JPS6113122B2 - - Google Patents

Info

Publication number
JPS6113122B2
JPS6113122B2 JP6839579A JP6839579A JPS6113122B2 JP S6113122 B2 JPS6113122 B2 JP S6113122B2 JP 6839579 A JP6839579 A JP 6839579A JP 6839579 A JP6839579 A JP 6839579A JP S6113122 B2 JPS6113122 B2 JP S6113122B2
Authority
JP
Japan
Prior art keywords
drain reservoir
water
valve
passage
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6839579A
Other languages
Japanese (ja)
Other versions
JPS55160203A (en
Inventor
Masakatsu Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP6839579A priority Critical patent/JPS55160203A/en
Publication of JPS55160203A publication Critical patent/JPS55160203A/en
Publication of JPS6113122B2 publication Critical patent/JPS6113122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】 本発明は蒸気使用機器に発生した復水をボイラ
へ戻す場合等に用いるドレン回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drain recovery device used for returning condensate generated in steam-using equipment to a boiler.

本出願人は先に、給水ポンプとボイラの間等の
給水通路にドレン溜を設け、非給水時に復水をド
レン溜に導入し、次回給水時に補給水をドレン溜
に圧入しもつてドレン溜の熱水をボイラ等へ圧送
することを特徴とするドレン回収装置を提案し
た。前回給水終了時に残留していた低温補給水
を、回収すべき高温復水の全てをドレン溜に導入
して熱水で置換するならば、熱回収効率が極めて
高くなるのであるが、回収量が多い場合には導入
された熱水が沸き立つてドレン溜から飛び出して
しまう問題があつた。
The applicant first installed a drain reservoir in a water supply passage such as between a water supply pump and a boiler, introduced condensate into the drain reservoir when water was not being supplied, and then pressurized make-up water into the drain reservoir during the next water supply. We proposed a drain recovery device that is characterized by pumping hot water to a boiler, etc. If all of the high-temperature condensate to be recovered is introduced into the drain reservoir and replaced with hot water, the low-temperature make-up water that remained at the end of the previous water supply would be extremely efficient, but the amount recovered would be If there was a large amount of water, there was a problem that the introduced hot water would boil and jump out of the drain reservoir.

本発明はこの様な問題を解消して、ドレン溜へ
の復水導入が迅速で、ドレン溜からの熱水の飛び
出しも起らない、熱回収効率の高いドレン回収装
置を提供せんとするものである。
The present invention aims to solve these problems and provide a drain recovery device with high heat recovery efficiency, in which condensate can be quickly introduced into the drain reservoir, and hot water does not splash out from the drain reservoir. It is.

本発明によるドレン回収装置は、密閉タンクで
ドレン溜その上方に控室を形成し、給水ポンプと
ドレン溜の下部の間を逆止弁を介在した圧入通路
で連結し、ドレン溜の上部に逆止弁を介在した、
ボイラ等に連結する圧送通路を取り付け、復水の
流入通路14aを控室に連結し、控室の下部とド
レン溜めの上部を逆止弁を介在した流入通路14
bで連結し、ドレン溜の下部に排出通路18aを
連結してドレン溜の上方まで立ち上げ、その排出
通路18aに電気操作弁V1を介在せしめ、控室
の上部に排出通路を連結して立ち下げ、電気操作
弁V1の上方にて排出通路18bに連結し、その
排出通路に電気操作弁V2を介在せしめ、ドレン
溜又は流出通路18aの下部に温度検出器を取り
付け、給水ポンプの運転時/停止時は電気操作弁
V1を閉弁/開弁せしめ、温度検出器の検出温度
が所定温度よりも高い/低いときは電気操作弁V
2を開弁/閉弁せしめる様に制御する手段を設け
たものである。
The drain recovery device according to the present invention has a closed tank that forms a waiting room above the drain reservoir, connects the water supply pump and the lower part of the drain reservoir with a press-fit passage with a check valve interposed, and has a check valve in the upper part of the drain reservoir. mediated by a valve,
A pressure feeding passage connected to a boiler etc. is installed, a condensate inflow passage 14a is connected to a waiting chamber, and a check valve is interposed between the lower part of the waiting chamber and the upper part of the drain reservoir.
b, connect a discharge passage 18a to the lower part of the drain reservoir and raise it above the drain reservoir, interpose an electrically operated valve V1 in the discharge passage 18a, connect the discharge passage to the upper part of the waiting room and lower it. , is connected to the discharge passage 18b above the electrically operated valve V1, an electrically operated valve V2 is interposed in the discharge passage, and a temperature sensor is attached to the lower part of the drain reservoir or outflow passage 18a, and the water supply pump is operated/stopped. When the temperature detected by the temperature detector is higher/lower than a predetermined temperature, the electrically operated valve V1 is closed/opened.
2 is provided with means for controlling the opening/closing of the valve.

