JPS6113209B2 - - Google Patents

Info

Publication number
JPS6113209B2
JPS6113209B2 JP50039469A JP3946975A JPS6113209B2 JP S6113209 B2 JPS6113209 B2 JP S6113209B2 JP 50039469 A JP50039469 A JP 50039469A JP 3946975 A JP3946975 A JP 3946975A JP S6113209 B2 JPS6113209 B2 JP S6113209B2
Authority
JP
Japan
Prior art keywords
liquid crystal
glass
crystal cell
glass paste
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50039469A
Other languages
Japanese (ja)
Other versions
JPS51114144A (en
Inventor
Kozo Yano
Keiichiro Shimizu
Hiroshi Kuwagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3946975A priority Critical patent/JPS51114144A/en
Publication of JPS51114144A publication Critical patent/JPS51114144A/en
Publication of JPS6113209B2 publication Critical patent/JPS6113209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 本発明はハーメチツクシールにより、液晶セル
を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining a liquid crystal cell by hermetic sealing.

液晶表示素子の液晶層保持構造物(以下液晶セ
ルと称する)の製法は一般に次のごとく実施され
ている。
A method for manufacturing a liquid crystal layer holding structure (hereinafter referred to as a liquid crystal cell) of a liquid crystal display element is generally carried out as follows.

酸化インジウムあるいは酸化錫の薄膜を蒸着あ
るいはスプレイ法にて、平滑なる第1のガラス基
板上に透明導電膜を形成し、該薄膜を任意のパタ
ーンにエツチングし透明電極を得る。
A transparent conductive film is formed on a smooth first glass substrate by vapor deposition or spraying of a thin film of indium oxide or tin oxide, and the thin film is etched into an arbitrary pattern to obtain a transparent electrode.

さらに、反射型の場合にはアルミニウムあるい
はパラジウム等の金属薄膜、透過型の場合には先
に述べた透明導電膜をマスク蒸着あるいはエツチ
ングにより任意のパターンに平滑なる第2のガラ
ス基板上に形成し、対極を得る。
Furthermore, in the case of a reflective type, a metal thin film such as aluminum or palladium, and in the case of a transmissive type, a transparent conductive film as described above is formed in an arbitrary pattern on a smooth second glass substrate by mask vapor deposition or etching. , we get the opposite.

以上のごとくにして得た2枚のガラス基板を
種々の処理を行つた後、エポキシ系接着剤あるい
は低融点ガラスを用い、適当なる間隔(以下液晶
セル厚と称する)にて接着し、液晶セルを得る。
After performing various treatments on the two glass substrates obtained as described above, they are glued together at an appropriate distance (hereinafter referred to as liquid crystal cell thickness) using epoxy adhesive or low melting point glass to form a liquid crystal cell. get.

ここで、上述のごとくに得られた容器が液晶セ
ルとして具備しなければならない事柄を以下に述
べる。
Here, the matters that the container obtained as described above must have as a liquid crystal cell will be described below.

均一なる液晶セル厚: 液晶表示素子における消費電力そして応答特
性を決定する重要な因子である。
Uniform liquid crystal cell thickness: This is an important factor that determines the power consumption and response characteristics of liquid crystal display elements.

水分子の浸透を防止する事: 液晶物質に対する水分子の混入は液晶物質の
電導度の増加を惹起する。又、代表的液晶物質
であるシツフベース系混合液晶(式に一般式
を示す)のごときは 式に示すごとく水分子と平衡関係にあるため
混入してきた水分子を仲介として、液晶物質の
組成が変化し、液晶の転移温度等が変化すると
いう重大なる問題が発生する。ここで式にお
いて生成したパラアルキルアニリン、パラアル
コオキシベンゾアルデヒドも液晶物質の電導度
を増加させる因となり得る事を付記しておく。
Preventing the penetration of water molecules: The incorporation of water molecules into the liquid crystal material causes an increase in the conductivity of the liquid crystal material. In addition, for Schiff-based mixed liquid crystals (the general formula is shown in the formula), which is a typical liquid crystal material, As shown in the equation, since there is an equilibrium relationship with water molecules, the composition of the liquid crystal substance changes through the intermediary of the water molecules that have entered, causing a serious problem in that the transition temperature of the liquid crystal changes. It should be noted here that para-alkylaniline and para-alkoxybenzaldehyde generated in the formula can also be a cause of increasing the conductivity of the liquid crystal material.

