JPS61130879A - Resistance measuring apparatus - Google Patents

Resistance measuring apparatus

Info

Publication number
JPS61130879A
JPS61130879A JP25320884A JP25320884A JPS61130879A JP S61130879 A JPS61130879 A JP S61130879A JP 25320884 A JP25320884 A JP 25320884A JP 25320884 A JP25320884 A JP 25320884A JP S61130879 A JPS61130879 A JP S61130879A
Authority
JP
Japan
Prior art keywords
resistance
multiplexer
wiring
resistor
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25320884A
Other languages
Japanese (ja)
Inventor
Yoshiji Fukai
深井 吉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP25320884A priority Critical patent/JPS61130879A/en
Publication of JPS61130879A publication Critical patent/JPS61130879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To simplify the construction, by providing a driver at one end of sensor resistances in measuring resistors to supply current while a common zero suppression resistance is connected to the other end thereof to reduce the number of required drivers and zero suppression resistances to only one. CONSTITUTION:This measuring apparatus is made up of temperature measuring resistors 11, 12 and 1n respectively having sensor resistances Rt1, Tt2...Rtn and wiring resistances ra1, ra2 and ra3, a driver 20 comprising an operational amplifier OP1, first, second and third multiplexers MX1, MX2 and MX3, a zero suppression resistance Ro and a signal processing circuit 5. When the multiplexers MX1, MX2 and MX3 select the temperature measuring resistor 11, current (i) from the driver 20 flows through a series circuit comprising the wiring resistance ra1, the sensor resistance Rt1, a wiring resistance rb1 and the zero suppression resistance Ro to be controlled to a constant value. This makes the output voltage eo of the signal processing circuit 5 free from the effect of the wiring resistance ra1 and rb1 thereby simplifying the construction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明に、複数個の測温抵抗体からの信号を順次入力し
、抵抗測定を行なう抵抗測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resistance measuring device that measures resistance by sequentially inputting signals from a plurality of resistance temperature sensors.

(従来の技術) 第2図は、測温抵抗体の抵抗値を測定する従来装置の接
続図で、ここではひとつの測温抵抗体についてのみ示す
。図において、1は測温抵抗体、2は各測温抵抗体1に
対応して設けられている入力チャンネル部、3は各入力
チャンネル部を選択するマルチプレクサ・スイッチ、4
はマルチプレクサ・スイッチ3で選択されたアナログ信
号が伝送されるアナログパス、5はアナログバス4を介
して伝送された信号を演算処理する各チャンネル共通の
信号処理部である。
(Prior Art) FIG. 2 is a connection diagram of a conventional device for measuring the resistance value of a resistance temperature detector, and only one resistance temperature detector is shown here. In the figure, 1 is a resistance temperature sensor, 2 is an input channel section provided corresponding to each resistance temperature sensor 1, 3 is a multiplexer switch for selecting each input channel section, and 4 is a multiplexer switch for selecting each input channel section.
Reference numeral 5 indicates an analog path through which the analog signal selected by the multiplexer switch 3 is transmitted, and 5 indicates a signal processing unit common to each channel that performs arithmetic processing on the signal transmitted via the analog bus 4.

入力チャンネル部2において、21.22はセルフレギ
ーレーション形の定電流回路で、測温抵抗体10入力端
11.12に並列して定電流iA、 iBを供給する。
In the input channel unit 2, reference numerals 21 and 22 are self-regulatory constant current circuits that supply constant currents iA and iB in parallel to the input terminals 11 and 12 of the resistance temperature detector 10.

23はゼロ・サプレッション用抵抗で、例えばIA =
 iB = 2.5 mA 、測温抵抗体1として白金
100Ω(atO℃) とした場合、この抵抗23は1
000に選定され、0℃1mv/℃  の伝送信号にす
る。
23 is a zero suppression resistor, for example IA =
When iB = 2.5 mA and platinum 100Ω (atO℃) is used as the resistance temperature detector 1, this resistance 23 is 1
000, and the transmission signal is set at 0℃1mv/℃.

信号処理回路5は、アナログバス4の信号6H。The signal processing circuit 5 receives the signal 6H of the analog bus 4.

eLヲ人力し、eH−eL  なる演算処理を行なりて
、測温抵抗体1の抵抗値Rtを配線抵抗等の影響を受け
ることなく求める。
The resistance value Rt of the temperature sensing resistor 1 is obtained without being affected by wiring resistance etc. by manually performing eL and performing the arithmetic process eH-eL.