上記のドレン回収装置の作用を説明する。給水
ポンプは給水タンクの水を汲上げる様に据付け
る。圧送通路はボイラ等の圧送先に連結する。復
水の流入通路14aは蒸気使用機器等の復水のパ
発生箇所に、通常はスチームトラツプを介在し
て、連結する。流出通路は通常は給水タンクに余
分な水を戻す様に連結する。
The operation of the above drain recovery device will be explained. The water pump will be installed to pump up water from the water tank. The pressure feeding passage is connected to a pressure feeding destination such as a boiler. The condensate inflow passage 14a is connected to a condensate generation location such as steam-using equipment, usually through a steam trap. The outflow passage typically connects to the water supply tank to return excess water.

給水ポンプが停止している時は、電気操作弁V
1は開弁位置に操作されている。圧入通路と圧送
通路に於ては各々に配置した逆止弁の作用で、ド
レン溜から給水ポンプに、ボイラからドレン溜に
向う逆流はできない。従つて、復水は流入通路1
4aを通つて控室に入り流入通路14bを通つて
ドレン溜に入り、ドレン溜内の余分な水は流出通
路を通つて押出される。
When the water supply pump is stopped, the electrically operated valve V
1 is operated to the valve open position. In the press-in passage and the pressure-feed passage, the action of the check valves arranged in each prevents backflow from the drain reservoir to the water supply pump and from the boiler to the drain reservoir. Therefore, the condensate flows through the inflow passage 1
It enters the anteroom through 4a and enters the drain reservoir through the inlet passage 14b, and excess water in the drain reservoir is forced out through the outlet passage.

このとき、温度検出器でドレン溜の下部の水の
温度が検出され、所定温度よりも低ければ電気操
作弁V2が閉弁位置に、高ければ開弁位置に操作
される。従つて、ドレン溜の下部の水が低温であ
れば復水は自らの圧力でドレン溜内に圧入する。
高温になれば流出通路18aと排出通路を通して
控室の上部とドレン溜の下部が連通するので、控
室の復水は重力で静かにドレン溜に流れ下だる。
At this time, the temperature of the water in the lower part of the drain reservoir is detected by a temperature sensor, and if the temperature is lower than a predetermined temperature, the electrically operated valve V2 is operated to the closed position, and if it is higher, the electrically operated valve V2 is operated to the open position. Therefore, if the water in the lower part of the drain reservoir is at a low temperature, the condensate will be forced into the drain reservoir under its own pressure.
When the temperature becomes high, the upper part of the anteroom and the lower part of the drain reservoir are communicated through the outflow passage 18a and the discharge passage, so that condensate in the anteroom quietly flows down to the drain reservoir by gravity.

次に、給水ポンプを運転すると、同時に電気操
作弁V1が閉弁位置に操作され流出通路が閉じら
れる。給水ポンプから出た水は逆止弁を押し開け
て圧入通路を通りドレン溜に入る。すると、ドレ
ン溜の内部の圧力が高まり、流入通路14bの逆
止弁が閉じられるので復水はドレン溜に流入でき
なくなる。一方、圧送通路の逆止弁は押し開けら
れるので、ドレン溜内の水がボイラ等に圧送され
る。
Next, when the water supply pump is operated, the electrically operated valve V1 is simultaneously operated to the closed position and the outflow passage is closed. The water from the water pump pushes open the check valve, passes through the press-in passage, and enters the drain reservoir. Then, the pressure inside the drain reservoir increases and the check valve of the inflow passage 14b is closed, so that condensate cannot flow into the drain reservoir. On the other hand, since the check valve of the pressure feeding passage is pushed open, water in the drain reservoir is forcedly fed to the boiler or the like.

