体としては、セレン、セレン系合金。Conventional technology Conventionally, selenium and selenium-based alloys have been used as photoreceptors for electrophotographic printing using a laser as a light source.
硫化カドミウム樹脂分散系、ポリビニルカルバゾールと
トリニトロフルオレノ/との電荷移動錯体などが用いら
れてきた。またレーザーとしてはヘリウム−カドミ、ア
ルゴン、ヘリウム−ネオンなどのガスレーザーが用いら
れてきたが、最近小型。Cadmium sulfide resin dispersions, charge transfer complexes of polyvinylcarbazole and trinitrofluoreno/etc., and the like have been used. Gas lasers such as helium-cadmium, argon, and helium-neon have been used as lasers, but recently they have been made smaller.
竺コストで直接変調が可能な半導体レーザーが用いられ
るようになった。しかし半導体レーザーは発光波長が7
50nm 以上のものが多く、以上のような感光体は、
その波長領域で光感度が低く、使用が困難であった。そ
のため感光波長領域を比較的自由に選べる電荷発生層と
電荷輸送層との積層型感光体が、半導体レーザープリン
タ用感光体として注目されてきている。Semiconductor lasers, which can be directly modulated at low cost, have come into use. However, semiconductor lasers have an emission wavelength of 7
Many of the photoreceptors have a diameter of 50 nm or more.
It had low photosensitivity in that wavelength range, making it difficult to use. For this reason, a laminated type photoreceptor including a charge generation layer and a charge transport layer, which can relatively freely select the photosensitive wavelength range, has been attracting attention as a photoreceptor for semiconductor laser printers.
積層型感光体の電荷発生層は、光を吸収して自由電荷を
発生させる役割をもち、その厚さは発生したホト・キャ
リアの飛程を短かくするために0.1〜5μと薄いのが
通例である。このことは、入射光量の大部分が電荷発生
層で吸収されて多くのホト・キャリアを生成すること、
さらには発生したホト・キャリアを再結合や捕獲により
失活することなく電荷輸送層に注入する必要があること
に帰因している。電荷輸送層は、静電荷の受容と自由電
荷の輸送の役割をもち、像形成光をほとんど吸収しない
ものを用い、その厚さは通例5〜60μである。このよ
うな積層型感光体を用い、レーザープリンタでレーザー
光をライン走査して画像を出してみると、文字などのラ
イン画像では問題にならないが、べた画像の場合、干渉
縞状の濃度むらが現われた。この原因は、電荷発生層が
前述の如く薄層で形成されているために、この層で吸収
される光量が制限され、そのために電荷発生層を通過し
た光が基板表面で反射し、この反射光と光導電層表面で
の反射光との干渉を生じたものによると考えられる。積
層型電子写真感光体は、矛3図および矛4図のように金
属の導電性基体1の上に、電荷発生層6と電荷輸送層4
とが積層された構成になっている。この積層型感光体に
レーザー光10(発振波長は半導体レーザーで約780
nm 、ヘリウム−ネオ/レーザーで約650 nm
)が入射した場合、反射の大きい電荷輸送層40表面で
の反射光11と、電荷輸送層4に浸入した浸入光12が
金属の導電性基体1の表面で反射され電荷輸送層40表
面から出てくる反射光16との干渉が生ずる。電荷発生
層5と電荷輸送層4との積層の屈折率をn、厚さをd、
レーザー光の波長なλとすると、ncl がλ/2の
整数倍のときは、反射光の強度が極大、すなわち電荷輸
送層4の内部へ入っていく光の強度が極小(エネルギー
保存則による) nd がλ/4の奇数倍のときは反
射光が極小、すなわち内部へ入っていく光が極大となる
。ところで、(IKは製造上0.2μ以上の厚みむらは
避けられない。一方、レーザー光は単色性がよく、コヒ
ーレントなため、dの厚みムラに対応して前記の干渉条
件が変化し、電荷発生層6でのレーザー光の吸収量の場
所むらが生じ、それがべた画家の濃度の干渉縞状のむら
となって現われると考えられる。なお通常の複写機では
、光源が単色光でないため、波長によって干渉縞状の1
llliムラの幅が変わり、平均化されて見えなくなる
。The charge generation layer of the laminated photoreceptor has the role of absorbing light and generating free charges, and its thickness is as thin as 0.1 to 5μ in order to shorten the range of the generated photocarriers. is customary. This means that most of the incident light is absorbed by the charge generation layer and many photocarriers are generated.