(発明が解決しようとする問題点) このような構成の従来装fは、各チャ/ネル部にそれぞ
れ2つの定電流回路が必要であシ、ま九、ゼロサプレッ
ション抵抗23をそれぞれの測温抵抗体に接続する必要
があって、全体として構成が複雑になるという問題点が
ある。
(Problems to be Solved by the Invention) The conventional device f with such a configuration requires two constant current circuits for each channel section, and also requires the zero suppression resistor 23 to be connected to each temperature measuring circuit. There is a problem in that it needs to be connected to a resistor, making the overall configuration complicated.

本発明は、従来装置におけるこのような問題点に鑑みて
なされたもので、その目的は、定電流回路及びゼロサブ
レッジコン抵抗が全体でひとつで済むようにすることに
よって、周率な構成で、かつ配線抵抗の抵抗値変化の影
!#を受けない抵抗測定極#を実現しようとするもので
ある。
The present invention has been made in view of the above-mentioned problems in conventional devices.The purpose of the present invention is to reduce the number of constant current circuits and zero subledger resistors to one in total, thereby achieving a uniform configuration. , and the shadow of resistance value change of wiring resistance! This is an attempt to realize a resistance measurement pole that does not receive #.

(問題点を解決するtめの手段) 第1のマルチプレクサと、各測温抵抗体のセンナ抵抗(
Rt)の一端にそれぞれ配線抵抗(ra)及び前記第1
のマルチプレクサを介して電流を供給するドライバと、
前記各センサ抵抗(Rt)の他端にそれぞれ配線抵抗(
rb) を介して共通に接続したひとつのゼロサプレッ
ション抵抗(Ro) と、このゼロサプレッション抵抗
に生ずる電圧を前記ド2イバに負帰還ぢせる回路手段と
、前記配線抵抗(ra八へンサ抵抗(Rt)、配線抵抗
(rb)及びゼロサブレッジコン抵抗(Ro)からなる
各直列回路の電圧を前記第1のマルチプレクサと同期し
て順次選択して取出す第2のマルチプレクサと、前記配
線抵抗rb  及びゼロサプレッション抵抗に生ずる電
圧を前記第1のマルチプレクサと同期して順次選択して
取出す第5のマルチプレクサと、前記第2のマルチプレ
クサで取出した電圧信号sHと前記第6のマルチプレク
サで取出した電圧信号eLとを入力し、少なくとも(a
H−2・eL)なる演算を含む信号処理を行なって各セ
ンサ抵抗(Rt)の抵抗値に関連した信号を出力する信
号処理回路とを備えたことを特徴としている。
(Tth means for solving the problem) The first multiplexer and the Senna resistance of each resistance temperature sensor (
A wiring resistance (ra) and the first
a driver that supplies current through a multiplexer of
A wiring resistor (
one zero-suppression resistor (Ro) commonly connected through one zero-suppression resistor (Ro), a circuit means for negative feedback of the voltage generated across the zero-suppression resistor to the driver, and one zero-suppression resistor (Ro) connected in common via a second multiplexer that sequentially selects and extracts the voltage of each series circuit consisting of a wiring resistance (rb), a wiring resistance (rb), and a zero subregion resistance (Ro) in synchronization with the first multiplexer; a fifth multiplexer that sequentially selects and extracts the voltage generated in the zero suppression resistor in synchronization with the first multiplexer; a voltage signal sH extracted by the second multiplexer; and a voltage signal eL extracted by the sixth multiplexer. and at least (a
The sensor is characterized by comprising a signal processing circuit that performs signal processing including the calculation H-2.eL) and outputs a signal related to the resistance value of each sensor resistor (Rt).

