JPS61132297A - Production of melt type flux for submerged arc welding - Google Patents

Production of melt type flux for submerged arc welding

Info

Publication number
JPS61132297A
JPS61132297A JP25169784A JP25169784A JPS61132297A JP S61132297 A JPS61132297 A JP S61132297A JP 25169784 A JP25169784 A JP 25169784A JP 25169784 A JP25169784 A JP 25169784A JP S61132297 A JPS61132297 A JP S61132297A
Authority
JP
Japan
Prior art keywords
flux
raw material
arc welding
submerged arc
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25169784A
Other languages
Japanese (ja)
Inventor
Isao Sugioka
杉岡 勲
Masami Yamaguchi
山口 将美
Osami Shimoyama
下山 修身
Hajime Motosugi
本杉 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25169784A priority Critical patent/JPS61132297A/en
Publication of JPS61132297A publication Critical patent/JPS61132297A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To incorporate a low melting point metal element stably with high yield without segregation by melting first the raw material removing a low melting point metal or the chemical compound and by adding the low melting point metal or the compound prior to the cooling solidification of this melted raw material. CONSTITUTION:A melting first started with other compound raw materials only excluding Pb or Bi raw material, which is added afterwards in the production of the melt type flux for submerged arc welding. Pb or Bi is thus contained stably with high yield without segregation in the flux for submerged arc welding and the production cost of the flux is reduced and the quality is elevated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、潜弧溶接用溶融型フラックスに、低融点金属
元素を偏析なく、かつ高歩留まりに安定して含有させる
製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a manufacturing method for stably containing a low melting point metal element without segregation and at a high yield in a molten flux for submerged arc welding. .

(従来の技術) 従来より、低融点金属元素であるpbあるいはBiを含
有する潜弧溶接用溶融型フラックスが多く提案されてい
る。1−かじ、その製造方法には各種の問題があった。
(Prior Art) Conventionally, many melting type fluxes for submerged arc welding containing PB or Bi, which are low melting point metal elements, have been proposed. 1- There were various problems with the manufacturing method.

たとえば、特公昭59−9275号公報において、酸化
鉛を含む材料を溶融型フラックスに機械的に混合して成
る潜弧溶接用溶融型フラックスが提案されている。
For example, Japanese Patent Publication No. 59-9275 proposes a molten flux for submerged arc welding, which is made by mechanically mixing a material containing lead oxide with a molten flux.

しかしこのフラックスでは、溶融型フラックスの大きな
特長である成分の均一性が、PbO含有原料を機械的に
混合することにより損なわれ、偏析が生じるという欠点
がある。なお、この提案では、低融点金属Pbの化合物
である鉛ガラスをフラックス原料中に添加配合し、溶解
によ5pbを含有させようとする溶融型フラックスの製
造方法では、その歩留まりが悪いことを指摘している。
However, this flux has the drawback that the uniformity of its components, which is a major feature of molten flux, is impaired by mechanically mixing the PbO-containing raw materials, resulting in segregation. In addition, this proposal points out that the production method of molten flux, which involves adding lead glass, which is a compound of the low melting point metal Pb, to the flux raw material and incorporating 5 PB by melting has a poor yield. are doing.

また、特開昭56−141992号公報では、pbある
いはBiを微量(0,2wi%以下)含有した潜弧溶接
用溶融型フラックスが提案され、その製造方法に関して
は、次のごとく示されている。
Furthermore, JP-A-56-141992 proposes a melting type flux for submerged arc welding containing a trace amount (0.2wi% or less) of PB or Bi, and the manufacturing method thereof is shown as follows. .

すなわち、一般に全原料を均一に混合し、溶融ルツボに
少量ずつ入れながら溶製すれば、pboやBi2O5の
フラソクヌ内における偏析が少ないとしている。
That is, generally speaking, if all the raw materials are uniformly mixed and melted while being poured into a melting crucible little by little, the segregation of pbo and Bi2O5 in the flask is reduced.

しかし、この製造方法によっても、PbあるいはBiの
歩留まりは低く、フラックス中含有量に対し、高価な原
料であるpbあるいはBi原料の使用量が多くなるため
、製造コストが非常に高くなるという問題がある。また
、歩留まりが悪いため、製造したフラックスごとに含有
量のバラツキが大きく、このような成分を微量含有する
フラックスを、安定して製造することは非常に困難であ
った。
However, even with this production method, the yield of Pb or Bi is low, and the amount of expensive Pb or Bi raw materials used is large relative to the content in the flux, resulting in a very high production cost. be. Furthermore, due to the poor yield, the content varies widely among produced fluxes, and it has been extremely difficult to stably produce fluxes containing trace amounts of such components.