Furthermore, this is due to the need to inject the generated photocarriers into the charge transport layer without being deactivated by recombination or capture. The charge transport layer has the role of accepting static charges and transporting free charges, and is made of a material that hardly absorbs image forming light, and its thickness is usually 5 to 60 microns. When using such a laminated photoreceptor and producing an image by scanning a line of laser light with a laser printer, there is no problem with line images such as characters, but with solid images, density unevenness in the form of interference fringes occurs. appeared. The reason for this is that, as the charge generation layer is formed as a thin layer as mentioned above, the amount of light absorbed by this layer is limited, and as a result, the light that has passed through the charge generation layer is reflected on the substrate surface, and this reflection This is thought to be due to interference between light and reflected light on the surface of the photoconductive layer. The laminated electrophotographic photoreceptor has a charge generation layer 6 and a charge transport layer 4 on a metal conductive substrate 1, as shown in Figures 3 and 4.
It has a laminated structure. Laser light 10 (oscillation wavelength is approximately 780 for semiconductor laser) is applied to this laminated photoreceptor.
nm, approximately 650 nm with helium-neo/laser
) is incident, the reflected light 11 on the surface of the charge transport layer 40 with a large reflection and the incident light 12 that has penetrated into the charge transport layer 4 are reflected on the surface of the metal conductive substrate 1 and exit from the surface of the charge transport layer 40. Interference with the incoming reflected light 16 occurs. The refractive index of the laminated layer of the charge generation layer 5 and the charge transport layer 4 is n, the thickness is d,
Letting λ be the wavelength of the laser beam, when ncl is an integral multiple of λ/2, the intensity of the reflected light is maximum, that is, the intensity of the light entering the charge transport layer 4 is minimum (according to the law of conservation of energy). When nd is an odd multiple of λ/4, the reflected light is minimal, that is, the light entering the interior is maximal. By the way, (IK) cannot avoid thickness unevenness of 0.2μ or more due to manufacturing. On the other hand, since laser light has good monochromaticity and is coherent, the above-mentioned interference condition changes in response to the thickness unevenness of d, and the charge It is thought that unevenness occurs in the amount of laser light absorbed in the generation layer 6, and this appears as interference fringe-like unevenness in the density of the solid painter.In addition, in ordinary copying machines, the light source is not monochromatic light, so the wavelength 1 of interference fringes by
The width of the llli unevenness changes, becomes averaged, and becomes invisible.
そこで、この様な欠点を解消する目的で、導電性基体に
凹凸をつけて反射レーザー光を散乱させて干渉を防止す
る方法や、導電性基体上に光吸収層を設けて干渉を防止
する方法が提案されてきた。Therefore, in order to eliminate such drawbacks, there are methods to prevent interference by adding unevenness to the conductive substrate to scatter reflected laser light, and methods to prevent interference by providing a light absorption layer on the conductive substrate. has been proposed.
しかしながら、これらの方法には、感光体製造上一層余
分に設ける工程が必要であるとか、導電□性基体の凹凸
を精密に管理する必要があるという欠点があった□
発明が解決しようとする問題点
本発明においては上述の様な余分な工程、管理を必要と
せず干渉を防止した電子写真感光体を製造する方法を提
供することにある。However, these methods have drawbacks such as the need for an extra step in manufacturing the photoreceptor and the need to precisely control the unevenness of the conductive substrate.Problems to be Solved by the Invention An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that does not require the above-mentioned extra steps and controls and prevents interference.
