JPS61131290A - Detecting method of bloch line - Google Patents

Detecting method of bloch line

Info

Publication number
JPS61131290A
JPS61131290A JP59253332A JP25333284A JPS61131290A JP S61131290 A JPS61131290 A JP S61131290A JP 59253332 A JP59253332 A JP 59253332A JP 25333284 A JP25333284 A JP 25333284A JP S61131290 A JPS61131290 A JP S61131290A
Authority
JP
Japan
Prior art keywords
magnetic
bloch line
bloch
magnetic domain
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253332A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneda
弘 米田
Hitoshi Oda
織田 仁
Toyonari Sasaki
豊成 佐々木
Takeo Ono
武夫 小野
Mamoru Miyawaki
守 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59253332A priority Critical patent/JPS61131290A/en
Priority to DE19853542279 priority patent/DE3542279A1/en
Priority to FR858517693A priority patent/FR2574212B1/en
Publication of JPS61131290A publication Critical patent/JPS61131290A/en
Priority to US07/660,260 priority patent/US5086409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0858Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. "Hard Bubbles")
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0866Detecting magnetic domains
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0875Organisation of a plurality of magnetic shift registers

Abstract

PURPOSE:To detect the Bloch line of a Bloch line memory with a high speed and with a low electric power consumption by changing a prescribed magnetic domain area having the Bloch line and detecting the corresponding magnetizing fluctuation. CONSTITUTION:To a conductor line 4 to insert at least one Bloch line 7 which exists at a magnetic wall 5 round a magnetic domain 3 formed at a magnetic garnet film 2 where a vertical magnetic field HB is impressed, the electric current flows mutually in the opposite direction and the direction of the electric current is changed. Then, the magnetic wall 5 is mutually oscillated and shifted to the outside and the inside, the magnetic domain area is changed and in correspondence, the magnetization is changed. The change of the magnetic domain area goes to be small and large in accordance with the existence of the Bloch line 7. Consequently, when the magnetization change in correspondence to the magnetic domain area change is detected with an optical method, etc., by using a magnet optical effect, etc., it is not necessary to transfer and detect the bubble by an external rotating magnetic field, electric current driving system, etc., the constitution is made simple and the Bloch line of the Bloch line memory can be detected at the high speed and with the low power consumption.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、固体メモリー、特にブロッホラインメモリー
に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to solid state memories, particularly Bloch line memories.

(2)従来技術 現在、コンピューター用外部メモリ、電子ファイルメモ
リ、静止画ファイルメモリ等には、磁気テープ、ウィン
チェスタ−ディスク、フロッピーディスク、光ディスク
、光磁気ディスク、磁気バブルメモリ等の各種メモリゾ
/くイスが使用されている。前記メモリゾ/<イスの中
で、磁気バブルメモリを除く他のメモリは、テープ及び
ディスク等の記録媒体と記録、再生用のヘッドとの相対
運動を必ず伴なっていた。従って、高密度化に対して、
トラッキング、媒体とヘッドとの走行及び摩耗の問題や
埃及び振動の問題、更に、光ディスク及び光磁気ディス
クにおいてはフォー力ツシングの問題等が生じていた。
(2) Prior art At present, external memory for computers, electronic file memory, still image file memory, etc., include various types of memory storage such as magnetic tapes, Winchester disks, floppy disks, optical disks, magneto-optical disks, and magnetic bubble memories. chairs are used. Among the above-mentioned memory processors, memories other than the magnetic bubble memory always involve relative movement between recording media such as tapes and disks and recording and reproducing heads. Therefore, for densification,
Problems such as tracking, running and abrasion between the medium and the head, problems with dust and vibrations, and problems with force pushing have occurred in optical disks and magneto-optical disks.

一方、磁気バブルメモリは機械的駆動部を必要とせず、
且つ高信頼性を有しており高密度化には有利であると考
えられていた。しかし、磁気バブルメモリは、膜面に垂
直な磁化容易軸を持つ磁性ガーネット膜に生じる円形の
磁区(バブル)を1ビツトとして用いるために、現在の
ガーネット膜の材ネ4特性から制限される最小バブル(
直径0.3gm)を使用しても、■チップ当たり数+M
 b i tが記録密度の限界であり、ガーネットに替
わるヘキサフェライト、アモルファス合金等の材料が使
用可能にならない限りは、磁気バブルメモリにおける高
密度化は困難である。
On the other hand, magnetic bubble memory does not require a mechanical drive;
It also has high reliability and was thought to be advantageous for increasing density. However, because magnetic bubble memory uses a circular magnetic domain (bubble) generated in a magnetic garnet film with an axis of easy magnetization perpendicular to the film surface as one bit, it is limited by the material characteristics of current garnet films. bubble(
Even if a diameter of 0.3 gm is used, the number per chip + M
B it is the limit of recording density, and unless materials such as hexaferrite and amorphous alloy can be used instead of garnet, it will be difficult to increase the density in magnetic bubble memories.