液晶物質に対して化学的に安定である事 機械的強度 エポキシ系樹脂シールは上述の,,な
る条件を満たすものは容易に作成でき得るが、
の水分子の浸透を防止する事は本質的に不可
能であると考えられる。一方、低融点ガラスを
用いるハーメチツクシールは上述の条件,
,を満たす事は比較的容易であるが、の
条件である液晶セル厚の制御にはかなりの工夫
を有する。以下に従来行なわれてきた方法を示
す。
Chemically stable against liquid crystal materials Mechanical strength Epoxy resin seals that meet the above conditions can be easily produced.
It is considered that it is essentially impossible to prevent the penetration of water molecules. On the other hand, hermetic seals using low melting point glass meet the above conditions.
, is relatively easy to satisfy, but considerable effort is required to control the liquid crystal cell thickness, which is the condition for . The conventional methods are shown below.

〔方法 〕 低融点ガラスは2枚のガラス基を封着する温度
付近において、粘度がかなり高く封着に必要であ
る程度の加圧では横方向の伸びが少ない事を利用
して低融点ガラスをペースト化し、スクリーンに
よる印刷時の印刷厚にて制御する方法が行なわれ
ている。この方法は簡便であるが、低融点ガラス
を用いた封着において、充分なる加圧を行なわな
ければ良好なるシールの収率が期待できない事、
スクリーン印刷厚は低融点ガラスペーストの粘度
に大きく依存し、その粘度は印刷作業時に刻々と
変化する事という基本的な性質を有している為、
この方法による液晶セル厚の制御は大量生産にお
いてはかなり工夫を必要とする。
[Method] Low melting point glass is pasted by taking advantage of the fact that it has a fairly high viscosity near the temperature at which two glass substrates are sealed, and there is little lateral elongation when the pressure is applied to the extent necessary for sealing. A method of controlling the printing thickness using a screen is being used. Although this method is simple, a good sealing yield cannot be expected unless sufficient pressure is applied when sealing with low-melting point glass.
The screen printing thickness largely depends on the viscosity of the low-melting point glass paste, which has a basic property of constantly changing during the printing process.
Controlling the liquid crystal cell thickness using this method requires considerable effort in mass production.

〔方法 〕 容易に結晶化する低融点ガラス(一度結晶化し
たガラスはその温度付近で軟化しないという性質
がある)をガラス基板上にスクリーン印刷し柱状
のスペーサを形成する。次にこのスペーサを含め
たガラス基板上にガラスペーストを枠状にスクリ
ーン印刷し、2枚のガラス板を合わせて充分なる
加圧と加熱を行う事により両者を封着する。
[Method] A low-melting glass that crystallizes easily (once crystallized glass has a property that it does not soften near that temperature) is screen printed on a glass substrate to form columnar spacers. Next, glass paste is screen printed in a frame shape on the glass substrate including the spacer, and the two glass plates are brought together and sealed together by applying sufficient pressure and heat.

このようにして所望のセル厚を得る方法であ
る。尚この時ガラスペーストは、上記低融点ガラ
スよりやや融点の低いものを用いる。
This is the method for obtaining the desired cell thickness. At this time, the glass paste used has a slightly lower melting point than the above-mentioned low melting point glass.

この方法は先に述べた方法に比し、かなり正
確に制御が可能であるが、製造工程が煩雑になる
という欠点を有する。
Although this method allows for much more accurate control than the previously described method, it has the disadvantage that the manufacturing process is complicated.

本発明はかかる欠点を除去するものであり、ハ
ーメチツクシールにおける簡便なる液晶セル厚の
制御法を与えるものである。
The present invention eliminates these drawbacks and provides a simple method for controlling the thickness of a liquid crystal cell in a hermetic seal.

本発明は方法における結晶化ガラスの柱のか
わりに、均一線径のガラスフアイバーより多数の
ガラスフアイバー粒体を粉砕形成し、元のガラス
フアイバー線径の均一性を利用してこれをスペー
サとして用いること及びガラスペーストの熱膨張
係数に近似した熱膨張係数を有するガラスフアイ
バーを選定することにより加圧加熱操作での熱的
変化が大きい場合でもガラスペーストとスペーサ
間の熱応力の発生を抑制してハーメチツクシール
の接着力を強固に維持しかつ電極板での歪の発生
等を解消した品質及び動作特性の良好な液晶表示
セルを作製する技術を提供することを目的とす
る。
In place of the pillars of crystallized glass in the method, the present invention crushes and forms a large number of glass fiber particles from glass fibers with a uniform wire diameter, and utilizes the uniformity of the original glass fiber wire diameter to use this as a spacer. In addition, by selecting a glass fiber with a thermal expansion coefficient close to that of the glass paste, the generation of thermal stress between the glass paste and the spacer can be suppressed even when there is a large thermal change during the pressurization and heating operation. The object of the present invention is to provide a technology for manufacturing a liquid crystal display cell with good quality and operating characteristics, which maintains strong adhesive force of a hermetic seal and eliminates the occurrence of distortion in electrode plates.