問題点を解決するための手段、作用
本発明は、電荷発生層と電荷輸送層、を有する機能分離
型電子写真感光体において、電荷発生層表面に、その電
荷発生層が感度を有する範囲のレーザー光を照射するこ
とにより、微少な凹部を形成し、その後電荷輸送層を積
層することを特徴とする電子写真感光体の製造方法から
構成される。Means and Effects for Solving Problems The present invention provides a function-separated electrophotographic photoreceptor having a charge generation layer and a charge transport layer, in which a laser beam within a range to which the charge generation layer is sensitive is applied to the surface of the charge generation layer. The present invention is comprised of a method for manufacturing an electrophotographic photoreceptor, which is characterized by forming minute recesses by irradiating light, and then laminating a charge transport layer.
本発明の特徴は、機能分111M感光体の電荷発生層上
K、収束したパルスレーザ−を照射して直径0.5μ〜
5.0μ深さは、電荷発生層の厚み以下の微小な凹部(
ピット、あるいはライン)を形成することにより反射レ
ーザー光を散乱させ干渉を防止しているこ−とにあるl
−1図)、1本発明による電荷発生層上のピット、ある
いはラインの形成は感光体製造上2層構成を変更するこ
となくかつ連続的に実施可能であり、ピット、あるいは
ラインの大きさ、深さ、密度は照射するパ゛ルスレーザ
ー元ノ強度、パルス巾あるいはドラムの回転速度によっ
て容易に、かつ精密に制御することが可能である(矛2
図)。The feature of the present invention is to irradiate the charge generation layer of the functional 111M photoreceptor with a focused pulsed laser to generate
The depth of 5.0μ is a minute recess (less than the thickness of the charge generation layer).
By forming pits or lines, reflected laser light is scattered and interference is prevented.
1) The formation of pits or lines on the charge generation layer according to the present invention can be carried out continuously without changing the two-layer structure in manufacturing the photoreceptor, and the size of the pits or lines, The depth and density can be easily and precisely controlled by the original intensity of the irradiating pulse laser, the pulse width, or the rotation speed of the drum.
figure).
本発明の電荷発生層上の凹部形成用として使用されるレ
ーザーとしては、電荷発生層の感度を有する波長範囲内
に発振波長を有するレーザーが適しており、レーザー光
は光学系によりスポットサイズ0.5μ〜5.0μ程度
に集束され、電荷発生層上に照射される。電荷発生層の
レーザー光を照射された部分は、レーザー光が吸収され
熱が発生するため、その個所に熱変型により小さな凹部
が形成される。このためには、電荷発生層は適当な熱、
置屋性を有し、かつ充分な耐熱性を持つことが必要であ
る。As the laser used for forming the recesses on the charge generation layer of the present invention, a laser having an oscillation wavelength within the wavelength range to which the charge generation layer is sensitive is suitable, and the laser beam is controlled by an optical system to have a spot size of 0. It is focused to about 5μ to 5.0μ and irradiated onto the charge generation layer. The portion of the charge generation layer that is irradiated with the laser beam absorbs the laser beam and generates heat, so that a small recess is formed at that portion due to thermal deformation. For this purpose, the charge generation layer must be heated to
It is necessary to have sufficient heat resistance as well as suitable for storage.
以下、本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.
矛1図は、本発明のレーザービームプリンター用電子写
真感元体の断面図である。導電性基体1の上に必要に応
じて中間層2が設けられ、その上に電荷発生層3.電荷
輸送層4が積層される。Figure 1 is a sectional view of an electrophotographic sensitive element for a laser beam printer of the present invention. An intermediate layer 2 is provided on the conductive substrate 1 as required, and a charge generation layer 3 is provided thereon. A charge transport layer 4 is laminated.
