JPS61131628A - Infrared ray remote control reception circuit - Google Patents

Infrared ray remote control reception circuit

Info

Publication number
JPS61131628A
JPS61131628A JP59253000A JP25300084A JPS61131628A JP S61131628 A JPS61131628 A JP S61131628A JP 59253000 A JP59253000 A JP 59253000A JP 25300084 A JP25300084 A JP 25300084A JP S61131628 A JPS61131628 A JP S61131628A
Authority
JP
Japan
Prior art keywords
infrared
remote control
frequency
amplifier circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253000A
Other languages
Japanese (ja)
Inventor
Hiromi Uenoyama
上野山 博巳
Kenji Otani
憲司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP59253000A priority Critical patent/JPS61131628A/en
Publication of JPS61131628A publication Critical patent/JPS61131628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Selective Calling Equipment (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To select and discriminate a control signal of the major mode in a single tuning system by providing a resonance element having a resonance characteristic to an infrared ray having >2 carrier frequencies. CONSTITUTION:A specific resonance characteristic with respect to carrier frequencies f1, f2 is set to the resonance element 12. When an infrared-ray transmission signal in a carrier frequency f1 is received by a photodetector 10, a photodetection current flows to the photodetector 10 and is fed to an amplifier circuit 4. Since the resonance element 12 has the resonance characteristic to the carrier frequency f1, the amplifier circuit 4 selects the signal in the frequency f1. When the infrared-ray signal in the carrier frequency f2 is received by the photodetector 10, the photodetection current flows similarly to the amplifier circuit 4. Since the resonance element 12 has the resonance characteristic also to the frequency f2, the signal of the frequency f2 is selected similarly by the amplifier circuit 4.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、2以上の搬送周波数を持つ送信赤外線を受
信可能にした赤外線リモートコントロール受信回路の同
調系統の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improvement in the tuning system of an infrared remote control receiving circuit that is capable of receiving transmitted infrared rays having two or more carrier frequencies.

従来の技術 一般に、赤外線リモートコントロール受信回路は、TV
受像機などのリモートコントロール対象機器に設置され
、たとえば、その同調チャンネル操作や音量調節などの
リモートコントロール操作に用いられる。
2. Description of the Related Art In general, infrared remote control receiving circuits are used for TV
It is installed in a remote control target device such as a television receiver, and is used for remote control operations such as tuning channel operation and volume adjustment.

すなわち、リモートコントロール用の赤外線は、赤外線
リモートコントロール受信回路の赤外線受光素子に向け
て送信されるが、赤外線リモートコントロール受信回路
において、赤外線受光素子で電気信号に変換された赤外
線信号は、高利得で同調増幅された後、検波される。こ
の検波出力は、波形整形した後、パルス状の出力信号に
変換され、たとえば、TV受像機の操作制御回路に加え
られ、チャンネル操作などの所望の操作が行われる。
In other words, infrared rays for remote control are transmitted toward the infrared receiving element of the infrared remote control receiving circuit, but in the infrared remote control receiving circuit, the infrared signal converted into an electrical signal by the infrared receiving element is transmitted with high gain. After being tuned amplified, it is detected. The detected output is waveform-shaped and then converted into a pulse-like output signal, which is applied to, for example, an operation control circuit of a TV receiver to perform desired operations such as channel operation.

従来、このような2以上の搬送周波数に対応する赤外線
リモートコントロール受信回路では、赤外線受光素子の
出力信号を同調増幅するための初段増幅部にインダクタ
とキャパシタからなる並列共振回路を同調回路に用いた
同調増幅回路が用いられ、周波数選択特性は、単一搬送
周波数に設定されている。
Conventionally, such infrared remote control receiving circuits that support two or more carrier frequencies have used a parallel resonant circuit consisting of an inductor and a capacitor in the first stage amplification section to tune and amplify the output signal of the infrared receiving element. A tuned amplifier circuit is used and the frequency selection characteristic is set to a single carrier frequency.