以下、実施例を述べ、詳細に説明する。 Examples will be described below and explained in detail.

市販の低融点ガラスペースト#5816―73(米国
デユポン社製)あるいは#4017C(米国ESL社
製)、ガラス101(米国EMCA社製)100部に対
し、径9μmガラスフアイバー(日東紡社製)を
乳鉢で粒状の小片に粉砕したものを1部加えよく
かき混ぜる。
A glass fiber with a diameter of 9 μm (manufactured by Nittobo) was added to 100 parts of commercially available low melting point glass paste #5816-73 (manufactured by DuPont, USA) or #4017C (manufactured by ESL, USA) or glass 101 (manufactured by EMCA, USA). Add 1 part of the mixture crushed into small pieces in a mortar and stir well.

前述のごとく調整したガラスペーストをLS―
20型印刷機(ニユーロング社製)を用いて10mm×
10mmの大きさのガラス基板の周辺部に0.5mm幅に
スクリーン印刷し、2枚のガラス基板をはり合わ
せ、1セルあたり100gの加重をかけ、400〜550
℃程度に加熱焼成を行なつた。
LS-
10mm× using a 20-inch printing machine (manufactured by New Long Co., Ltd.)
Screen printing is performed on the periphery of a 10 mm glass substrate to a width of 0.5 mm, the two glass substrates are glued together, and a load of 100 g is applied to each cell.
Firing was carried out at a temperature of about °C.

以上の方法で得られた液晶セルのセル厚は9μ
m〜10μmとなり所望のセル厚の液晶セルが収率
よく得られた。
The cell thickness of the liquid crystal cell obtained by the above method is 9μ
A liquid crystal cell having a desired cell thickness of 10 μm to 10 μm was obtained in good yield.

上述したごとく本発明により低融点ガラス中に
混入させるガラスフアイバーの粒体の粒径を選定
することにより任意の液晶セル厚を収率よく得る
ことが可能となつた。
As described above, according to the present invention, by selecting the particle size of the glass fiber particles mixed into the low melting point glass, it has become possible to obtain a desired liquid crystal cell thickness with good yield.

尚本発明に於いてガラスペースト中に混入させ
る小片の材料を粒体状に粉砕されたガラスフアイ
バーとしているが、これ等はガラスペーストを構
成するガラスフリツトと熱膨張係数がよく似てい
る材料を選定し、上記実施例の如き高圧力でかつ
高温で処理される場合であつてもガラスペースト
とスペーサの間の膨張係数の差に起因する応力の
発生を抑制する。即ち本発明ではガラスペースト
中にこれと熱膨張係数がよく似た耐熱物質材料の
小片を混入し、このガラスペーストで2枚のガラ
ス板を封着することにより封着部の熱的安定性、
接着強度を得るとともにガラス板の歪の発生を抑
制し、信頼性、表示動作特性が高くかつセル寿命
の長い液晶セルを確立したものである。
In the present invention, the small pieces of material to be mixed into the glass paste are glass fibers crushed into granules, but these are selected from materials whose thermal expansion coefficient is very similar to that of the glass frit constituting the glass paste. However, even when the process is performed under high pressure and high temperature as in the above embodiments, the generation of stress caused by the difference in expansion coefficient between the glass paste and the spacer is suppressed. That is, in the present invention, by mixing small pieces of a heat-resistant material with a similar coefficient of thermal expansion into the glass paste and sealing two glass plates with this glass paste, the thermal stability of the sealed part is improved.
This has established a liquid crystal cell that has high adhesive strength, suppresses the occurrence of distortion in the glass plate, and has high reliability, display operation characteristics, and a long cell life.