給水ポンプの運転、停止は、従来通り、ボイラ
の水位等に応じて制御され、上記の作動を繰り返
して、自動的に復水を回収し、給水を行う。
As before, the operation and stop of the water supply pump is controlled according to the water level of the boiler, etc., and the above operation is repeated to automatically collect condensate and supply water.

ここで、ドレン溜内には上部程高温に、下部程
低温に水が自然に溜るので、給水時には上部のよ
り高温の水程早く圧送通路を通してボイラ等に送
られる。流出通路をドレン溜の下部に連結したの
で、給水停止時には下部のより低温の水程早く流
出通路を通つて排出せしめられる。
Here, water naturally accumulates in the drain reservoir at a higher temperature in the upper part and a lower temperature in the lower part, so when water is supplied, the higher the temperature in the upper part, the faster the water is sent to the boiler etc. through the pressure feeding passage. Since the outflow passage is connected to the lower part of the drain reservoir, when the water supply is stopped, the lower temperature water is discharged faster through the outflow passage.

従つて、本発明によれば、高温の復水が冷水よ
りも優先的にボイラに圧送されるのでドレン回収
効率が高くなり、また、給水ポンプは冷水を圧送
するだけで高温の熱水は圧送しなくてもよいから
キヤビテーシヨンを発生することもない。
Therefore, according to the present invention, high-temperature condensate is pumped to the boiler with priority over cold water, so the drain recovery efficiency is increased, and the water supply pump only pumps cold water, but not high-temperature hot water. Since it is not necessary to do so, cavitation does not occur.

また、ドレン溜の水温が低いときには復水が自
らの圧力でドレン溜に圧入し、高温になれば重力
の作用で静かに流れ込むので、熱の回収効率が良
く、しかもドレン溜内の水をが飛び出してしまう
こともない。
In addition, when the water temperature in the drain tank is low, the condensate is forced into the drain tank under its own pressure, and when the water temperature becomes high, it flows quietly under the action of gravity, so the heat recovery efficiency is high and the water in the drain tank is It won't fly out.

次に図示の実施例に基づいて詳細に説明する。 Next, a detailed explanation will be given based on the illustrated embodiment.