発明が解決しようとする問題点 このような赤外線リモートコントロール受信回路では、
2以上の搬送周波数を設定して複雑多岐に亘る操作モー
ドを設定した制御に対応させることが困難である。
Problems to be solved by the invention In such an infrared remote control receiving circuit,
It is difficult to support control in which two or more carrier frequencies are set and a wide variety of complex operation modes are set.

仮に、2以上の搬送周波数を設定した場合には、個々の
搬送周波数に対応する選択特性を持つ同調増幅回路を設
置しなければならず、同調系統が複雑化する。
If two or more carrier frequencies are set, a tuning amplifier circuit having selection characteristics corresponding to each carrier frequency must be installed, which complicates the tuning system.

そこで、この発明は、簡単な同調系統において、2以上
の搬送周波数に対する選択特性を得ようとするものであ
る。
Therefore, the present invention attempts to obtain selection characteristics for two or more carrier frequencies in a simple tuning system.

問題点を解決するための手段 すなわち、この発明は、送信された2以上の搬送周波数
の赤外線を受光する赤外線受光素子と、2以上の搬送周
波数に対応する周波数の共振特性を持つ共振素子が負荷
として設置され前記赤外線受光素子の受信信号をその搬
送周波数ごとに増幅して取り出す増幅回路とから構成し
たものである。
Means for Solving the Problems That is, the present invention provides an infrared receiving element that receives transmitted infrared rays of two or more carrier frequencies, and a resonant element that has resonance characteristics of frequencies corresponding to the two or more carrier frequencies. and an amplifier circuit that amplifies and extracts the received signal of the infrared light receiving element for each carrier frequency.

作用 したがって、この発明は、送信された2以上の搬送周波
数の赤外線の各搬送周波数に対して共振し、各搬送周波
数の赤外線信号を選択し、弁別している。
Accordingly, the present invention resonates with each carrier frequency of the transmitted infrared rays of two or more carrier frequencies, and selects and discriminates the infrared signals of each carrier frequency.

実施例 以下、この発明の実施例を図面を参照して詳細に説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の赤外線リモートコントロール受信回
路の実施例を示している。
FIG. 1 shows an embodiment of an infrared remote control receiving circuit according to the present invention.

第1図において、駆動電圧Vccが印加される電源端子
2と増幅回路4の入力端子6との間には、送信赤外線8
を受光する赤外線受光素子10が接続される。送信赤外
線8は、2以上の搬送周波数をパルス変調したものであ
り、図示していない送信機から赤外線受光素子10に向
けて送信される。
In FIG. 1, a transmitting infrared 8
An infrared light receiving element 10 that receives light is connected. The transmitted infrared rays 8 are obtained by pulse modulating two or more carrier frequencies, and are transmitted from a transmitter (not shown) toward the infrared light receiving element 10.

赤外線受光素子10には送信赤外線8の受光によって受
光電流が流れ、増幅回路4に加えられる。
Upon reception of the transmitted infrared rays 8, a light receiving current flows through the infrared light receiving element 10 and is applied to the amplifier circuit 4.

増幅回路4には、2以上の搬送周波数に対して共振特性
を持つ共振素子12が負荷として接続されている。共振
素子12は、たとえば、各搬送周波数に対応する固有の
共振周波数を設定したインダクタおよびキャパシタの並
列共振回路を複数個直列に接続して成る、たとえば、2
周波ピーク素子などで構成される。すなわち、共振素子
12のインピーダンスは、各搬送周波数に対応してピー
ク値を呈し、そのピーク値に応じた周波数選択出力が増
幅回路4から出力される。
A resonant element 12 having resonance characteristics for two or more carrier frequencies is connected to the amplifier circuit 4 as a load. The resonant element 12 is formed by connecting in series a plurality of parallel resonant circuits of inductors and capacitors each having a unique resonant frequency corresponding to each carrier frequency.
Consists of frequency peak elements, etc. That is, the impedance of the resonant element 12 exhibits a peak value corresponding to each carrier frequency, and the amplifier circuit 4 outputs a frequency selection output corresponding to the peak value.

この増幅回路4の出力信号は、リミッタおよびレベルシ
フト回路14に加えられ、その不要レベル部分がカプト
されるとともに、所定のレベルにレベル設定される。
The output signal of this amplifier circuit 4 is applied to a limiter and level shift circuit 14, where unnecessary level portions thereof are captured and the level is set to a predetermined level.