すなわち、従来は低融点金属元素であるpbあるいはB
iを、フラックス中に偏析なくかつ高歩留まりに安定し
て含有させる方法として満足できるものはなかった。
That is, conventionally, pb or B, which is a low melting point metal element,
There has been no satisfactory method for stably containing i in flux without segregation and at a high yield.

(発明が解決しようとする問題点) 本発明は、上記従来技術の問題点を解決するもので、そ
の目的とするところは、低融点金属元素を偏析なく、か
つ高歩留まりに安定して含有できる潜弧溶接用溶融型フ
ラックスの製造方法を提供することにある。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the prior art, and its purpose is to stably contain low melting point metal elements without segregation and at a high yield. An object of the present invention is to provide a method for producing a molten flux for submerged arc welding.

(問題点を解決するだめの手段) 本発明の要旨とするところは、低融点金属元素であるp
bあるいはBiの一種以上を含有する潜弧溶接用溶融型
フラックスの製造法において、低融点金属またはその化
合物を除いた原料を先に溶融し、この溶融原料を冷却固
化する前に低融点金属またはその化合物を、この溶融原
料に添加することを特徴とする潜弧溶接用溶融型フラッ
クスの製造方法にある。
(Another means to solve the problem) The gist of the present invention is that p, which is a low melting point metal element,
In a method for producing a molten flux for submerged arc welding containing one or more of B or Bi, the raw material excluding the low melting point metal or its compound is first melted, and before the molten raw material is cooled and solidified, the low melting point metal or The present invention provides a method for producing a molten flux for submerged arc welding, which comprises adding the compound to the molten raw material.

本発明者らは、フラックス中にPbあるいはBiを偏析
なくかつ歩留まり良く含有させるか詳細に検討した。そ
の結果、偏析のない均一な組成とするために溶融型とす
ることが良く、その製造過程において、還元剤添加の場
合は還元剤の反応がかな勺進行した後に、Pbあるいは
Bi原料を溶融せしめ、還元剤無添加または少量の添加
の場合には、PbあるいはBi原料の溶融時間を短かく
することで、PbあるいはBiの歩留まりを大幅に向上
せしめ、しかも組成が安定したフラックスを得ることが
可能となり、従来法の問題点を解決したものである。
The present inventors investigated in detail whether Pb or Bi can be contained in flux without segregation and with good yield. As a result, in order to obtain a uniform composition without segregation, it is better to use a molten type, and in the case of adding a reducing agent during the manufacturing process, the Pb or Bi raw material is melted after the reaction of the reducing agent has progressed rapidly. If no reducing agent is added or a small amount is added, by shortening the melting time of the Pb or Bi raw material, it is possible to significantly improve the yield of Pb or Bi and to obtain a flux with a stable composition. This solves the problems of the conventional method.

(作 用) 以下に本発明を作用と共に詳細に説明する。(for production) The present invention will be explained in detail below along with its operation.

本発明の特徴とするところは、低融点金属元素であるp
bあるいはBiを含有する潜弧溶接用洛南型フラックス
の製造において、PbあるいはBi原料を除いた他の配
合原料のみで先に溶融を開始し、pbあるいはBi原料
は後から添加することKある。
The feature of the present invention is that p is a low melting point metal element.
In the production of Rakunan type flux for submerged arc welding containing B or Bi, it is sometimes possible to start melting only with other blended raw materials excluding the Pb or Bi raw materials, and then add the Pb or Bi raw materials later. .

pbあるいはBi原料を他原料と混合し、同時に溶融す
る従来の製造方法では、pbあるいはBiが容易に還元
され、金属粒となって炉底に沈澱したり、蒸発してフラ
ックス中に含有されKくくなる。特に、F e −M 
n、グラファイト等の還元剤と共存した場合は、この現
象が著しく、フラックス中にはほとんど含有されないこ
ともある。
In the conventional production method in which PB or Bi raw materials are mixed with other raw materials and melted at the same time, PB or Bi is easily reduced and becomes metal particles that settle at the bottom of the furnace, or evaporates and becomes K contained in the flux. It gets harder. In particular, F e -M
When coexisting with a reducing agent such as n or graphite, this phenomenon is so pronounced that it may be hardly contained in the flux.

そこで、還元剤は、その添加風の多少によって異なるが
、pbあるいはBi原料が溶融される前に、反応が進行
していなくては本発明の効果が得にくい。
Therefore, the effect of the present invention is difficult to obtain unless the reaction proceeds before the PB or Bi raw material is melted, although the reducing agent differs depending on the degree of addition of the reducing agent.