導電性基体1はアルミニウムなどの基板6の上に、必要
に応じて更にフェノール樹脂、エポキシ樹脂、シリコン
樹脂、アクリル−メラミン樹脂中に導電性顔料、酸化亜
鉛、酸化錫、酸化チタン等を分散、含有させた被覆層5
を設けることが出来る。中間層はポリアミド樹脂、カゼ
イン、ポリビニルアルコール、フェノール樹脂等よりな
り膜厚0.2μ〜10.0μ程度が適当である。電荷発
生層3はスーダンレッド、ダイアンブルー、ジエナスグ
リーンBなどのアゾ顔料、アルゴールイエo −。The conductive substrate 1 is formed by dispersing conductive pigments, zinc oxide, tin oxide, titanium oxide, etc. in phenol resin, epoxy resin, silicone resin, acrylic-melamine resin, etc. on a substrate 6 made of aluminum or the like, if necessary. Containing coating layer 5
can be provided. The intermediate layer is made of polyamide resin, casein, polyvinyl alcohol, phenol resin, etc., and has a suitable thickness of about 0.2 .mu.m to 10.0 .mu.m. The charge generation layer 3 is made of azo pigments such as Sudan Red, Diane Blue, and Jenas Green B, and Algol Yellow.
ピレンキノン、インダンスレンフ゛リリアントノ(イオ
レットRRPなどのキノン顔料、キノシアニン顔料、ベ
リレフ顔料、インジゴ、チオインジゴ等のインジゴ顔料
、インドファーストオレンジトナーなどのビスベンゾイ
ミダゾール顔料、銅フタロ7アニ7などのフタロシアニ
ン顔料、キナクリドン顔料等の電荷発生性物質を、ポリ
エステル、ポリスチレン、ポリビニルブチラール、ポリ
ビニルピロリドン、メチルセルロース、ポリアクリル酸
エステル類、セルロースエステルなト17) 結着剤樹
脂に分散して形成される。Quinone pigments such as pyrenequinone, indanthrene fluorine (Iolet RRP), quinocyanine pigments, berylev pigments, indigo pigments such as indigo and thioindigo, bisbenzimidazole pigments such as India First Orange Toner, phthalocyanine pigments such as copper phthalo 7ani7, It is formed by dispersing a charge-generating substance such as a quinacridone pigment in a binder resin such as polyester, polystyrene, polyvinyl butyral, polyvinylpyrrolidone, methyl cellulose, polyacrylic acid esters, or cellulose ester.
その厚さは0.05μ〜5.0μ、好ましくは、0.5
μ〜2.0μ程度である。前述の様K、本発明による電
荷発生層は、適当な熱変型性と充分な耐熱性が必要なた
めバインダーに用いる樹脂のガラス転移温度は重要な要
因であり、好ましくは50℃〜100℃の範囲にコント
ロールされる必要がある。Its thickness is 0.05μ to 5.0μ, preferably 0.5μ
It is about μ to 2.0 μ. As mentioned above, the charge generating layer according to the present invention requires appropriate thermal deformability and sufficient heat resistance, so the glass transition temperature of the resin used as the binder is an important factor, and preferably 50°C to 100°C. Needs to be controlled within range.
電荷輸送層4は主鎖又は側鎖にア/トラセ/、ビレ/、
フェナントレン、コロネンなどの多環芳香族化合物又は
インドール、カルバゾール、オキサゾール、インオギサ
ゾール、チアゾール、イミダゾール、ピラゾール、オ牛
サジアゾール、ピラゾリン、チアジアゾール、トリアゾ
ールなとの含窒素環式化合物を有する化合物、ヒドラゾ
ン化合物等の正孔輸送性物質を成膜性のある樹脂に溶解
させて形成される。これは電荷輸送性物質が一般的に低
分子量で、それ自身では成膜性に乏しいためである。そ
のような樹脂としては、ポリカーボネート、ポリメタク
リル゛酸エステル類、ボリアリレート、ポリスチレン、
ポリエステル、ポリサルホン、スチレ/−アクリロニト
リ化コポリマー、スチレ/−メタクリル酸メチルコポリ
マー等が挙げられる。電荷輸送層4の厚さは5〜20μ
である。The charge transport layer 4 has a/trace/, bire/, on the main chain or side chain.