最近、上記磁気バブルメモリに於ける記録音度の限界を
越える為に、ブロッホラインメモリが注目を浴びている
。ブロッホラインメモリは、磁性ガーネット膜に生じる
磁区の周囲に存在する磁壁内に於いて、磁壁内の磁化の
捩れの方向が逆向きになる遷移領域即ちブロッホ磁壁構
造に挟まれたネール磁壁で形成される領域(ブロッホラ
イン)を1ビツトとして用いるもので、円形の磁区(バ
ブル)を1ピツi・とじて用いる磁気バブルメモリと比
較して、二指近い高密度化が可能である。例えば、バブ
ル径0.51Lmのガーネット膜を使用した場合、1チ
ツプ当たり1.6GBitの記憶容量が達成可能である
Recently, Bloch line memory has been attracting attention because it exceeds the recording sound intensity limit of the magnetic bubble memory. Bloch line memory is formed by Neel domain walls sandwiched between the Bloch domain wall structure, which is a transition region in which the direction of magnetization twist in the domain walls is opposite in the domain walls that exist around the magnetic domains that occur in the magnetic garnet film. It uses a region (Bloch line) as one bit, and can achieve nearly two-digit higher density than a magnetic bubble memory that uses a circular magnetic domain (bubble) as one pit. For example, if a garnet film with a bubble diameter of 0.51 Lm is used, a storage capacity of 1.6 GBit per chip can be achieved.

第1図は従来のブロッホラインメモリの概略図を示し、
lはGGG 、NdGGlの6十類ガーネットから成る
基板、2は基板1」−にLPE法(液相エピタキシャル
成長法)等により成膜された磁性ガーネット膜、3はス
トライプ磁区、4は磁性ガーネット膜3上にパターン化
された導体ラインであり、メモリ全体には図中矢印の方
向にバイアス磁界H3が印加されている。ストライプ磁
区3の磁壁には、情報が一対のブロッホラインの有無に
よって記憶され、ブロッホライン対が有る場合は1゛°
、無い場合は“0パに対応している。該ブロッホライン
対はストライプ磁区3に設けられた安定点、即ちポテン
シャウェルに規則止しく存在しており、基板面に垂直な
パルス磁界を印加する事により、各々隣りのポテンシャ
ルウェルへと順次転送される。」二記ブロッホラインメ
モリから情報を読み出す方法、つまりブロッホライン対
の有無の検出法を以下に述べる。
FIG. 1 shows a schematic diagram of a conventional Bloch line memory.
1 is a substrate made of group 60 garnet of GGG, NdGGl; 2 is a magnetic garnet film formed on the substrate 1 by LPE (liquid phase epitaxial growth); 3 is a striped magnetic domain; 4 is a magnetic garnet film 3 A bias magnetic field H3 is applied to the entire memory in the direction of the arrow in the figure. Information is stored on the domain wall of the striped magnetic domain 3 depending on the presence or absence of a pair of Bloch lines, and if there is a pair of Bloch lines, the information is stored at 1゛°.
, if there is none, it corresponds to "0P". The Bloch line pairs are regularly present at stable points provided in the striped magnetic domain 3, that is, at the potentia wells, and apply a pulsed magnetic field perpendicular to the substrate surface. The method for reading information from the Bloch line memory, that is, the method for detecting the presence or absence of a Bloch line pair, will be described below.

第2図は従来のブロッホライン検出方法の説明図であり
、第1図と同様のものには同番号を附し、5は磁壁、6
は分離したバブル、7はブロッホラインを示す。尚、磁
壁5中の矢印は磁壁中心部での磁化の向きを、導体ライ
ン4中の矢印は電流の向きを表わしている。
Figure 2 is an explanatory diagram of the conventional Bloch line detection method, in which the same numbers are given to the same parts as in Figure 1, 5 is a domain wall, 6 is an explanatory diagram.
indicates a separated bubble, and 7 indicates a Bloch line. Note that the arrow in the domain wall 5 indicates the direction of magnetization at the center of the domain wall, and the arrow in the conductor line 4 indicates the direction of current.