このリミッタおよびレベルシフト回路14の出力は、検
波回路16に加えられて検波される。この検波回路16
は、リミッタおよびレベルシフト回路14の出力信号の
ピーク値を検出するピーク値検出回路とそのピーク値を
保持するコンデンサからなるピーク・ホールド検波回路
で構成されている。
The output of this limiter and level shift circuit 14 is applied to a detection circuit 16 and detected. This detection circuit 16
is composed of a peak value detection circuit that detects the peak value of the output signal of the limiter and level shift circuit 14, and a peak hold detection circuit that includes a capacitor that holds the peak value.

この検波回路16の出力は、波形整形回路18に加えら
れ、波形整形された後、出力端子20から取り出される
The output of this detection circuit 16 is applied to a waveform shaping circuit 18, where the waveform is shaped, and then taken out from an output terminal 20.

このような構成において、共振素子12を第2図に示す
ように、搬送周波数f、 、f2に対して固有の共振特
性を設定する。この場合、共振特性の尖鋭度を高くし、
両共振周波数の選択特性を高めるため、搬送周波数r、
、r、と同一の共振周波数f1″、f、の関係をf、=
2f、にし、タトえば、f + =20Kflz、 f
 z =40KHzに設定する。
In such a configuration, as shown in FIG. 2, the resonance element 12 is set to have unique resonance characteristics for the carrier frequencies f, , f2. In this case, the sharpness of the resonance characteristic is increased,
In order to improve the selection characteristics of both resonance frequencies, the carrier frequency r,
, r, and the same resonant frequency f1″, f, are expressed as f,=
If it is 2f, then f + =20Kflz, f
Set z = 40KHz.

このように設定すれば、送信機から第3図のAに示すよ
うな搬送周波数f1の赤外線送信信号が受光素子10に
向けて送信されると、受光素子10にはその送信信号に
応じた受光電流が流れ、増幅回路4に加えられる。共振
素子12は、搬送周波数f1に対する共振特性を持って
いるので、増幅回路4で搬送周波数f1の信号が選択さ
れ、す・ミッタおよびレベルシフト回路14に加えられ
、所定の信号処理が施された後、検波回路16で検波さ
れ、波形整形回路18の波形整形を経て出力端子20か
ら取り出される。
With this setting, when the transmitter sends an infrared transmission signal with a carrier frequency f1 as shown in A in FIG. A current flows and is applied to the amplifier circuit 4. Since the resonant element 12 has resonance characteristics with respect to the carrier frequency f1, the signal of the carrier frequency f1 is selected by the amplifier circuit 4, applied to the transmitter and level shift circuit 14, and subjected to predetermined signal processing. Thereafter, the signal is detected by the detection circuit 16, subjected to waveform shaping by the waveform shaping circuit 18, and then taken out from the output terminal 20.

また、第3図のBは、送信機側で搬送周波数f。Further, B in FIG. 3 indicates the carrier frequency f on the transmitter side.

の送信信号を2分周して得られた赤外線送信信号を示す
。この赤外線送信信号が、受光素子10で受光され、そ
の受光電流が増幅回路4に加えられると、共振素子12
は、搬送周波数f2の共振特性を有するので、増幅回路
4で搬送周波数で2の信号が選択される。この増幅回路
4の出力は、リミッタおよびレベルシフト回路14に加
えられ、同様の処理を経て出力端子20から所望の信号
が取り出される。
This shows an infrared transmission signal obtained by dividing the transmission signal by two. When this infrared transmission signal is received by the light receiving element 10 and the received light current is applied to the amplifier circuit 4, the resonant element 12
has a resonance characteristic of the carrier frequency f2, so the amplifier circuit 4 selects a signal of 2 at the carrier frequency. The output of this amplifier circuit 4 is applied to a limiter and level shift circuit 14, and a desired signal is extracted from an output terminal 20 through similar processing.