Compounds containing polycyclic aromatic compounds such as phenanthrene and coronene, or nitrogen-containing cyclic compounds such as indole, carbazole, oxazole, inogisazole, thiazole, imidazole, pyrazole, bosadiazole, pyrazoline, thiadiazole, and triazole, hydrazone compounds, etc. It is formed by dissolving a hole-transporting substance in a film-forming resin. This is because the charge transporting substance generally has a low molecular weight and has poor film-forming properties by itself. Such resins include polycarbonate, polymethacrylic acid esters, polyarylate, polystyrene,
Examples include polyester, polysulfone, styrene/-acrylonitrified copolymer, styrene/-methyl methacrylate copolymer, and the like. The thickness of the charge transport layer 4 is 5 to 20μ
It is.
以下に、実施例を示す。Examples are shown below.
実施例1
ルチル型酸化チタン90重量部をアクリル樹脂(商品名
ニアクリディックA405:大日本インキ(株)製)8
0部(固型分50%)、メラミン樹脂(商品名ニス−パ
ーベッカミンL121;大日本インキ(株)製)20部
(固型分60チ)およびトルエン100部の溶液に混合
し、次いでボールミルにより6時間にわたり分散した。Example 1 90 parts by weight of rutile titanium oxide was mixed with 8 parts by weight of acrylic resin (trade name Niacridic A405: manufactured by Dainippon Ink Co., Ltd.)
0 parts (solid content 50%), melamine resin (trade name: Varnish-Perbeckamine L121; manufactured by Dainippon Ink Co., Ltd.) 20 parts (solid content 60 parts) and 100 parts of toluene. Dispersed for 6 hours.
この分散液を60φX2605mのアルミニウムシリン
ダー(基体6)の上に塗布し、150℃で30分間乾燥
硬化し20μ厚の被覆層5を設けた。This dispersion was applied onto an aluminum cylinder (substrate 6) measuring 60φ×2605m and dried and cured at 150° C. for 30 minutes to form a coating layer 5 with a thickness of 20 μm.
次に、共重合ナイロン樹脂(商品名:アミ2ノCM80
00、東しく株)央)10部(重量部、以下同様)をメ
タノール60部、ブタノ−/I/40部の混合液に溶解
し、上記被覆層上に浸漬塗布して、1μ厚のポリアミド
樹脂層(中間層2)をもうけた。Next, copolymerized nylon resin (product name: Amino CM80
00, Toshishiku Co., Ltd. Central) was dissolved in a mixed solution of 60 parts of methanol and 40 parts of butano/I/I to form a 1 μ thick polyamide layer. A resin layer (intermediate layer 2) was formed.
次にε型銅−フタロシアニン(′商品名リオフオトン、
東洋インキ製造(株)製)100部にポリビニルブチラ
ール樹脂(商品名xスレツクBM−2、漬水化学(株)
製)50部、シクロへキサノア400部を1φガラスピ
ーズな用いたサンドミル装置で20時間分散した。この
分散液にメチルエチルヶ):/600部を加えて、上記
ポリアミド樹脂層上に浸漬塗布し50℃で10分間の加
熱乾燥をし↓D、5μの厚さをもつ電荷発生層6を設け
た。Next, ε-type copper-phthalocyanine (trade name: Liophoton,
100 parts of Toyo Ink Manufacturing Co., Ltd.) and polyvinyl butyral resin (trade name
) and 400 parts of cyclohexanor were dispersed for 20 hours in a sand mill using 1φ glass beads. To this dispersion was added 600 parts of methyl ethyl, which was dip coated onto the polyamide resin layer and dried by heating at 50° C. for 10 minutes to form a charge generating layer 6 having a thickness of 5 μm.