第1図に関して、給水タンク1の補給水はポン
プPで汲み上げられ、管部材等で作られる給水通
路2,2a,2bを通りボイラ3へ圧送される
が、給水通路2には適当な容積を有するドレン溜
4が通路2aと2b間に設けられている。ドレン
溜4は管材の両端開口に円盤状板材を溶接して作
ることができる。ドレン溜4の容積は必要給水
量、給水頻度、回収すべき復水量等を考慮して決
められる。補給水の圧入口5はドレン溜4の底部
に開口し、細孔6を一様に分布して設けた分散板
7がドレン溜4の下部に横切つて取り付けられて
いる。ドレン溜4の上部に位置して圧送口8が設
けられている。通路2a,2bに配した逆止弁
9,10により流入通路2の流れは矢印方向のみ
に限られる。ボイラ3で発生した蒸気は例えば輪
送管11で蒸気使用機器12に運ばれ、そこで凝
縮して復水となり、復水は一般にスチームトラツ
プ13で蒸気から分離されて選択的に流入通路1
4,14a,14bに自動的に排出される。流入
通路14には、好ましくは給水時間に流入する復
水を全て溜めることができるに充分な容積を持つ
た控室15が、通路14aと14bの間に設けら
れている。控室15は流入通路14を大径にする
ことによつて代用できるが、ドレン溜4と同様
に、あるいはドレン溜4と一体に作ることもでき
る。控室15とドレン溜4の間の流入通路14b
には逆止弁16が配され、矢印方向のみの流れが
許される。給水時にはドレン溜4が昇圧して逆止
弁16は閉じた状態となる。ドレン溜4下部に開
口した流出口17は管部材等で作られる流出通路
18,18a,18b,18cを通つて給水タン
ク1へ連通している。ドレン溜4より上位まで立
ち上がつた通路18aには電気操作弁V1が取り
付けられている。開閉弁V1は給水時に閉じ非給
水時に開くよう電気的に制御される。これはボイ
ラ3の液位検出器19の信号で運転を制御される
ポンプPと電気的に連動できる。ポンプPは液位
検出器19の信号で例えばボイラ3の水位が所定
低水位BLまで下がつたとき運動開始し、その後
所定高位BHまで上昇したとき運転を停止するよ
う制御される。水平通路18bには圧力調節弁2
0が取り付けられている。この弁20にはばねを
有し、一次側が設定に達するまでは閉じており、
その後は一次側を設定圧力に保ちながら開弁す
る、周知の一次圧調節弁が用いられる。これによ
り非給水時のドレン溜4は圧力調節弁20の設定
圧力以上になることはない。ドレン溜4を高大気
圧及び立ち上がり通路18aの水頭圧に調節する
場合には、圧力調節弁20は省略できる。控室1
5の上部から排出通路21が配され、電気操作弁
V2が取り付けられている。排出通路21は開閉
弁V1と調節弁20の間で流出通路18に合流し
ている。開閉弁V2は流出口17に配した温度検
出器22の信号で開閉操作される。即ち、非給水
時に開閉弁V1は開いており、ドレン溜4は圧力
調節弁20の設定圧力まで昇圧することができ
る。もしドレン溜4の熱水が設定圧力に対応する
飽和温度以上に昇温すれば、ドレン溜4内は沸き
立ち、内部熱水は流出通路18を通つて飛び出し
てしまう。従つて流出口17の温度を検出し、上
記飽和温度よりも低い適当な設定温度に達したら
開閉弁V2を開いてしまえば、上記吹き飛ばしは
解消される。そして設定温度に達するまでは開閉
弁V2を閉じ、復水を全てドレン溜4へ導入すれ
ば、迅速にドレン溜4内を高温熱水で満たすこと
ができる。通常回収すべき復水が少量でそれらを
全てドレン溜4に導入して回収する場合に於い
て、上記開閉弁V2と温度検出器22の手段は復
水が異常に多量流入した場合の飛び出し防止の安
全策としても効果がある。開閉弁V2を開くべき
設定温度は流入復水とドレン溜4内の低温水との
混合効率を考慮して決めなければならず、他方混
合効率を高めるために、周囲に小孔23を多数設
けた混合管24を介在するのが好ましい。
Regarding FIG. 1, make-up water in the water supply tank 1 is pumped up by a pump P and sent under pressure to the boiler 3 through water supply passages 2, 2a, and 2b made of pipe members, etc., but the water supply passage 2 has an appropriate volume. A drain reservoir 4 is provided between the passages 2a and 2b. The drain reservoir 4 can be made by welding disk-shaped plates to openings at both ends of a pipe. The volume of the drain reservoir 4 is determined in consideration of the required amount of water supply, the frequency of water supply, the amount of condensate to be collected, etc. The makeup water inlet 5 opens at the bottom of the drain reservoir 4, and a distribution plate 7 having uniformly distributed pores 6 is attached across the lower part of the drain reservoir 4. A pressure feed port 8 is provided above the drain reservoir 4. The flow in the inflow passage 2 is limited only in the direction of the arrow by the check valves 9 and 10 arranged in the passages 2a and 2b. The steam generated in the boiler 3 is conveyed, for example, to the steam-using equipment 12 via a circular feed pipe 11, where it is condensed and becomes condensate.
4, 14a, and 14b. The inlet passage 14 is provided with a waiting chamber 15 between the passages 14a and 14b, preferably having a sufficient volume to store all the condensate flowing in during the water supply period. The anteroom 15 can be replaced by increasing the diameter of the inflow passage 14, but it can also be made in the same way as the drain reservoir 4 or integrally with the drain reservoir 4. Inflow passage 14b between anteroom 15 and drain reservoir 4