これは以下のような理由による。即ちガラス板
を封着するにあたつて400〜500℃の温度をかけて
加熱するが、もしペースト中に熱膨張係数の異な
る異物が混入していると、冷却過程でガラス板の
破損を招きやすいが、本発明方法ではこのような
ことがなく、製造の歩留りが高い。また熱膨張係
数の異なる小片を混入したペーストで封止したも
のは、機械的及び熱的シヨツクに弱いが、本発明
に依るものはこの点でも優れている。
This is due to the following reasons. In other words, when sealing glass plates, they are heated to a temperature of 400 to 500°C, but if the paste contains foreign matter with a different coefficient of thermal expansion, the glass plates may break during the cooling process. However, with the method of the present invention, this does not occur and the manufacturing yield is high. Furthermore, a seal made with a paste mixed with small pieces having different coefficients of thermal expansion is vulnerable to mechanical and thermal shock, but the seal according to the present invention is excellent in this respect as well.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラスペーストを主成分とする接着剤を介し
て2枚の電極板を貼着しかつ液晶を封入するため
の一定間隙を形成することによりセルを作製する
液晶セルの製造方法に於いて、前記一定間隙に対
応して定められる一定線径を有しかつ前記ガラス
ペーストに近似した熱膨張係数を有するガラスフ
アイバーを切断してスペーサ群とし、該スペーサ
群を前記ガラスペーストに分散せしめることによ
り前記接着剤を構成するとともにスクリーン印刷
により前記電極板に被着し、加圧及び加熱操作を
介して前記2枚の電極板をハーメチツクシールす
ることを特徴とする液晶セルの製造方法。
1. In a method for manufacturing a liquid crystal cell in which a cell is manufactured by bonding two electrode plates via an adhesive mainly composed of glass paste and forming a certain gap for encapsulating liquid crystal, the method described above A glass fiber having a constant diameter determined corresponding to a constant gap and a coefficient of thermal expansion close to that of the glass paste is cut to form a spacer group, and the spacer group is dispersed in the glass paste to achieve the bonding. 1. A method of manufacturing a liquid crystal cell, comprising the steps of forming an agent, applying the agent to the electrode plate by screen printing, and hermetically sealing the two electrode plates by applying pressure and heating.
JP3946975A 1975-03-31 1975-03-31 Method of making a liquid crystol cell Granted JPS51114144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3946975A JPS51114144A (en) 1975-03-31 1975-03-31 Method of making a liquid crystol cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3946975A JPS51114144A (en) 1975-03-31 1975-03-31 Method of making a liquid crystol cell

Publications (2)

Publication Number Publication Date
JPS51114144A JPS51114144A (en) 1976-10-07
JPS6113209B2 true JPS6113209B2 (en) 1986-04-12

Family

ID=12553910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3946975A Granted JPS51114144A (en) 1975-03-31 1975-03-31 Method of making a liquid crystol cell

Country Status (1)

Country Link
JP (1) JPS51114144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116608U (en) * 1989-03-06 1990-09-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108944U (en) * 1977-02-03 1978-08-31

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032959A (en) * 1973-07-23 1975-03-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032959A (en) * 1973-07-23 1975-03-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116608U (en) * 1989-03-06 1990-09-18

Also Published As

Publication number Publication date
JPS51114144A (en) 1976-10-07

Similar Documents

Publication Publication Date Title
US3995941A (en) Liquid crystal cells
JP2957385B2 (en) Manufacturing method of ferroelectric liquid crystal device
JP2000241824A (en) Manufacture of liquid crystal display device
JPH08160405A (en) Display device and its production
US4626303A (en) Process for making electro-optic element
JPS6020724B2 (en) Manufacturing method of liquid crystal display element
EP0533928A1 (en) Process for producing liquid-crystal cells
JPS5947287B2 (en) Manufacturing method of twisted nematic liquid crystal display element
JPS6113209B2 (en)
JPH0483227A (en) Liquid crystal display element and its manufacture
JP2000155321A (en) Liquid crystal display element and its manufacture
JP2504111B2 (en) Liquid crystal panel manufacturing method
JP3452467B2 (en) Manufacturing method of liquid crystal display device
JPH06110063A (en) Color liquid crystal optical device and its production
JP2001264775A (en) Liquid crystal display device
JPH0766237B2 (en) Display panel manufacturing method
JP2829193B2 (en) Liquid crystal display device and method of manufacturing the same
JP3347341B2 (en) Liquid crystal display manufacturing method
JPH0980400A (en) Liquid crystal display device
JPH01177018A (en) Liquid crystal display element and production thereof
JPS60130719A (en) Liquid-crystal display body device
JPS5917807B2 (en) Manufacturing method of liquid crystal display element
JPH04118630A (en) Liquid crystal display panel
JPH0221566B2 (en)
JPS647645B2 (en)