この場合、搬送周波数f、 、f2がfz =2f+に
設定されているため、送信側では分周器を設置するのみ
で、異なる搬送周波数を設定することができる。したが
って、ある搬送周波数で複数(m)モードの制御信号を
送信できる送信機では、分周器の1または2以上の設置
して2mモードないし多数モードの制御信号を送信し、
これに対応して共振素子12に複数の共振周波数を設定
することにより、単一の同調系統で、しかも簡単な構成
により、多数モードの制御信号を選択し、弁別すること
が可能である。
In this case, since the carrier frequencies f, , f2 are set to fz =2f+, different carrier frequencies can be set on the transmitting side simply by installing a frequency divider. Therefore, in a transmitter that can transmit control signals in multiple (m) modes using a certain carrier frequency, one or more frequency dividers may be installed to transmit control signals in 2m mode or multiple mode.
By correspondingly setting a plurality of resonance frequencies in the resonance element 12, it is possible to select and discriminate control signals of multiple modes using a single tuning system and a simple configuration.

第4図はこの発明の赤外線リモートコントロール受信回
路の具体的な実施例を示し、第1図に示す実施例と同一
部分には同一符号を付しである。
FIG. 4 shows a specific embodiment of the infrared remote control receiving circuit of the present invention, and the same parts as in the embodiment shown in FIG. 1 are given the same reference numerals.

第4図において、増幅回路4はエミッタを設置したトラ
ンジスタ21で構成され、この増幅回路4の負荷として
設置された共振素子12は、搬送周波数f1に対′して
共振特性を持つインダクタ22aおよびキャパシタ24
aからなる並列共振回路と、搬送周波数「2に対して共
振特性を持つインダクタ22bおよびキャパシタ24b
からなる並列共振回路とから構成されている。
In FIG. 4, the amplifier circuit 4 is composed of a transistor 21 with an emitter installed, and the resonant element 12 installed as a load of the amplifier circuit 4 includes an inductor 22a and a capacitor that have resonance characteristics with respect to the carrier frequency f1. 24
a parallel resonant circuit consisting of an inductor 22b and a capacitor 24b that have resonance characteristics with respect to the carrier frequency "2".
It consists of a parallel resonant circuit consisting of:

共振素子12は、固有の共振周波数を持つ複数の並列共
振回路を直列に接続してなる単一素子あるいはこのよう
な並列共振回路を任意に設置した共振回路として構成し
てもよい。
The resonant element 12 may be configured as a single element formed by serially connecting a plurality of parallel resonant circuits each having a unique resonant frequency, or as a resonant circuit in which such parallel resonant circuits are arbitrarily installed.

このように構成すれば、各搬送周波数f、、fzを効率
よく選択し、弁別することができる。
With this configuration, each of the carrier frequencies f, , fz can be efficiently selected and discriminated.

発明の詳細 な説明したように、この発明によれば、単一の同調系統
で2以上の異なる搬送周波数の送信信号を弁別すること
ができ、多数のモードの制御信号を選択でき、リモート
コントロール対象機器の操作制御部の小型軽量化を図る
ことができる。
As described in detail, according to the present invention, a single tuning system can discriminate between transmission signals of two or more different carrier frequencies, and control signals of many modes can be selected. The operation control section of the device can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の赤外線リモートコントロール受信回
路の実施例を示すブロック図、第2図は共振素子の共振
特性を示す説明図、第3図は送信信号を示す説明図、第
4図はこの発明の赤外線リモートコントロール受信回路
の具体的な実施例を示す回路図である。 4・・・増幅回路、10・・・赤外線受光素子、12・
・・共振素子。
FIG. 1 is a block diagram showing an embodiment of the infrared remote control receiving circuit of the present invention, FIG. 2 is an explanatory diagram showing the resonance characteristics of a resonant element, FIG. 3 is an explanatory diagram showing a transmission signal, and FIG. FIG. 2 is a circuit diagram showing a specific embodiment of the infrared remote control receiving circuit of the invention. 4... Amplification circuit, 10... Infrared light receiving element, 12.
...Resonant element.