A check valve 16 is disposed at , allowing flow only in the direction of the arrow. When water is supplied, the drain reservoir 4 is pressurized and the check valve 16 is closed. An outflow port 17 opened at the bottom of the drain reservoir 4 communicates with the water supply tank 1 through outflow passages 18, 18a, 18b, and 18c made of pipe members or the like. An electrically operated valve V1 is attached to a passage 18a rising above the drain reservoir 4. The on-off valve V1 is electrically controlled to close when water is supplied and open when water is not supplied. This can be electrically interlocked with a pump P whose operation is controlled by a signal from a liquid level detector 19 of the boiler 3. The pump P is controlled by a signal from the liquid level detector 19 so that, for example, when the water level of the boiler 3 falls to a predetermined low water level BL, the pump P starts operating, and then stops when the water level rises to a predetermined high water level BH. A pressure regulating valve 2 is provided in the horizontal passage 18b.
0 is attached. This valve 20 has a spring and remains closed until the primary side reaches a setting.
Thereafter, a well-known primary pressure regulating valve is used, which opens while maintaining the primary pressure at the set pressure. As a result, the pressure in the drain reservoir 4 will not exceed the set pressure of the pressure regulating valve 20 when water is not supplied. When adjusting the drain reservoir 4 to high atmospheric pressure and the water head pressure of the rising passage 18a, the pressure regulating valve 20 can be omitted. Waiting room 1
A discharge passage 21 is arranged from the upper part of 5, and an electrically operated valve V2 is attached thereto. The discharge passage 21 joins the outflow passage 18 between the on-off valve V1 and the control valve 20. The on-off valve V2 is opened and closed in response to a signal from a temperature sensor 22 disposed at the outlet 17. That is, when water is not supplied, the on-off valve V1 is open, and the drain reservoir 4 can be pressurized to the set pressure of the pressure control valve 20. If the temperature of the hot water in the drain reservoir 4 rises above the saturation temperature corresponding to the set pressure, the inside of the drain reservoir 4 will boil and the internal hot water will flow out through the outflow passage 18. Therefore, by detecting the temperature of the outlet 17 and opening the on-off valve V2 when it reaches an appropriate set temperature lower than the saturation temperature, the above-mentioned blow-off can be eliminated. If the on-off valve V2 is closed until the set temperature is reached and all of the condensate is introduced into the drain reservoir 4, the interior of the drain reservoir 4 can be quickly filled with high-temperature hot water. Normally, when the amount of condensate to be recovered is small and all of it is introduced into the drain reservoir 4 for recovery, the on-off valve V2 and temperature sensor 22 are used to prevent condensate from jumping out in the event that an abnormally large amount of condensate flows in. It is also effective as a safety measure. The set temperature at which the on-off valve V2 should be opened must be determined in consideration of the mixing efficiency of the inflow condensate and the low temperature water in the drain reservoir 4. On the other hand, in order to increase the mixing efficiency, a large number of small holes 23 are provided around the valve. Preferably, a mixing tube 24 is provided.