次いで、この電荷発生層まで設けたドラム9を矛2図に
示す様に、回転軸上に取つけ1000rpmの回転を与
えながら、軸方向に10 mvi / minの速度で
動かし、ドラム面上でスポットサイズ1.0μに集束し
た出力5 mWおよびパルス幅81mzのガリウムーア
ルミニウムーヒ累半導体レーザー7(発振波長780
nm ) を光学系8な介して電荷発生層上に走査し
た。この電荷発生層上をSRMで観察したところ、鮮明
なビットが認められた。Next, as shown in Figure 2, the drum 9 provided with this charge generation layer is mounted on a rotating shaft and rotated at 1000 rpm while being moved in the axial direction at a speed of 10 mvi/min to create a spot on the drum surface. A gallium-aluminum semiconductor laser 7 (oscillation wavelength 780 nm) with an output power of 5 mW and a pulse width of 81 mz focused to a size of 1.0 μ
nm) was scanned onto the charge generation layer through the optical system 8. When this charge generation layer was observed using an SRM, clear bits were observed.
次いで、下記構造式のヒドラゾン化合物を10部
おXびスチレン−メタクリル駿メチル共重合樹脂(商品
名:M8200:製鉄化学(株)製)15部をトルエン
80部に溶解した。この液を上記電荷発生層6上に塗布
して100℃で1時間の熱風乾燥をして、16μ厚の電
荷輸送層4を形成した。Next, 10 parts of a hydrazone compound having the following structural formula and 15 parts of a styrene-methacrylic methyl copolymer resin (trade name: M8200, manufactured by Tetsusei Kagaku Co., Ltd.) were dissolved in 80 parts of toluene. This liquid was applied onto the charge generation layer 6 and dried with hot air at 100° C. for 1 hour to form a charge transport layer 4 with a thickness of 16 μm.
この積層型感光ドラムを、ガリウムーアルミニウムーヒ
累半導体レーザー(発光波長780 nm 。This laminated photosensitive drum was equipped with a gallium-aluminum-aluminum semiconductor laser (emission wavelength: 780 nm).
出力5mW、)を有するレーザープリンタ実験機(帯電
は負極性)につけて画像出しをおこなった。Images were produced using an experimental laser printer (charged with negative polarity) having an output of 5 mW.
その結果、べた画橡部の画e!濃度が均一でライン画像
もシャープな画像が得られた。As a result, the picture e! An image with uniform density and sharp line images was obtained.
発明の効果
上述したとおり、本発明は電子写真感光体の層構成が一
層少なくてすむ、すなわち散乱層が不要となり、さらに
凹凸の精密なコントロールが可能であるという顕著な効
果を葵するのである。Effects of the Invention As described above, the present invention has the remarkable effect that the electrophotographic photoreceptor requires fewer layers, that is, a scattering layer is not required, and that it is possible to precisely control the unevenness.
矛1図は本発明の製造方法で作成した電子写真感光体の
一例を示す断面図、矛2図は本発明の製造方法を実捲す
る装置の一例を示す概略図、矛6図は従来の電子写真感
光体を示す断面図、牙4図は電子写真感光体に入射する
光の光路な示す説明図である。
符号1は導電性基体、2は中間層、3は電荷発生層、4
は電荷輸送層、5は被覆層、6は基体、7は半導体レー
ザー、8は光学系、9は感光ドラム、10は入射レーザ
ー光、11は電荷輸送層表面での反射光、12は電荷輸
送層の内部への侵入光、13は感光体底部で反射した反
射光を示す。Figure 1 is a cross-sectional view showing an example of an electrophotographic photoreceptor manufactured by the manufacturing method of the present invention, Figure 2 is a schematic diagram showing an example of an apparatus for implementing the manufacturing method of the present invention, and Figure 6 is a cross-sectional view of an example of an electrophotographic photoreceptor produced by the manufacturing method of the present invention. FIG. 4 is a cross-sectional view showing the electrophotographic photoreceptor, and FIG. 4 is an explanatory view showing the optical path of light incident on the electrophotographic photoreceptor. Reference numeral 1 is a conductive substrate, 2 is an intermediate layer, 3 is a charge generation layer, and 4 is a conductive substrate.
is a charge transport layer, 5 is a coating layer, 6 is a substrate, 7 is a semiconductor laser, 8 is an optical system, 9 is a photosensitive drum, 10 is an incident laser beam, 11 is reflected light on the surface of the charge transport layer, 12 is a charge transport The reference numeral 13 indicates the light that penetrates into the layer, and the reflected light that is reflected at the bottom of the photoreceptor.