第2図(a)において、磁性ガーネット膜2」−にスト
ライプ磁区3が形成されており、磁壁5にブロッホライ
ン7が存在してる。但し、ここではポテンシャルウェル
は図示されていない。ス]・ライプ磁区3を横切って二
本の導体ライン4が設けられており、図中矢印の様に互
いに逆向きのパルス電流を流すと、導体ライン4を流れ
る電流が作る磁界はストライプ磁区3の磁化方向と逆方
向となるために、二本の導体ライン4に挟まれた磁区は
縮少し図中破線で示す如く磁壁5が移動する。更に電流
量を増加させた場合、第2図(b)に示す様に両方の磁
壁が合体してストライプ磁区3の先端はバブル7となり
分離する。電流を止めた後は、残ったストライプ磁区3
の先端には分離前と同様のブロッホラインが生じ、磁区
の大きさも回復する。
In FIG. 2(a), striped magnetic domains 3 are formed in the magnetic garnet film 2'', and Bloch lines 7 are present in the domain walls 5. However, the potential well is not illustrated here. Two conductor lines 4 are provided across the stripe magnetic domain 3, and when pulsed currents in opposite directions are passed as shown by the arrows in the figure, the magnetic field created by the current flowing through the conductor lines 4 is generated across the stripe magnetic domain 3. Since the magnetization direction is opposite to the magnetization direction, the magnetic domain sandwiched between the two conductor lines 4 is contracted, and the domain wall 5 moves as shown by the broken line in the figure. When the amount of current is further increased, as shown in FIG. 2(b), both domain walls merge and the tips of the striped magnetic domains 3 become bubbles 7 and separate. After the current is stopped, the remaining stripe magnetic domain 3
A Bloch line similar to that before separation appears at the tip, and the size of the magnetic domain also recovers.

第3図(e)はブロッホラインが存在しない場合を示し
ており、この時、導体ライン4に電流を印加すると、ブ
ロッホラインが存在する第2図(a)、(b)の場合同
様二本の導体ライン4に挟まれた位置の磁壁を移動させ
る事が可能であり、又、更に電流量を増加させる事によ
り両側の磁壁を合体できる。しかし、ブロッホラインが
存在する第2図(a)と同図(C)において、二本の導
体ラインに挟まれた両方の磁壁内の磁化方向が、(a)
の場合は同じ方向で(C)の場合は逆方向となっており
、この為、両磁壁を合体する際に該磁壁の磁化の間に働
く相互作用(交換相互作用)が異なり、ブロッホライン
7が存在する場合の方が存在しない場合より磁壁を合体
させるための電流値が小さくなる。従って、導体ライン
4に印加する電流を、ブロッホライン7が存在する場合
に磁壁を合体するのに必要な電流値と、存在しない場合
に必要な電流値の間に選ぶ事により、ブロッホライン7
の有無を分離したバブル6の有無に対応させる事が可能
であり、バブル6を従来の磁気バブルメモリと同様の方
法で検出する事によってブロッホライン7の有無を判別
できる。
FIG. 3(e) shows the case where no Bloch line exists. At this time, when a current is applied to the conductor line 4, two lines appear as in the case of FIGS. It is possible to move the domain wall at a position sandwiched between the conductor lines 4, and by further increasing the amount of current, the domain walls on both sides can be combined. However, in Figure 2 (a) and Figure 2 (C) where Bloch lines exist, the magnetization direction within both domain walls sandwiched between two conductor lines is (a).
In the case of (C), the directions are the same, and in the case of (C), the directions are opposite. Therefore, when the two domain walls are combined, the interaction (exchange interaction) that acts between the magnetizations of the domain walls is different, and the Bloch line 7 When , the current value for merging the domain walls is smaller than when it does not exist. Therefore, by selecting the current to be applied to the conductor line 4 between the current value required to merge the domain walls when the Bloch line 7 exists and the current value required when the Bloch line 7 does not exist, the Bloch line 7
The presence or absence of the Bloch line 7 can be made to correspond to the presence or absence of the separated bubble 6, and the presence or absence of the Bloch line 7 can be determined by detecting the bubble 6 in the same manner as the conventional magnetic bubble memory.

以上説明した従来のブロッホラインの検出方法では、ブ
ロッホラインの検出の度にストライプ磁区を分離する必
要が有り、その上、分離したバブルを外部回転磁界、電
流駆動方式等の方/、I:で転送、検出しなければなら
ない為に、構成が複雑で口つ検出速度の高速化か望めな
かった。
In the conventional Bloch line detection method described above, it is necessary to separate striped magnetic domains each time a Bloch line is detected, and in addition, the separated bubbles are separated using an external rotating magnetic field, a current drive method, etc. Since it has to be transferred and detected, the configuration is complicated and it was not possible to increase the speed of mouth detection.

又、消費電力が大きいという欠点を有していた。Furthermore, it has the disadvantage of high power consumption.