また、通常の溶融型フラックス製造に用いる電気溶解炉
のカーボン電極や、カーボンライニングとの反応によっ
ても、pbあるいはBiは還元され沈澱あるいは蒸発す
る。この場合、pbあるいはBi原料を溶融している時
間が長い程、その歩留まりは低下する。よって、pbあ
るいはBi原料の添加時期は、他原料が完全に溶融した
状態で通電も終了し、冷却固化するため溶解炉または取
鍋から注ぎ出す直前が最も効果的である。
In addition, PB or Bi is reduced and precipitated or evaporated by reaction with the carbon electrode or carbon lining of an electric melting furnace used in ordinary melting type flux production. In this case, the longer the time that the Pb or Bi raw material is melted, the lower the yield. Therefore, the most effective time to add the PB or Bi raw material is immediately before pouring it out of the melting furnace or ladle because the other raw materials are completely melted, the energization is finished, and the raw materials are cooled and solidified.

しかしながら還元剤添加の有無のほか、溶解量、溶解電
流、溶解電圧等により若干具なるが、90分間程度の溶
解時間が必要な場合、冷却固化せしめる前の30分程度
以内に、pbあるいはBi原料を先に溶融している原料
に添加すれば、本発明の効果が損われることはない。し
たがって本発明の溶融原料への低融点金属またはその化
合物の添加時期についての構成要件である冷却固化の前
とは、冷却固(ヒせしめる30分前から直前までを指す
However, if a dissolution time of about 90 minutes is required, depending on whether or not a reducing agent is added, as well as the amount of dissolution, dissolution current, dissolution voltage, etc., the Pb or Bi raw material may be If it is added to the melted raw material first, the effects of the present invention will not be impaired. Therefore, the term "before cooling and solidification," which is a component of the timing of adding the low-melting point metal or its compound to the molten raw material of the present invention, refers to the period from 30 minutes before to just before cooling and solidification.

なお、微粒なpbあるいはBi原料を使用する場合、粉
塵として逸散することによる歩留まり低下を防止するた
め、pbあるいはBi原料を少量の他原料や、すでに製
造されたフラックスと混合したり、水あるいは水ガラス
等で吸湿または造粒して、溶融原料に添加することで、
より一層本発明の効果が現われる。
In addition, when using fine-grained PB or Bi raw materials, in order to prevent a decrease in yield due to dissipation as dust, the PB or Bi raw materials may be mixed with a small amount of other raw materials or already manufactured flux, or mixed with water or By absorbing moisture or granulating it with water glass etc. and adding it to the molten raw material,
The effects of the present invention are even more apparent.

(実施例) 以下に本発明を実施例によシさらに詳細に説明する。(Example) The present invention will be explained in more detail below using examples.

第1表の記号F1および記号F2で示す2種類の配合原
料を用いて、本発明および従来方法によるPbあるいは
Bi原料の添加方法で製造したフラックスに含有される
pbあるいはBiを、この成分特有の溶接作業性向上に
効果が認められるそれぞれ0.05 wt%とするため
に、必要なpbあるいはBi原料の添加量を調べた。
Using the two types of blended raw materials indicated by symbol F1 and symbol F2 in Table 1, the Pb or Bi contained in the flux produced by the Pb or Bi raw material addition method according to the present invention and the conventional method is The necessary amount of PB or Bi raw materials to be added was investigated in order to set the content to 0.05 wt%, which is effective in improving welding workability.

ここで記号F1には還元剤を添加せず、記号F2には配
合原料に対し、2 wt%の還元剤(グラファイト)を
添加したものである。
Here, in symbol F1, no reducing agent was added, and in symbol F2, 2 wt% of the reducing agent (graphite) was added to the blended raw materials.

PbあるいはBi原料の添加方法は、第2表に示すとお
り、J己号P1および記号P2が本発明による製造方法
である。pbあるいはB工原料を除く他の原料のみを、
まず均一に混合し溶融を開始し、pbあるいはBi原料
の添加は、記号P1では冷却固化させる1分前に、記号
P2では製造するものと同組成のすでに製造された溶融
型フラックスと混合して、冷却固化させる15分前に、
それぞれ炉内の溶融している原料上に投入した。記号P
6は従来の方法によるもので、pbあるいはBi原料を
含む全ての原料を均一に混合して溶融したものである。
As shown in Table 2, the method of adding the Pb or Bi raw material is the production method according to the present invention, indicated by P1 and P2. Only other raw materials except PB or B raw materials,
First, the Pb or Bi raw materials are mixed uniformly and melted, and the Pb or Bi raw materials are added one minute before cooling and solidifying in symbol P1, and in symbol P2, they are mixed with the already produced molten flux of the same composition as the one to be produced. , 15 minutes before cooling and solidifying.
Each was placed on top of the molten raw material in the furnace. Symbol P
No. 6 is a conventional method in which all raw materials including Pb or Bi raw materials are uniformly mixed and melted.

