JPS61131487A - Semiconductor nonvolatile memory - Google Patents

Semiconductor nonvolatile memory

Info

Publication number
JPS61131487A
JPS61131487A JP25261184A JP25261184A JPS61131487A JP S61131487 A JPS61131487 A JP S61131487A JP 25261184 A JP25261184 A JP 25261184A JP 25261184 A JP25261184 A JP 25261184A JP S61131487 A JPS61131487 A JP S61131487A
Authority
JP
Japan
Prior art keywords
gate electrode
film
insulating film
floating gate
nonvolatile memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25261184A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashi
豊 林
Yuichi Kato
祐一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Seiko Instruments Inc
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Seiko Instruments Inc, Research Development Corp of Japan filed Critical Agency of Industrial Science and Technology
Priority to JP25261184A priority Critical patent/JPS61131487A/en
Publication of JPS61131487A publication Critical patent/JPS61131487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Abstract

PURPOSE:To improve the reliability, retaining characteristic and yield of a nonvolatile memory by using an HTO film as an interlayer insulating film between a floating gate electrode and a control gate electrode. CONSTITUTION:A source region 2 and a drain electrode 3 are formed near the surface of a semiconductor substrate 1, a gate insulating film 4 is formed on the surface of the substrate 1 interposed between the two regions, a floating gate electrode 5 is formed thereon, an HTO film 6 is formed thereon, and a control gate electrode 7 is further formed thereon. The film 6 is a capacitively coupling insulating film when controlling the potential of the electrode 5 by the electrode 7, and formed by a CVD method at high temperature (700 deg.C or higher).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、浮遊ゲート電極の電位を静電容量結合によシ
制御する制御ゲート電極が、浮遊ゲート電極の上に設け
られている半導体不揮発性メモリに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor non-volatile device in which a control gate electrode for controlling the potential of a floating gate electrode by capacitive coupling is provided on the floating gate electrode. Regarding sexual memory.

〔従来の技術〕[Conventional technology]

従来の浮遊グー)W不揮発性メモリは、浮遊ゲート電極
と制御ゲート電極との間の静電容量結合用層間絶縁膜を
、多結晶シリコンである浮遊ゲート電極を熱酸化して形
成していた。
In a conventional floating nonvolatile memory, an interlayer insulating film for capacitive coupling between a floating gate electrode and a control gate electrode is formed by thermally oxidizing a floating gate electrode made of polycrystalline silicon.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、多結晶シリコンの熱酸化膜(以下単純に
熱酸化膜と略す)は、単結晶シリコンの熱酸化膜に比べ
て電流が流れ易く、ま念絶縁耐圧も低い。これらのこと
は浮遊ゲート型の不揮発性メモリにおいて、保持特性の
悪化および破壊にそれぞれつながる。すなわち制御ゲー
ト電極および浮遊ゲート電極間がリーキーであったり完
全に通電していたりすること忙よって浮遊ゲート電極に
閉じ込められていたキャリアが制御ゲート電極へ逃げ、
記憶内容が消えてしまう。熱酸化膜において電流を流れ
にくくシ、絶縁耐圧を上げるには膜厚を浮くすればよい
。しかしながら、膜厚と静電容量とは反比例の関係にあ
るため、膜厚を厚くすると容量が小さくなり、容、を結
合が弱くなって制御ゲート電極で浮遊ゲート電極の電位
を制御しにくくなる。
However, a polycrystalline silicon thermal oxide film (hereinafter simply referred to as a thermal oxide film) allows current to flow more easily and has a lower dielectric breakdown voltage than a single crystal silicon thermal oxide film. These things lead to deterioration and destruction of retention characteristics, respectively, in a floating gate type nonvolatile memory. In other words, if there is a leaky connection between the control gate electrode and the floating gate electrode, or if the current is completely conductive, carriers trapped in the floating gate electrode escape to the control gate electrode.
Memory contents will be erased. It is difficult for current to flow in a thermal oxide film, and the dielectric strength can be increased by increasing the thickness of the film. However, since the film thickness and capacitance are inversely proportional, increasing the film thickness reduces the capacitance and weakens the coupling between the capacitance and the capacitance, making it difficult to control the potential of the floating gate electrode with the control gate electrode.