(3)発明の概要 本発明の目的は、−I−記従来例の欠点を除去し、高速
丁1つ低消費電力のブロッホラインの検出方法を提供す
る事にある。
(3) Summary of the Invention An object of the present invention is to eliminate the drawbacks of the prior art described in -I- and to provide a high speed, low power consumption Bloch line detection method.

本発明に係るブロッホラインの検出方法は、ブロッホラ
インを有する所定の磁区面積を変化させる手段と、前記
所定の磁区面積の変化に起因する磁化変動を検出する手
段とによって前記ブロッホラインを検出する事を特徴と
している。
The Bloch line detection method according to the present invention detects the Bloch line by means of changing the area of a predetermined magnetic domain having the Bloch line, and means for detecting magnetization fluctuation caused by the change in the predetermined magnetic domain area. It is characterized by

」−記所定の磁区面積を変化させる手段には、局所的な
磁界によるものや光熱効果によるものなどが有り、静的
及び動的に磁区面積を変化させる事ができる。又、上記
磁化変動を検出する手段には、偏光光束の磁気光学効果
、例えばファラデー効果やカー効果を利用したものや通
常のMR素子やホール素子等を用いた磁束変化を電(4
)実施例 第3図、第4図、第5図は本発明に係るブロッホライン
の検出方法の一例を示す説明図で、第3図はブロッホラ
イン検出時のストライプ磁区区の状態を、第4図はプロ
ツボライン検出用の光学系の構成例を、第5図は光検出
器の出力を示した図である。ここで、1〜7は第1図及
び第2図と同様のものを指し、8は光スポット、9は半
導体レーザやピンフォトダイオード等の発光部、lOは
発光部9から出射した発散光束を平行光束にするコリメ
ーターレンズ、lは偏光板、12はストライプ磁区3の
所定の位置に光スポット8を形成するための集光レンズ
、13は検光子、14は光検出器、12′は光検出器1
4に検光子13を透過した光を集める集光レンズ、15
はブロッホライン7が光スポツト8内に存在する場合の
光検出器14の出力、16はブロッホライン7が存在し
ない場合の光検出器14の出力を示す。
”-Means for changing a predetermined magnetic domain area include those using a local magnetic field and those using photothermal effects, and the magnetic domain area can be changed both statically and dynamically. In addition, the means for detecting the magnetization changes include those that utilize the magneto-optical effect of polarized light flux, such as the Faraday effect or the Kerr effect, or those that use an ordinary MR element, Hall element, etc. to detect magnetic flux changes using an electric (4
) Embodiment FIGS. 3, 4, and 5 are explanatory diagrams showing an example of the method for detecting Bloch lines according to the present invention. FIG. The figure shows an example of the configuration of an optical system for detecting protuberance lines, and FIG. 5 shows the output of a photodetector. Here, 1 to 7 refer to the same things as in FIGS. 1 and 2, 8 is a light spot, 9 is a light emitting part such as a semiconductor laser or a pin photodiode, and lO is a diverging luminous flux emitted from the light emitting part 9. A collimator lens for collimating the beam; l is a polarizing plate; 12 is a condensing lens for forming a light spot 8 at a predetermined position on the striped magnetic domain 3; 13 is an analyzer; 14 is a photodetector; 12' is a light beam. Detector 1
4, a condenser lens that collects the light transmitted through the analyzer 13, 15
16 shows the output of the photodetector 14 when the Bloch line 7 exists in the optical spot 8, and 16 shows the output of the photodetector 14 when the Bloch line 7 does not exist.

第3図に於て、(YSmLuCa)3 (FeGe)5
012や(YSmL’uCd)3 (FeGa)501
2等の磁性ガーネット膜2に、紙面に対して上から下向
きに垂直バイアス磁界H3が印加してあり、磁性ガーネ
ット膜2にストライプ磁区3が形成されている。ストラ
イプ磁区3の周囲の磁壁5にはブロッホライン7が存在
している。更に、少なくとも1個のブロッホライン7を
挟む形で、磁性ガーネット膜2」−に二本の導体ライン
4が設けられている。ブロッホライン7はポテンシャル
ウェルによって安定に導体ライン4間に存在しており、
導体ライン4に図中矢印の方向へ電流を流すと、電流に
よって発生した磁界の向きがストライプ磁区3の磁化方
向と等しい場合、二本の導体ライン4に挟まれた領域の
磁壁5が互いに外側へ移動する。
In Figure 3, (YSmLuCa)3 (FeGe)5
012 and (YSmL'uCd)3 (FeGa)501
A perpendicular bias magnetic field H3 is applied to the magnetic garnet film 2, such as No. 2, downward from above with respect to the plane of the paper, and striped magnetic domains 3 are formed in the magnetic garnet film 2. Bloch lines 7 are present in the domain wall 5 around the striped magnetic domain 3. Furthermore, two conductor lines 4 are provided on the magnetic garnet film 2'' with at least one Bloch line 7 sandwiched therebetween. The Bloch line 7 stably exists between the conductor lines 4 due to the potential well,
When a current is passed through the conductor line 4 in the direction of the arrow in the figure, if the direction of the magnetic field generated by the current is equal to the magnetization direction of the striped magnetic domain 3, the domain walls 5 in the area sandwiched between the two conductor lines 4 are on the outside of each other. Move to.