なお、これらの溶解時間は8゜分間であり、冷却固化す
る方法は、流水中に溶融したフラックスを注ぎ込む水砕
法とした。
The dissolution time was 8 minutes, and the cooling and solidification method was a water pulverization method in which the molten flux was poured into running water.

このようにして製造した各フラックスのpbあるいはB
i含有量を定量分析し、原料として配合した量との比較
を第6表に示す。この結果によれば、記号F1組成では
本発明忙よるフラックスの場合、従来方法に比べPbあ
るいはBi原料の使用量が1/20で済む。また、記号
F2組成では還元剤を添加しているため、本発明におい
ても記号F1組成フラッグスよシ、若干多(pbあるい
はBi原料を使用するものの、従来方法では本発明によ
るフラックスに比べ、25倍もの原料を使用しても、フ
ラックス中への含有量は、目標とすル0.05.wt%
の30%にも満たない。
PB or B of each flux produced in this way
Table 6 shows a quantitative analysis of the i content and a comparison with the amount blended as raw materials. According to this result, in the case of the flux according to the present invention with the symbol F1 composition, the amount of Pb or Bi raw material used can be reduced to 1/20 compared to the conventional method. In addition, since a reducing agent is added to the F2 composition, the present invention also uses slightly more (PB or Bi) raw material than the F1 composition flag, but the conventional method uses 25 times more flux than the flux according to the present invention. Even if raw materials are used, the target content in the flux is 0.05 wt%.
less than 30% of

よって本発明の製造方法によるフラックスは、高価原料
の成分であるpbあるいはBiの歩留まりが非常に高く
、原料コストの大幅な低減が可能となシ、従来の製造方
法によるフラックスよシ安価に提供できる。また、溶融
型であるため、pbあるいはBiの偏近も全く問題がな
い。
Therefore, the flux produced by the production method of the present invention has a very high yield of PB or Bi, which are components of expensive raw materials, and can be provided at a lower cost than flux produced by the conventional production method, making it possible to significantly reduce raw material costs. . Furthermore, since it is a molten type, there is no problem with the polarization of Pb or Bi.

なお、実施例でpb原料は、鉛ガラス(pb換算で41
 wt%)を、Bi原料には酸化ビスマス(Bi換算で
89 wt%)を使用したが、酸化物のほか金属単体、
弗化物その細化合物のいずれにおいても、本発明による
製造方法において効果は5忍められた。
In the examples, the PB raw material was lead glass (41
Bismuth oxide (89 wt% in terms of Bi) was used as the Bi raw material, but in addition to oxides, single metals,
In both fluoride and fine compounds, the production method according to the present invention had an effect of 5%.

第1表 (wt、  %) 畳還元剤(グラファイト)を配合原料の2 wt%混合
して溶解 第  2  表 第3表 (発明の効果) 本発明は、潜弧溶接用フラックスに、pbあるいはBi
を高歩留まシで、かつ偏析なく安定して含有させること
を可能としたもので、フラックスの製造コスト低減およ
び品質向上に大きな効果があシ、その工業的価値は極め
て高い。
Table 1 (wt, %) Tatami reducing agent (graphite) is mixed and dissolved at 2 wt% of the blended raw materials Table 2 Table 3 (Effects of the invention) The present invention adds PB or Bi
It is possible to stably contain flux at a high yield and without segregation, and it has a great effect on reducing manufacturing costs and improving quality of flux, and its industrial value is extremely high.