Claims (1)
写真感光体において、電荷発生層表面に、その電荷発生
層が感度を有する範囲のレーザー光を照射することによ
り、微小な凹部を形成し、その後電荷輸送層を積層する
ことを特徴とする電子写真感光体の製造方法。(1) In a functionally separated electrophotographic photoreceptor having a charge generation layer and a charge transport layer, minute depressions are formed on the surface of the charge generation layer by irradiating laser light within the range to which the charge generation layer is sensitive. and then laminating a charge transport layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13329384A JPS6113250A (en) | 1984-06-29 | 1984-06-29 | Manufacture of electrophotographic sensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13329384A JPS6113250A (en) | 1984-06-29 | 1984-06-29 | Manufacture of electrophotographic sensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6113250A true JPS6113250A (en) | 1986-01-21 |
Family
ID=15101265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13329384A Pending JPS6113250A (en) | 1984-06-29 | 1984-06-29 | Manufacture of electrophotographic sensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6113250A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5002845A (en) * | 1987-09-21 | 1991-03-26 | Seiko Epson Corporation | Electrophotographic image forming member and method and apparatus for transferring electrophotographic images formed on the member |
-
1984
- 1984-06-29 JP JP13329384A patent/JPS6113250A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5002845A (en) * | 1987-09-21 | 1991-03-26 | Seiko Epson Corporation | Electrophotographic image forming member and method and apparatus for transferring electrophotographic images formed on the member |
US5112710A (en) * | 1987-09-21 | 1992-05-12 | Seiko Epson Corporation | Electrophotographic image forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4618552A (en) | Light receiving member for electrophotography having roughened intermediate layer | |
US4904557A (en) | Electrophotographic photosensitive member having a roughened surface | |
US4675262A (en) | Multilayer electrophotographic photosensitive element having charge transport layer containing powdered material having specified refractive index | |
JPS60225854A (en) | Substrate of light receiving member and light receiving member | |
JPH0211137B2 (en) | ||
JPH0211135B2 (en) | ||
US5166023A (en) | Electrophotographic photoreceptor and related method | |
US5310612A (en) | Image-holding member and production method thereof, method for forming image-forming master using the image-holding member and the forming apparatus, and image-forming method using them | |
JPS58100138A (en) | Electrophotographic receptor | |
JPS6113250A (en) | Manufacture of electrophotographic sensitive body | |
JP3845226B2 (en) | Electrophotographic photoreceptor and image forming method | |
JPS5882249A (en) | Electrophotographic receptor for laser printer | |
JPH0682223B2 (en) | Electrophotographic photoreceptor | |
US5162182A (en) | Photosensitive member for electrophotography with interference control layer | |
JPS6118963A (en) | Electrophotographic sensitive body | |
JPS62186270A (en) | Electrophotographic sensitive body having conductive base body subjected to surface roughening | |
JPH0282263A (en) | Electrophotographic sensitive body | |
JPS60186850A (en) | Electrophotographic photoreceptor and its manufacturing method | |
JPS60256153A (en) | Electrophotographic sensitive body | |
JPS6198359A (en) | Photoreceptor | |
JPS60172047A (en) | Photoreceptor and process for forming its picture image | |
JPS63204280A (en) | Image forming method | |
JPS63113459A (en) | Electrophotographic sensitive body having fine particle which can prevent interference | |
JPS62299857A (en) | Electrophotographic sensitive body | |
JPH0547101B2 (en) |