又、電流の向きが図中矢印方向と逆の場合は、磁壁5が
互いに内側へ移動する。
Further, when the direction of the current is opposite to the direction of the arrow in the figure, the domain walls 5 move inward from each other.

第4図において、発光部9により出射した発散光束はコ
リメーターレンズ10によって平行光束となり、偏光板
11によって直線偏光されて集光レンズ12を介して第
3図に示される光スポット8である所の所定の磁区位置
に照射される。磁性ガーネット膜2及び基板1を透過し
た光束はストライプ磁区3内の磁化によるファラデー効
果によって偏光面の回転を生じており、該偏光面の回転
角は光スポツト8内におけるストライプ磁区3の磁化の
大きさに比例している。
In FIG. 4, the diverging light beam emitted by the light emitting unit 9 becomes a parallel light beam by the collimator lens 10, is linearly polarized by the polarizing plate 11, and passes through the condensing lens 12 to form the light spot 8 shown in FIG. is irradiated to a predetermined magnetic domain position. The light flux transmitted through the magnetic garnet film 2 and the substrate 1 undergoes rotation of the plane of polarization due to the Faraday effect due to the magnetization within the striped magnetic domains 3, and the rotation angle of the plane of polarization is determined by the magnitude of the magnetization of the striped magnetic domains 3 within the optical spot 8. It is proportional to that.

透過光束は検光子13を通過後、集光レンズ12’を介
して光検出器14に入射する。光検出器14における出
力信号は、上述した様にストライプ磁区3の磁化の大き
さ、即ち磁区面積の変化に依存するため、例えば、導体
ライン4に流す電流を正弦波状に変化させると、光検出
器14に生じる出力もほぼ正弦波状に変化する。
After passing through the analyzer 13, the transmitted light beam enters the photodetector 14 via the condenser lens 12'. As described above, the output signal from the photodetector 14 depends on the magnitude of the magnetization of the striped magnetic domain 3, that is, the change in the area of the magnetic domain. The output produced by the device 14 also changes approximately sinusoidally.

ここで、二本の導体ライン4間に磁壁にブロッホライン
が存在する場合、磁壁が振動する際、ブロッホラインが
存在しない磁壁に比べて磁壁幅が狭くなるために磁壁移
動に対する制動力が強くなる。つまり磁気的慣性力が大
きいためにストライプ磁区3の面積変化が小さくなる。
Here, if a Bloch line exists in the domain wall between the two conductor lines 4, when the domain wall vibrates, the domain wall width becomes narrower than that of a domain wall without a Bloch line, so the braking force against domain wall movement becomes stronger. . In other words, since the magnetic inertia force is large, the area change of the striped magnetic domain 3 becomes small.

従って、ブロッホラインが存在しない場合に比べて光検
出器14に得られる出力の振動値は小さくなり、第5図
に示すように、ブロッホラインが存在する場合15と存
在しない場合16の振幅に差が生じ、このためブロッホ
ラインの有無を判別できる事になる。
Therefore, the vibration value of the output obtained from the photodetector 14 is smaller than when the Bloch line does not exist, and as shown in FIG. occurs, which makes it possible to determine the presence or absence of Bloch lines.

以上のような方法によりブロッホラインを直接検出でき
るため、検出動作を高速化する事が可能であり、導体ラ
インに濠す電流も、ストライプ磁区をチョップする必要
が無いために小さくする事ができる。
Since the Bloch line can be directly detected by the method described above, the detection operation can be made faster, and the current flowing through the conductor line can also be reduced because there is no need to chop the striped magnetic domains.

第6図、第7図は前記実施例の応用例を示した図であり
、第6図は複数のストライプ磁区を有するブロッホライ
ンメモリを、第7図は該ブロッホラインメモリーの検出
光学系の構成例を示している。図中の番号は第3図及び
第4図と同様のものを示す。尚、17はA10偏向器、
E10偏向器等の光偏向器である。
FIG. 6 and FIG. 7 are diagrams showing an application example of the above embodiment, in which FIG. 6 shows a Bloch line memory having a plurality of striped magnetic domains, and FIG. 7 shows a configuration of a detection optical system of the Bloch line memory. An example is shown. The numbers in the figure indicate the same ones as in FIGS. 3 and 4. In addition, 17 is an A10 deflector,
It is an optical deflector such as an E10 deflector.