本発明は、上述のような従来技術の欠点を克服するため
、薄くても絶縁耐圧が高くリークの少ない膜を静電容量
結合用の膜として利用し、信頼性。
In order to overcome the above-mentioned drawbacks of the prior art, the present invention utilizes a thin film with high dielectric strength and low leakage as a capacitive coupling film, thereby improving reliability.

保持特性の優れた不揮発性メモリをつくることを目的と
している。
The aim is to create nonvolatile memory with excellent retention characteristics.

〔間°照点を解決するための手段〕[Means for resolving the gap]

上述の問題点を解決するため、本発明では静電容量結合
用の絶縁膜として薄くしても(3GOA以下にしても)
絶縁耐圧が高く、しかもトンネル電流特性が単結晶シリ
コンの熱酸化膜とほぼ、同じでリーク電流の非常に少な
い高温(700℃以上)化学気相成長法による膜(以下
EITO膜と略す)を利用した。
In order to solve the above-mentioned problems, in the present invention, even if the insulating film for capacitance coupling is made thin (even if it is made thinner than 3 GOA).
Utilizes a high-temperature (700°C or higher) chemical vapor deposition film (hereinafter abbreviated as EITO film) that has high dielectric strength, tunnel current characteristics similar to those of single-crystal silicon thermal oxide films, and very low leakage current. did.

〔実施例〕〔Example〕

第1図から第5図に本発明による実施例を示す。 Embodiments according to the present invention are shown in FIGS. 1 to 5.

第1図はチャネル注入型、第2図はトンネル注入型およ
び第5図はPAOMO8mの不揮発性メモリである。ど
の構造も基本的には同様で、半導体基板10表面近傍に
ソース領域2およびドレイン領域5が設けられており、
これら2つの領域に挾まれた基板10表面上にゲー゛ト
絶縁膜4があシ、その上に浮遊ゲート電極5、その上V
c[(To膜6、さらにその上に制御ゲート電極7がそ
れぞれ設けられ・ている。
FIG. 1 shows a channel injection type, FIG. 2 shows a tunnel injection type, and FIG. 5 shows a PAOMO8m nonvolatile memory. All structures are basically the same, with a source region 2 and a drain region 5 provided near the surface of the semiconductor substrate 10.
A gate insulating film 4 is formed on the surface of the substrate 10 sandwiched between these two regions, a floating gate electrode 5 is formed on it, and a V
c[(To film 6, furthermore, control gate electrode 7 is provided on it.

gTO膜6は、制御ゲート電極7で浮遊ゲート電極5の
電位を制御するときの容量結合用絶縁膜で、高温OVD
法で形成されている。第1図から第5図には5s類のメ
モリへの実施例を示したが、上述のごとく浮遊ゲート型
で、浮遊ゲート電極の電位を浮遊ゲート電極上に設けら
れた制御ゲート電極で制御するえイブのメモリであれば
本発明を適用することが可能である。
The gTO film 6 is an insulating film for capacitive coupling when the potential of the floating gate electrode 5 is controlled by the control gate electrode 7, and is used in high-temperature OVD.
formed by law. 1 to 5 show an example of a 5S type memory, and as mentioned above, it is a floating gate type, and the potential of the floating gate electrode is controlled by a control gate electrode provided on the floating gate electrode. The present invention can be applied to any memory that is large in size.