Claims (2)

【特許請求の範囲】[Claims] (1)送信された2以上の搬送周波数の赤外線を受光す
る赤外線受光素子と、2以上の搬送周波数に対応する周
波数の共振特性を持つ共振素子が負荷として設置され前
記赤外線受光素子の受信信号をその搬送周波数ごとに増
幅して取り出す増幅回路とから構成したことを特徴とす
る赤外線リモートコントロール受信回路。
(1) An infrared receiving element that receives transmitted infrared rays of two or more carrier frequencies, and a resonant element having resonance characteristics of frequencies corresponding to the two or more carrier frequencies are installed as loads and receive signals from the infrared receiving element. An infrared remote control receiving circuit comprising an amplifier circuit that amplifies and extracts each carrier frequency.
(2)前記共振素子は、インダクタおよびキャパシタの
並列共振回路を2以上直列に接続して構成したことを特
徴とする特許請求の範囲第1項に記載の赤外線リモート
コントロール受信回路。
(2) The infrared remote control receiving circuit according to claim 1, wherein the resonant element is constructed by connecting two or more parallel resonant circuits of an inductor and a capacitor in series.
JP59253000A 1984-11-30 1984-11-30 Infrared ray remote control reception circuit Pending JPS61131628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253000A JPS61131628A (en) 1984-11-30 1984-11-30 Infrared ray remote control reception circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253000A JPS61131628A (en) 1984-11-30 1984-11-30 Infrared ray remote control reception circuit

Publications (1)

Publication Number Publication Date
JPS61131628A true JPS61131628A (en) 1986-06-19

Family

ID=17245090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253000A Pending JPS61131628A (en) 1984-11-30 1984-11-30 Infrared ray remote control reception circuit

Country Status (1)

Country Link
JP (1) JPS61131628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367333A1 (en) * 1988-10-31 1990-05-09 Koninklijke Philips Electronics N.V. Remote-controlled receiver with resupply of energy to battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317369A (en) * 1976-07-31 1978-02-17 Mitetsuku Moderune Ind Tech Gm Laser distance measuring apparatus by principle of running time measurement
JPS54158802A (en) * 1978-06-05 1979-12-15 Nec Corp Photo receiver
JPS58143649A (en) * 1982-02-19 1983-08-26 Mitsubishi Electric Corp Infrared ray remote controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317369A (en) * 1976-07-31 1978-02-17 Mitetsuku Moderune Ind Tech Gm Laser distance measuring apparatus by principle of running time measurement
JPS54158802A (en) * 1978-06-05 1979-12-15 Nec Corp Photo receiver
JPS58143649A (en) * 1982-02-19 1983-08-26 Mitsubishi Electric Corp Infrared ray remote controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367333A1 (en) * 1988-10-31 1990-05-09 Koninklijke Philips Electronics N.V. Remote-controlled receiver with resupply of energy to battery

Similar Documents

Publication Publication Date Title
US4592093A (en) Super high frequency receiver
US4984296A (en) Tuned radio apparatus
US3541451A (en) Variable center frequency filter for frequency modulation receiver
EP0451277B1 (en) Automatic gain control circuit
JPH08293812A (en) Switching circuit for satellite braodcasting converter
US4989264A (en) Bandwidth limiting circuit with variable bandwidth
US2394917A (en) Television receiving system
US3495031A (en) Variable q i.f. amplifier circuit for a television receiver
US20050143031A1 (en) Multi-band receiver
JPS61131628A (en) Infrared ray remote control reception circuit
US2281661A (en) Tuning system
US2302951A (en) Diversity receiving system
US3372337A (en) Image frequency attenuation circuit
US2155126A (en) Sound and television receiving system
US2540512A (en) Interference reducing impulse amplitude detector
US4225823A (en) Front end circuits of FM receivers
US2714157A (en) Radio receiving circuit
US6927805B2 (en) Compactly-designed television receiver
JPS6318177Y2 (en)
US4348645A (en) Buffer amplifier circuit used in wideband tuner
US2875274A (en) Television receiver apparatus
US5303410A (en) Signal strength meter circuit for radio receiver
EP0469663B1 (en) Tuned radio receiving circuit
JP3360364B2 (en) Intermediate frequency processing circuit of balanced output type tuner device
US1794936A (en) Radioreceiver