ここでは、複数のストライプ磁区3の所定位置を、第7
図に示される検出光学系を用いて基板1側から走査光束
により連続照射し、前記実施例と同様の検出原理に基づ
きブロッホラインメモリーにおける高速再生を可能にし
ている。
Here, the predetermined positions of the plurality of striped magnetic domains 3 are
The detection optical system shown in the figure is used to continuously irradiate the substrate 1 with a scanning light beam, thereby enabling high-speed reproduction in the Bloch line memory based on the same detection principle as in the previous embodiment.

尚、ストライプ磁区3の磁壁5内のブロッホラインは、
メモリ全体に垂直パルス磁界を加える事により磁壁5内
を順次転送できる。又、発光部9及び光検出器13を複
数配置した光学系も可能である。
In addition, the Bloch line within the domain wall 5 of the striped magnetic domain 3 is
By applying a vertical pulse magnetic field to the entire memory, data can be sequentially transferred within the domain wall 5. Further, an optical system in which a plurality of light emitting sections 9 and photodetectors 13 are arranged is also possible.

第8図は所定の磁区面積を変化させる別の実施例を示し
、図中の番号は第3図と同様のものを指す。本実施例で
は光熱効果を用いて所定の磁区面積を変化させる。磁性
ガーネット膜2に前記実施例と同様の方法で直線偏光し
た光束を照射する時、照射部、即ち光スポット8の温度
が」−Rし、磁性ガーネット膜2の材料の温度特性に依
存して照射部におけるストライプ磁区5の幅が変化する
。従って、半導体レーザー等の発光部からの照射光強度
を時間的に変化させる事により、ストライプ磁区の面積
を時間的に変動させる事ができる。木方法を用いれば導
体ラインは不要となり、構成が簡便になるだけでなく電
力を消費する必要がない。
FIG. 8 shows another embodiment in which the predetermined magnetic domain area is changed, and the numbers in the figure refer to the same ones as in FIG. 3. In this embodiment, a predetermined magnetic domain area is changed using the photothermal effect. When the magnetic garnet film 2 is irradiated with a linearly polarized light beam in the same manner as in the above embodiment, the temperature of the irradiated part, that is, the light spot 8 becomes -R, and depends on the temperature characteristics of the material of the magnetic garnet film 2. The width of the striped magnetic domain 5 in the irradiation area changes. Therefore, by temporally changing the intensity of irradiated light from a light emitting unit such as a semiconductor laser, the area of the striped magnetic domain can be temporally varied. Using the wood method eliminates the need for conductor lines, which not only simplifies the configuration but also eliminates the need to consume power.

第9図はブロッホラインメモリーの別構成の断面図を示
し、18は光反射膜であり、磁性ガーネット膜2I−に
設けられている。この様な構成のブロッホラインメモリ
ーは、第10図に示される光学系を用いてブロッホライ
ンを前記実施例の方法で検出できる。
FIG. 9 shows a sectional view of another structure of the Bloch line memory, in which 18 is a light reflecting film, which is provided on the magnetic garnet film 2I-. The Bloch line memory having such a configuration can detect Bloch lines using the method of the above embodiment using the optical system shown in FIG.

i10図において、発光部9から出射した光はコリメー
ターレンズIOにより平行光束となり、偏光板11を介
して直線偏光されビームスプリッタ−19を経て、集光
レンズ12によって磁性ガーネット膜2に形成されたス
トライプ磁区3の所定位置に照射される。ブロッホライ
ンの有無に対応した変調を受けた入射光束は光反射膜1
8で反射され、再び変調されて元の光路へ戻る。つまり
二度のファラデー回転を受ける事になる。反射されて集
光レンズ12を介して平行光束となった反射光は、ビー
ムスブリツター19により光路を替えられて、検光子1
3及び集光レンズ12′を通過し光検出器14で捕えら
れる。以上の構成では、二度の偏光面のファラデー回転
によりS/N比が向上する。
In Figure i10, the light emitted from the light emitting part 9 is converted into a parallel beam by the collimator lens IO, linearly polarized by the polarizing plate 11, passed through the beam splitter 19, and then formed on the magnetic garnet film 2 by the condenser lens 12. A predetermined position of the striped magnetic domain 3 is irradiated. The incident light flux that has undergone modulation corresponding to the presence or absence of Bloch lines is reflected by the light reflecting film 1.
8, is modulated again, and returns to the original optical path. In other words, it undergoes two Faraday rotations. The reflected light, which has become a parallel beam of light through the condensing lens 12, has its optical path changed by the beam splitter 19 and passes through the analyzer 1.
3 and a condenser lens 12', and is captured by a photodetector 14. In the above configuration, the S/N ratio is improved by twice Faraday rotation of the plane of polarization.