次GCHTO膜と熱酸化膜とのニー7特性および°゛、 850℃で形成した240^のHTO膜のI −V特性
である。熱酸化膜の方が6倍程度厚いにもかかわらず低
電圧における電流は大きい。このことは、不揮発性メモ
17 においてHTO膜の方が保持特性が優れているこ
とを示唆している。また、保持時間が同程度となるHT
O膜と熱酸化膜では、両者の膜厚は10倍以上異なって
くる。よって、容量結合はHTO膜の方が10倍以上大
きくなり、制御ゲート電極7で浮遊ゲート電極5の電位
を制御し易くなる。これは逆に、制御ゲート電極7と浮
遊ゲート電極50オーバーラツプ面積を狭くすることを
可能とし、設計時の冗長性が向上する。
The following are the knee 7 characteristics of the GCHTO film and the thermal oxide film, and the IV characteristics of the 240^ HTO film formed at 850°C. Even though the thermal oxide film is about 6 times thicker, the current at low voltage is large. This suggests that the HTO film has better retention characteristics in nonvolatile memo 17. In addition, HT with the same retention time
The thickness of the O film and the thermal oxide film differs by more than 10 times. Therefore, the capacitive coupling is ten times or more greater in the HTO film, making it easier to control the potential of the floating gate electrode 5 with the control gate electrode 7. Conversely, this makes it possible to reduce the overlap area between the control gate electrode 7 and the floating gate electrode 50, thereby improving redundancy during design.

第5図は第4図と同じ試料に対する絶縁耐圧分布である
。HTO膜は分布が高電界に集中しているのに対し、熱
酸化膜はOM V / a付近の絶縁破壊がみられる。
FIG. 5 shows the dielectric strength distribution for the same sample as FIG. 4. The HTO film has a distribution concentrated in high electric fields, whereas the thermal oxide film shows dielectric breakdown near OMV/a.

これはピンホールであり、眉間絶縁膜にピンホールが存
在すると浮遊ゲート電極5と制御ゲート電極7とが導通
するためメモリとしての記憶能力が失われる。すなわち
、実際の製造においてHTO膜を使用した場合の歩留は
、熱酸化膜を使用した場合よりも高くなることが予想さ
れる。
This is a pinhole, and if a pinhole exists in the glabellar insulating film, the floating gate electrode 5 and the control gate electrode 7 will be electrically connected, resulting in a loss of storage ability as a memory. That is, it is expected that the yield when using an HTO film in actual manufacturing is higher than when using a thermal oxide film.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、浮遊ゲート電極と制御ゲ
ート電極との眉間絶縁膜としてHT(>膜を使用するこ
とKよりて不揮発性メモリの信頼性、保持特性および歩
留の向上させる効果がある。
As explained above, the present invention has the effect of improving the reliability, retention characteristics, and yield of nonvolatile memory by using the HT film as the glabellar insulating film between the floating gate electrode and the control gate electrode. be.

しかも絶縁膜厚をうす(できるので、小さな制御電極電
圧でメモリ特性のコントロールが可能となり、デバイス
特性の向上にも効果がある。
Moreover, since the insulating film thickness can be thinned, memory characteristics can be controlled with a small control electrode voltage, which is also effective in improving device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明Kかかる半導体不揮発性メモリの第1実
施例の断面図、第2図は本発明にかかる半導体不揮発性
メモリの第2実施例の断面図、第3図は本発明Kかかる
半導体不揮発性メモリの第3実施例の断面図、第4図は
多結晶シリコンの熱酸化膜とHTO膜のI−V特性を示
す図、第5図は多結晶シリコンの熱酸化膜とHTO膜の
絶縁耐圧分布を示す図である。 5・・・浮遊ゲート電極 6・・・HTO膜 7・・・制御ゲート電極 以上 出願人 新技術開発事業団 他2名 第1図 第4図 M、凪 M 第5図 電界tMVρml
FIG. 1 is a cross-sectional view of a first embodiment of a semiconductor non-volatile memory according to the present invention, FIG. 2 is a cross-sectional view of a second embodiment of a semiconductor non-volatile memory according to the present invention, and FIG. 3 is a cross-sectional view of a semiconductor non-volatile memory according to the present invention. A cross-sectional view of the third embodiment of the semiconductor non-volatile memory, FIG. 4 is a diagram showing the I-V characteristics of a polycrystalline silicon thermal oxide film and an HTO film, and FIG. 5 is a diagram showing a polycrystalline silicon thermal oxide film and an HTO film. FIG. 5... Floating gate electrode 6... HTO film 7... Control gate electrode and above Applicant New Technology Development Corporation and 2 others Figure 1 Figure 4 M, Nagi M Figure 5 Electric field tMVρml