手続補正書(自発) 昭和60年1月17日 特許庁長官  志 賀  学 殿 ■、事件の表示 昭和59年特許願第251697号λ
発明の名称  潜弧溶接用溶融型フラックスの製造方法
3補正をする者 事件との関係 特許出願人生 所  
東京都千代田区大手町2丁目6番3号名 称  (66
5)  新日本製鐵株式會社代表者  武 1) 豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5補正命
令の日付 昭和  年  月  日(発送日)6補正に
より増加する発明の数 特許請求の範囲 低融点金属元素であるゐおよびBiの一種以上を含有す
る潜弧溶接用溶融型フラックスの製造法において、低融
点金属またはその化合物を除いた原料を%に溶融し、こ
の溶融原料を冷却固化する前に、低融点金属またはその
化合物をこの溶融原料に添加することを特徴とする潜弧
溶接用溶融型フラックスの製造方法。
Procedural amendment (voluntary) January 17, 1985 Mr. Manabu Shiga, Commissioner of the Patent Office■, Indication of case Patent Application No. 251697 λ of 1985
Title of the invention Process for producing molten flux for submerged arc welding 3 Person making the amendment Relationship to the case Patent applicant Place
2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (66)
5) Representative Takeshi of Nippon Steel Corporation 1) Toyota 4th generation Osamu Address 3-3-3-3 Nihonbashi, Chuo-ku, Tokyo Date of amendment order Showa year Month/day (shipment date) 6. Inventions increased by amendment Number of Claims A method for producing a melting type flux for submerged arc welding containing one or more of the low melting point metal elements I and Bi, in which a raw material excluding the low melting point metal or its compound is melted to %. A method for producing a molten flux for submerged arc welding, which comprises adding a low melting point metal or a compound thereof to the molten raw material before cooling and solidifying the molten raw material.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 低融点金属元素であるpbおよびBiの一種以上を含有
する潜弧溶接用溶融型フラックスの製造法において、低
融点金属またはその化合物を除いた原料を溶融し、この
溶融原料を冷却固化する前に、低融点金属またはその化
合物を添加することを特徴とする潜弧溶接用溶融型フラ
ックスの製造方法。
In a method for producing a melting type flux for submerged arc welding containing one or more of the low melting point metal elements PB and Bi, a raw material excluding the low melting point metal or its compound is melted, and before this molten raw material is cooled and solidified. , a method for producing a melting type flux for submerged arc welding, characterized by adding a low melting point metal or a compound thereof.
JP25169784A 1984-11-30 1984-11-30 Production of melt type flux for submerged arc welding Pending JPS61132297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25169784A JPS61132297A (en) 1984-11-30 1984-11-30 Production of melt type flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25169784A JPS61132297A (en) 1984-11-30 1984-11-30 Production of melt type flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JPS61132297A true JPS61132297A (en) 1986-06-19

Family

ID=17226659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25169784A Pending JPS61132297A (en) 1984-11-30 1984-11-30 Production of melt type flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS61132297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939340A1 (en) * 2008-12-09 2010-06-11 Air Liquide FLOW AND WIRE FOR SUBMERGED ARC WELDING OF CRMOV STEELS.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741899A (en) * 1980-08-27 1982-03-09 Hanshin Yosetsu Kizai Kk Production of melt type flux for submerged arc welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741899A (en) * 1980-08-27 1982-03-09 Hanshin Yosetsu Kizai Kk Production of melt type flux for submerged arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939340A1 (en) * 2008-12-09 2010-06-11 Air Liquide FLOW AND WIRE FOR SUBMERGED ARC WELDING OF CRMOV STEELS.
WO2010066981A1 (en) * 2008-12-09 2010-06-17 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Flux and wire for submerged arc welding of crmov steels

Similar Documents

Publication Publication Date Title
KR102090548B1 (en) Solder alloy
JP2006281318A (en) LEAD-FREE SOLDER ALLOY COMPOSITION BASICALLY CONTAINING TIN (Sn), SILVER (Ag), COPPER (Cu) AND PHOSPHORUS (P)
JPS62501081A (en) Processing methods for refining metals and alloys
JPS61132297A (en) Production of melt type flux for submerged arc welding
US2435852A (en) Flux for use in arc welding
JP3142216B2 (en) Mold powder for continuous casting of steel
JPH05331572A (en) Copper-iron alloy
JP2000051998A (en) Method for continuously casting lead-containing steel
US5178827A (en) Copper alloys to be used as brazing filler metals
JPH08310877A (en) Brazing filler metal for ceramics
US1025426A (en) Article composed essentially of titanium and silver and method of producing the same.
US1024476A (en) Article composed essentially of titanium and silver and method of producing the same.
US1020512A (en) Zinc and method of purifying and improving the same.
JPS5850172A (en) Melt casting method for copper alloy
JP2835795B2 (en) Cool storage material and its manufacturing method
US2059556A (en) Copper-base alloys
US1020516A (en) Article composed essentially of titanium and lead and method of producing the same.
KR20020024064A (en) Synthetic sodium calcium silicate composite for mold flux and mold flux manufactured therefrom
US572092A (en) Ernest attguste georges
US1203991A (en) Alloy.
JPH0676625B2 (en) Method for producing Sn-Ti alloy
JP2862677B2 (en) Copper alloy melting and casting methods
JPH1112666A (en) Method for removing impurity element in molten copper or copper alloy and refining agent
JPH03151192A (en) Flux composition for brazing al material
DE418088C (en) Thermal reduction of metal compounds