第11図は本ブロッホラインの検出方法の別の実施例を
示す図であり、(A)はブロッホラインメモリーの上面
図、(B)は断面図、(C)は側面図を示し、19は容
量検出用の電極、20は磁歪材料で磁性ガーネット膜2
上の所定の位置に設けられている。尚、他の番号は前記
実施例と同様のものを示す。
FIG. 11 is a diagram showing another embodiment of the present Bloch line detection method, in which (A) is a top view of the Bloch line memory, (B) is a cross-sectional view, (C) is a side view, and 19 is a diagram showing a top view of the Bloch line memory. Electrode 20 for capacitance detection is a magnetostrictive material with magnetic garnet film 2
It is located at a predetermined position on the top. Note that the other numbers indicate the same items as in the above embodiment.

導体ライン4に電流を疏す事により発生する磁界の作用
で、二本の導体ライン4の間の磁壁5は電流の変化に伴
ないブロッホラインの有無により異なった振幅で振動す
る。従って、内導体ライン4に挟まれたストライプ磁区
3の面積は変動し、第11図(b)の図中破線の矢印で
示される様な磁界の分布が変化する。この時、二つの容
量検出用電極19の間に充填された磁歪材料20に加わ
る磁界分布が変動し、二つの容量検出用電極19間の実
効的な間隔の変化に伴なって古都が変化する。前記容量
変化を検出する市によりブロッホラインの有無を判別す
るめに高速検出が可能となり、前記実施例の様な光学系
が不要で簡便な構成となる。
Due to the action of the magnetic field generated by passing a current through the conductor lines 4, the domain wall 5 between the two conductor lines 4 vibrates with different amplitudes depending on the presence or absence of Bloch lines as the current changes. Therefore, the area of the striped magnetic domain 3 sandwiched between the inner conductor lines 4 changes, and the distribution of the magnetic field changes as shown by the broken line arrow in FIG. 11(b). At this time, the magnetic field distribution applied to the magnetostrictive material 20 filled between the two capacitance detection electrodes 19 changes, and the ancient city changes as the effective distance between the two capacitance detection electrodes 19 changes. . By detecting the capacitance change, high-speed detection is possible to determine the presence or absence of a Bloch line, and an optical system like the above embodiment is unnecessary, resulting in a simple configuration.

明 (5) 発Zの効果 以1−説明したように、本発明に係るブロッホラインの
検出方法は、バブルへの変換が不要であり、大容帛を有
するブロッホラインメモリーの高速検111を可能にし
、低消費電力を達成し得る検出方法である。
(5) Effects of the originating Z (1) As explained above, the Bloch line detection method according to the present invention does not require conversion into bubbles, and enables high-speed detection 111 of Bloch line memories having large volumes. This is a detection method that can achieve low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のブロッホラインメモリの構成図。第2図
は従来のブロッホライン検出方法を示す図。第3図、第
4図、第5図は本発明に係るブロッホライン検出方法の
説明図。第6図。 第7図は本発明のブロッホライン検出方法を用いたブロ
ッホラインメモリーを示す図。第8図は所定の磁区面積
を変化させる別の方法を示す図。第9図、第10図は本
発明のブロッホライン検出方法を用いたブロッホライン
メモリーの別の実施例を示す図。第11図は本発明のブ
ロッホライン検出方法の別の実施例を示す図。 ■−−−−基板、2−一一一磁性ガーネット膜、3−一
−−ストライプ磁区、4−一一一導体ライン、5−一−
−磁壁、6−−−−磁気バブル、7−−−−ブロツホラ
イン、8−一一一光スポット、9−−一一発光部、10
−−−−コリメータレンズ、11−−m−偏光板、12
 、 l 2’−−−一集光レンズ、13−−−一検光
子、14−−−一光検出器、15.16−−−−光検出
器の出力、 17−−−−光偏光器、18−−−一光反射膜、19−
−−一容漬検出用電極、 20−−−一磁歪材利。 ン
FIG. 1 is a block diagram of a conventional Bloch line memory. FIG. 2 is a diagram showing a conventional Bloch line detection method. FIG. 3, FIG. 4, and FIG. 5 are explanatory diagrams of the Bloch line detection method according to the present invention. Figure 6. FIG. 7 is a diagram showing a Bloch line memory using the Bloch line detection method of the present invention. FIG. 8 is a diagram showing another method of changing the predetermined magnetic domain area. FIGS. 9 and 10 are diagrams showing another embodiment of the Bloch line memory using the Bloch line detection method of the present invention. FIG. 11 is a diagram showing another embodiment of the Bloch line detection method of the present invention. ■---Substrate, 2-1-1 magnetic garnet film, 3-1--stripe magnetic domain, 4-1-1 conductor line, 5-1-
-Domain wall, 6----magnetic bubble, 7----brochure line, 8-111 light spot, 9--11 light emitting part, 10
----Collimator lens, 11--m-polarizing plate, 12
, l 2'---One condensing lens, 13---One analyzer, 14---One photodetector, 15.16---Output of photodetector, 17---Light polarizer , 18-- one light reflective film, 19-
--One immersion detection electrode, 20---One magnetostrictive material. hmm