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に設けられた第1の絶縁膜と、前記第1
の絶縁膜上に設けられた浮遊ゲート電極と、前記浮遊ゲ
ート電極上に設けられた第2の絶縁膜と、前記第2の絶
縁膜上に設けられ前記第2の絶縁膜を誘電体とする静電
容量結合により前記浮遊ゲート電極の電位を制御するた
めの制御ゲートとから少なくとも構成される半導体不揮
発性メモリにおいて、前記第2の絶縁膜が700℃以上
の高温で化学気相成長法により形成されていることを特
徴とする半導体不揮発性メモリ。
a first insulating film provided on a semiconductor substrate;
a floating gate electrode provided on an insulating film; a second insulating film provided on the floating gate electrode; and a floating gate electrode provided on the second insulating film, the second insulating film being a dielectric. In a semiconductor nonvolatile memory comprising at least a control gate for controlling the potential of the floating gate electrode by capacitive coupling, the second insulating film is formed by chemical vapor deposition at a high temperature of 700° C. or higher. A semiconductor nonvolatile memory characterized by:
JP25261184A 1984-11-29 1984-11-29 Semiconductor nonvolatile memory Pending JPS61131487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25261184A JPS61131487A (en) 1984-11-29 1984-11-29 Semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25261184A JPS61131487A (en) 1984-11-29 1984-11-29 Semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPS61131487A true JPS61131487A (en) 1986-06-19

Family

ID=17239775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25261184A Pending JPS61131487A (en) 1984-11-29 1984-11-29 Semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPS61131487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JPH01233772A (en) * 1988-03-14 1989-09-19 Seiko Instr & Electron Ltd Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124168A (en) * 1982-12-28 1984-07-18 Seiko Instr & Electronics Ltd Nonvolatile semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124168A (en) * 1982-12-28 1984-07-18 Seiko Instr & Electronics Ltd Nonvolatile semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JPH01233772A (en) * 1988-03-14 1989-09-19 Seiko Instr & Electron Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US7750395B2 (en) Scalable Flash/NV structures and devices with extended endurance
US5481128A (en) Structure for flash memory cell
EP0044384A2 (en) Electrically alterable read only memory cell
US4257056A (en) Electrically erasable read only memory
US4717943A (en) Charge storage structure for nonvolatile memories
US5122847A (en) Non-volatile semiconductor memory with CVD tunnel oxide
JPH03240275A (en) Nonvolatile semiconductor device
US5019881A (en) Nonvolatile semiconductor memory component
JPS61131487A (en) Semiconductor nonvolatile memory
JPH07183409A (en) Semiconductor device and manufacture thereof
JPS60148168A (en) Semiconductor nonvolatile memory
WO2001017031A1 (en) Easy shrinkable novel non-volatile semiconductor memory cell utilizing split dielectric floating gate and method for making same
EP0166208B1 (en) Charge storage structure for nonvolatile memory
JPS59229874A (en) Nonvolatile memory and driving method therefor
JPS61131486A (en) Semiconductor nonvolatile memory
JPS61229368A (en) Semiconductor non-volatile memory
JP2668707B2 (en) Manufacturing method of semiconductor nonvolatile memory
KR100268905B1 (en) Nonvolatile memory cell and method for manufacturing the same
JPH02174171A (en) Semiconductor storage device
JPH07202141A (en) Semiconductor device
JPS59229872A (en) Nonvolatile memory and driving method therefor
JPS60258968A (en) Floating gate type nonvolatile semiconductor memory
JPS62205665A (en) Nonvolatile semiconductor memory
JPS62234375A (en) Non-volatile semiconductor memory device
JPS6132478A (en) Nonvolatile memory