次に第1図に関し作動を説明する。図は蒸発が
進みボイラ3の水位が図示の位置まで下つた状態
を示すとする。このとき、給水ポンプPは停止し
開閉弁V1は開き、ドレン溜4内は未だ低温で開
閉弁V2は閉じているとする。流入通路14を通
つて復水及び一部再蒸発蒸気はドレン溜4内に圧
入する。そしてドレン溜4内の低温水と混合す
る。復水が流入した量だけドレン溜4内の液は流
出通路18を通つて給水タンク1へ押し出され
る。このとき、ドレン溜4内にて低温水ほど下部
に溜まる性質があり、流出口17がドレン溜4の
下部に開口しているので、低温水が優先的に押し
出されることになり、ドレン溜4には上部ほど高
温水が溜まる。この様にして復水がドレン溜4に
導入され、ドレン溜4内が沸き立ち内部熱水が吹
き飛ばされる出来る限り寸前の設定温度に流出口
17が達したら、温度検出器22の信号で開閉弁
V2が開き、控室15上部から再蒸発蒸気が排出
され、吹き飛ばしが未然に防止される。排出通路
21は流出通路18に合流し、ドレン溜4は通路
14bからも通路18aからも同じ圧力が作用す
ることになり、控室15に溜つた復水がドレン溜
4に流下すればドレン溜4の下部の低温水が通路
18から押し出される作用は続けられる。圧力調
節弁20は排出通路21に対しても抵抗として働
き再蒸発蒸気の流出を低減する。次にボイラ3の
水位が所定低水位BLまで下がると、液位検出器
19の信号で開閉弁V1は閉じポンプPは駆動さ
れ、補給水が圧入口5からドレン溜4底部に入
り、分散板7を通つてドレン溜4一杯に広がりピ
ストンの如くドレン溜4内の熱水を押し上げ、圧
送口8から通路2bを通つてボイラ3へ送り込
む。圧送口8はドレン溜4の上部に位置している
ので上部の熱水が優先的に送り出される。熱水だ
けでは量が不足すれば補給水も引き続きボイラ3
へ圧入される。この給水時、ドレン溜4が高圧で
逆止弁16は閉じた状態にあり、スチームトラツ
プ13からの復水は控室15に溜まる。ドレン溜
4に低温の補給水が圧入されると流出口17の温
度が下がり、それを検出した温度検出器22の信
号で開閉弁V2は閉じられる。給水時間が長く排
出通路21が閉じている為にスチームトラツプ1
3や蒸気使用機器12等へ復水排出上障害が生じ
る危険がある場合には、電気操作弁V2は非給水
中は開弁するように制御すればよい。そしてボイ
ラ3の水位が所定高位BHまで達したら、液位検
出器19の信号で給水ポンプPを停止し、開閉弁
V1を開く。このとき開閉弁V2は閉じておく。
すると控室15に溜つた復水は混合管24の細孔
23から噴き出し、ドレン溜4の低温水と混合
し、余分の低温水は流出通路18から給水タンク
1へ排出される。この様にして流入通路14を通
つて復水の全てがドレン溜4に導入され、ドレン
溜4内は迅速に熱水に置換され、回収すべき復水
量が少ない場合には流入復水の全てがドレン溜4
に導入されることになる。そして蒸発が進めば図
示の状態となつて、上記説明の如き動作を繰り返
す。
Next, the operation will be explained with reference to FIG. The figure shows a state in which evaporation has progressed and the water level in the boiler 3 has fallen to the position shown in the figure. At this time, it is assumed that the water supply pump P is stopped, the on-off valve V1 is opened, and the inside of the drain reservoir 4 is still at a low temperature, and the on-off valve V2 is closed. The condensate and partially reevaporated steam are forced into the drain reservoir 4 through the inlet passage 14 . Then, it is mixed with the low temperature water in the drain reservoir 4. The liquid in the drain reservoir 4 is pushed out to the water supply tank 1 through the outflow passage 18 by the amount of condensate that has flowed in. At this time, lower temperature water has a tendency to accumulate at the lower part of the drain reservoir 4, and since the outlet 17 is opened at the lower part of the drain reservoir 4, the lower temperature water is pushed out preferentially, and the drain reservoir 4 The higher the top, the more high-temperature water accumulates. In this way, the condensate is introduced into the drain reservoir 4, and when the outlet 17 reaches the set temperature as close as possible to the point at which the inside of the drain reservoir 4 boils and the internal hot water is blown away, a signal from the temperature detector 22 is activated to open/close the valve V2. is opened, and the re-evaporated steam is discharged from the upper part of the waiting chamber 15, thereby preventing blow-off. The discharge passage 21 merges with the outflow passage 18, and the same pressure acts on the drain reservoir 4 from both the passage 14b and the passage 18a.If the condensate accumulated in the anteroom 15 flows into the drain reservoir 4, the drain reservoir 4 The effect of forcing the lower temperature water out of the passage 18 continues. The pressure regulating valve 20 also acts as a resistance against the discharge passage 21 to reduce the outflow of re-evaporated steam. Next, when the water level in the boiler 3 falls to the predetermined low water level BL, the on-off valve V1 is closed by the signal from the liquid level detector 19, the pump P is driven, and makeup water enters the bottom of the drain reservoir 4 from the pressure inlet 5, and the dispersion plate 7, it spreads to fill the drain reservoir 4, pushes up the hot water in the drain reservoir 4 like a piston, and sends it into the boiler 3 through the pressure feed port 8 through the passage 2b. Since the pressure feed port 8 is located at the upper part of the drain reservoir 4, hot water from the upper part is preferentially sent out. If hot water alone is insufficient, make-up water will continue to be supplied to Boiler 3.
is press-fitted into the During this water supply, the pressure in the drain reservoir 4 is high and the check valve 16 is in a closed state, so that condensate from the steam trap 13 accumulates in the anteroom 15. When low-temperature make-up water is pressurized into the drain reservoir 4, the temperature at the outlet 17 decreases, and the on-off valve V2 is closed in response to a signal from the temperature sensor 22 that detects this. Steam trap 1 is closed because the water supply time is long and the discharge passage 21 is closed.
If there is a risk of an obstruction in the condensate discharge to the pump 3 or steam-using equipment 12, etc., the electrically operated valve V2 may be controlled to open when water is not being supplied. When the water level in the boiler 3 reaches a predetermined high level BH, the water supply pump P is stopped by a signal from the liquid level detector 19, and the on-off valve V1 is opened. At this time, the on-off valve V2 is closed.
Then, the condensate accumulated in the waiting chamber 15 blows out from the pores 23 of the mixing pipe 24 and mixes with the low-temperature water in the drain reservoir 4, and the excess low-temperature water is discharged from the outflow passage 18 to the water supply tank 1. In this way, all of the condensate is introduced into the drain reservoir 4 through the inflow passage 14, and the inside of the drain reservoir 4 is quickly replaced with hot water. is the drain sump 4
It will be introduced in As the evaporation progresses, the state shown in the figure is reached, and the operations described above are repeated.