Claims (1)

【特許請求の範囲】[Claims] (1)ブロッホラインメモリーにおいて、磁壁を振動さ
せる事により所定の磁区面積を変化させ、前記所定の磁
区面積の変化に起因する磁化変動を検出する事を特徴と
するブロッホラインの検出方法。
(1) In a Bloch line memory, a method for detecting a Bloch line is characterized in that a predetermined magnetic domain area is changed by vibrating a domain wall, and magnetization fluctuations caused by the change in the predetermined magnetic domain area are detected.
JP59253332A 1984-11-30 1984-11-30 Detecting method of bloch line Pending JPS61131290A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59253332A JPS61131290A (en) 1984-11-30 1984-11-30 Detecting method of bloch line
DE19853542279 DE3542279A1 (en) 1984-11-30 1985-11-29 Recording and/or reproducing method for Bloch-line memories
FR858517693A FR2574212B1 (en) 1984-11-30 1985-11-29 RECORDING AND / OR REPRODUCING METHOD FOR A BLOCH LINE MEMORY
US07/660,260 US5086409A (en) 1984-11-30 1991-02-26 Recording and/or reproducing method of bloch line memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253332A JPS61131290A (en) 1984-11-30 1984-11-30 Detecting method of bloch line

Publications (1)

Publication Number Publication Date
JPS61131290A true JPS61131290A (en) 1986-06-18

Family

ID=17249835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253332A Pending JPS61131290A (en) 1984-11-30 1984-11-30 Detecting method of bloch line

Country Status (1)

Country Link
JP (1) JPS61131290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381675A (en) * 1986-09-24 1988-04-12 Canon Inc Detecting method for bloch line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839129A (en) * 1971-09-21 1973-06-08
JPS4859739A (en) * 1971-11-18 1973-08-22
JPS5228828A (en) * 1975-08-28 1977-03-04 Sperry Rand Corp Magnetic induction reading of cross tie wall memory system using sensing line filled in easy shaft drive magnetic field and slot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839129A (en) * 1971-09-21 1973-06-08
JPS4859739A (en) * 1971-11-18 1973-08-22
JPS5228828A (en) * 1975-08-28 1977-03-04 Sperry Rand Corp Magnetic induction reading of cross tie wall memory system using sensing line filled in easy shaft drive magnetic field and slot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381675A (en) * 1986-09-24 1988-04-12 Canon Inc Detecting method for bloch line

Similar Documents

Publication Publication Date Title
US4571650A (en) Magneto-optic information storage system utilizing a self-coupled laser
JPS5982646A (en) Optomagnetic storage device
US5086409A (en) Recording and/or reproducing method of bloch line memory
JPS61131290A (en) Detecting method of bloch line
US6118748A (en) Optical information storage unit having phase compensation means for applying different phase compensation quantities with respect to signals detected from land and groove of recording medium
JPH0522305B2 (en)
US5105383A (en) Method for detecting the presence of bloch lines in a magnetic wall
JPS607635A (en) Photomagnetic disc device
JPH06510153A (en) optical scanning device
JPS59121637A (en) Magneto-optical recording and reproducing device
JPH0719391B2 (en) Optical recording / reproducing device
JPS61131288A (en) Solid-state memory
JPH03132925A (en) Optical head device
JP4395610B2 (en) Optical head with semiconductor laser
JPH06168477A (en) Optical recording and reproducing device and spatial optical modulator
JPS58169358A (en) Optical reproducing device
JPH01211345A (en) Optical head for magneto-optical recording and reproducing
JP2708477B2 (en) Bloch line memory device
JP2661972B2 (en) Bloch line memory device
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JPS61139992A (en) Reproducing method of bloch line memory
JP2946489B2 (en) Information recording / reproducing device
JPS59231704A (en) Bias magnetic field impressing device of opto-magnetic disk
JPH053666B2 (en)
JPH0456363B2 (en)