上記説明から容易に推考できることであるが、
前回の給水終了からドレン溜4内が沸き立つまで
の時間を予想して、温度検出器22を用いずに、
前回給水終了から所定の設定時間は開閉弁V2を
閉じておき、その他は開くように制御するタイマ
手段を用いることができる。第2図はその様なタ
イマ手段を用いて電気操作弁V2を制御するタイ
ムチートの一例である。時刻T1にポンプPが起
動し、このとき弁V1は閉じ、弁V2は開いてい
る。そして時刻T2で給水を終了しポンプPが停
止すると弁V1は開き、弁V2は閉じる。弁V2
はドレン溜4内が沸き立つと推測される時刻の前
の時刻T3まで閉弁を続け、その後のT1′に至
つてポンプPや弁V1は前回同様の動作を繰り返
すものである。
As can be easily inferred from the above explanation,
By predicting the time from the end of the previous water supply until the inside of the drain reservoir 4 boils, without using the temperature detector 22,
It is possible to use a timer means that controls the on-off valve V2 to be closed for a predetermined set time from the end of the previous water supply and opened at other times. FIG. 2 is an example of a time cheat that uses such a timer means to control the electrically operated valve V2. Pump P is started at time T1, and at this time valve V1 is closed and valve V2 is open. Then, at time T2, when the water supply ends and the pump P stops, the valve V1 opens and the valve V2 closes. Valve V2
The valve continues to be closed until time T3, which is before the time when the inside of the drain reservoir 4 is estimated to boil, and then, until time T1', the pump P and valve V1 repeat the same operation as last time.

上記説明から容易に推考し得ることと思われる
が、時刻T3にて弁V2を開くときに、弁V1を
同時に閉じてしまつても、本発明の利益は損われ
ない。即ち、ドレン溜4内にこれ以上復水を流入
させるとドレン溜4内が沸き立つてしまうと思わ
れるときに、弁V1を閉じて流出通路の流通を禁
止するならば、ドレン溜4内の熱水は飛び出すこ
とができない。
As can be easily inferred from the above explanation, even if valve V1 is closed at the same time when valve V2 is opened at time T3, the benefits of the present invention are not impaired. In other words, if it is thought that the inside of the drain reservoir 4 will boil if more condensate is allowed to flow into the drain reservoir 4, if the valve V1 is closed to prohibit the flow of water through the outflow passage, the heat inside the drain reservoir 4 will be reduced. Water cannot jump out.

以上の如く、本発明によれば、前回給水終了後
速かにドレン溜内の低温補給水は高温熱水で置換
され、しかもドレン溜内が沸き立つて内部熱水が
飛び出してしまうこともなく、回収効率の高いド
レン回収装置が得られる。
As described above, according to the present invention, the low-temperature make-up water in the drain reservoir is quickly replaced with high-temperature hot water after the previous water supply ends, and the internal hot water does not spill out due to the inside of the drain reservoir boiling. A drain recovery device with high recovery efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のドレン回収装置の
概略図であり、第2図は他の実施例の動作を説明
するタイムチートである。 Pは給水ポンプ、V1とV2は電気操作弁、2
は給水通路、3はボイラ、4はドレン溜、14は
流入通路、15は控室、17は流出口、18は流
出通路、20は圧力調節弁、21は排出通路、2
2は温度検出器である。
FIG. 1 is a schematic diagram of a drain recovery device according to one embodiment of the present invention, and FIG. 2 is a time cheat explaining the operation of another embodiment. P is a water supply pump, V1 and V2 are electrically operated valves, 2
1 is a water supply passage, 3 is a boiler, 4 is a drain reservoir, 14 is an inflow passage, 15 is a waiting room, 17 is an outlet, 18 is an outflow passage, 20 is a pressure control valve, 21 is a discharge passage, 2
2 is a temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉タンクでドレン溜とその上方に控室を形
成し、給水ポンプとドレン溜の下部の間を逆止弁
を介在した圧入通路で連結し、ドレン溜の上部に
逆止弁を介在した、ボイラ等の圧送先に連結する
圧送通路を取り付け、復水の流入通路14aを控
室に連結し、控室の下部とドレン溜めの上部を逆
止弁を介在した流入通路14bで連結し、ドレン
溜の下部に排出通路18aを連結してドレン溜の
上方まで立ち上げ、その排出通路18aに電気操
作弁V1を介在せしめ、控室の上部に排出通路を
連結して立ち下げ、電気操作弁V1の上方にて排
出通路18bに連結し、その排出通路に電気操作
弁V2を介在せしめ、ドレン溜又は流出通路18
aの下部に温度検出器を取り付け、給水ポンプの
運転時/停止時は電気操作弁V1を閉弁/開弁せ
しめ、温度検出器の検出温度が所定温度よりも高
い/低いときは電気操作弁V2を開弁/閉弁せし
める様に制御する手段を設けた、ドレン回収装
置。
1 A boiler in which a drain reservoir and an anteroom are formed above the drain reservoir in a closed tank, a water supply pump and the lower part of the drain reservoir are connected by a press-in passage with a check valve interposed, and a check valve is interposed in the upper part of the drain reservoir. The condensate inlet passage 14a is connected to the anteroom, and the lower part of the anteroom and the upper part of the drain reservoir are connected by the inlet passage 14b with a check valve interposed between them. A discharge passage 18a is connected to the upper part of the waiting room and raised above the drain reservoir, an electrically operated valve V1 is interposed in the discharge passage 18a, and a discharge passage 18a is connected to the upper part of the waiting room and lowered, and above the electrically operated valve V1. Connected to the discharge passage 18b, an electrically operated valve V2 is interposed in the discharge passage, and the drain reservoir or outflow passage 18 is connected to the discharge passage 18b.
A temperature sensor is installed at the bottom of a, and the electrically operated valve V1 is closed/opened when the water supply pump is running/stopped, and when the temperature detected by the temperature sensor is higher/lower than a predetermined temperature, the electrically operated valve V1 is closed/opened. A drain recovery device equipped with means for controlling V2 to open/close the valve.
JP6839579A 1979-05-31 1979-05-31 Drain recovery apparatus Granted JPS55160203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6839579A JPS55160203A (en) 1979-05-31 1979-05-31 Drain recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6839579A JPS55160203A (en) 1979-05-31 1979-05-31 Drain recovery apparatus

Publications (2)

Publication Number Publication Date
JPS55160203A JPS55160203A (en) 1980-12-13
JPS6113122B2 true JPS6113122B2 (en) 1986-04-11

Family

ID=13372465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6839579A Granted JPS55160203A (en) 1979-05-31 1979-05-31 Drain recovery apparatus

Country Status (1)

Country Link
JP (1) JPS55160203A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006979B2 (en) * 2012-05-25 2016-10-12 株式会社テイエルブイ Condensate recovery device

Also Published As

Publication number Publication date
JPS55160203A (en) 1980-12-13

Similar Documents

Publication Publication Date Title
WO1999045190A1 (en) Device for ironing laundry
JPS6113122B2 (en)
US4304197A (en) Condensate recovery system
JP6248753B2 (en) Boiler system
JPS6112162B2 (en)
JPS5986847A (en) Hot-water boiler
JPS6222721Y2 (en)
KR840000333B1 (en) Condensate recovery system
JP4030390B2 (en) Hot water storage water heater
KR920001625Y1 (en) Device for circulation of hot-water heater
US111542A (en) Improvement in automatic steam water-elevators
JPS6113525B2 (en)
JPS5833442B2 (en) Drain recovery device
US1670665A (en) Water heater
JP6265002B2 (en) Boiler system
JP3648856B2 (en) Bath kettle with water heater
JPS5841405B2 (en) Drain collection device
US1755611A (en) Pump
JP3606046B2 (en) Oil level control device
JPS6141364B2 (en)
US1932111A (en) Feed water heater
JPS5947837B2 (en) Condensate recovery device
KR820002445Y1 (en) Water circulating apparatus for water boiler
JPH0151743B2 (en)
US809022A (en) Automatic lift-separator.