(実施例) 第1図は、本発明に係る装置の一例を示す構成接続図で
ある。図において、11.12.・・・1nはいずれも
測温抵抗体で、それぞれ温度測定する個所に設置されて
いる。これらの各測温抵抗体において、Rtl、 Rt
2− Rtnは、センナ抵抗、  ral * ra2
−ran+ rbl、 rb2°°°rbn、  rc
l、rc2+−rCn  はいずれも配線抵抗を示して
いる。20は各センサ抵抗Rt1.Rt2・・・Rtn
の一端に第1のマルチプレクサ’MDCj及びそれぞれ
配線抵抗ra1. ra2.・・・ran を介して′
MIc流を供給するドライバで、ここでは一方の入力端
←)に基準電圧Vl”e fが印加される演算増巾器O
PIで構成されている。なお、第1のマルチプレクサM
X1は、ドライバ20の出力端を順次配線抵抗r’Lr
a2・・・ranの一端に接続している。ROは各セン
サ抵抗の他端にそれぞれ配線抵抗rb1.rb2・・・
rbn tl−介して接続された共通のゼロサプレッシ
ョン抵抗である。このゼロサプレッション抵抗ROに生
ずる電圧ef  は、ドライバ20(演算増巾器0P1
)に負帰還されている。MX2は第2のマルチプレクサ
で、配線抵抗ra、セ/す抵抗Rt、配線抵抗rb  
及びゼロサグレッ7.ン抵抗R,からなる各直列回路の
電圧eH1、aH2・・・eHn’(、第1のマルチプ
レクサMX1と同期して順次選択して取出す。
(Example) FIG. 1 is a configuration and connection diagram showing an example of a device according to the present invention. In the figure, 11.12. . . . 1n are all resistance temperature detectors, and each is installed at a location where the temperature is to be measured. In each of these resistance temperature sensors, Rtl, Rt
2- Rtn is the senna resistance, ral * ra2
-ran+ rbl, rb2°°°rbn, rc
1 and rc2+-rCn both indicate wiring resistance. 20 is each sensor resistor Rt1. Rt2...Rtn
A first multiplexer 'MDCj and wiring resistances ra1. ra2. ...through ran′
A driver that supplies MIc current, here an operational amplifier O to which a reference voltage Vl''e f is applied to one input terminal ←)
Consists of PI. Note that the first multiplexer M
X1 is a wiring resistance r'Lr that sequentially connects the output terminal of the driver 20.
a2...Connected to one end of ran. RO is connected to the other end of each sensor resistor by a wiring resistor rb1. rb2...
rbn tl - a common zero suppression resistor connected through. The voltage ef generated at this zero suppression resistor RO is
) has been given negative feedback. MX2 is the second multiplexer, which has wiring resistance ra, connection resistance Rt, and wiring resistance rb.
and zero sagre7. The voltages eH1, aH2, .

MX3は第3のマルチプレクサで、配線抵抗rb  及
びゼロサプレッション抵抗ROからなる直列回路に生ず
る電圧eL1. eL2・・・eLnを、第1のマルチ
プレクサMX1と同期してIII次選択して取出す。5
は信号処理回路で、第2のマルチプレクサMX2で取出
した電圧信号eHと、第3のマルチプレクサMX3で取
出した電圧信号eL  とt人カし、少なくとも、eH
−2・eLなる演31.全行なりて、各センサ抵抗Rt
l 、 Rt2 、・・・Rtnの抵抗値に関連した信
号e0を出力する。この信号処理回路5は、ここでは、
演算増巾器op2で構成しである。
MX3 is a third multiplexer, which outputs voltages eL1. eL2...eLn are selected and taken out in synchronization with the first multiplexer MX1. 5
is a signal processing circuit that combines the voltage signal eH taken out by the second multiplexer MX2, the voltage signal eL taken out by the third multiplexer MX3, and at least eH
-2・eL performance 31. For all rows, each sensor resistance Rt
A signal e0 related to the resistance values of l, Rt2, . . . Rtn is output. This signal processing circuit 5 is as follows.
It consists of an operational amplifier op2.

このように構成した装置の動作を次に説明する。The operation of the apparatus configured in this way will be explained next.

第1.第26第3の各マルチプレクサMX1 、 MX
2 。
1st. 26th each third multiplexer MX1, MX
2.

MX3は、いずれも同期して動作しておシ、測温抵抗体
11.12.・・・lnを順次選択している。
MX3 all operate synchronously, and resistance temperature detectors 11, 12. . . . ln are selected in sequence.

いま、各ff /L/ fプレク丈MX1 、 MX2
 、 MX3が、測温抵抗体11を選択しているものと
すると、ドライバ20からの電流iは、測温抵抗体1の
配線抵抗ra1 、センサ抵抗Rti 、配線抵抗rb
1及びゼロサプレッション抵抗Ro  からなる直列回
路に流れる。この時、センサ抵抗Rt  i含む直列回
路の両端には、(1)式で表わされる電圧eHi f生
ずる。
Now, each ff / L / f plexi length MX1, MX2
, MX3 selects the resistance temperature detector 11, the current i from the driver 20 is the wiring resistance ra1 of the resistance temperature detector 1, the sensor resistance Rti, and the wiring resistance rb.
1 and a zero suppression resistor Ro. At this time, a voltage eHi f expressed by equation (1) is generated across the series circuit including the sensor resistor Rti.

eHl = (ra1+Rt1+rb1+Ro) ・i
    −・” (11また、配線抵抗rb1とゼロサ
プレッション抵抗ROからなる直列回路の両端にi4、
+21式で表わされる電圧eL1を生ずる。
eHl = (ra1+Rt1+rb1+Ro) ・i
-・” (11 In addition, i4 is connected to both ends of the series circuit consisting of wiring resistance rb1 and zero suppression resistance RO,
A voltage eL1 expressed by the formula +21 is generated.

eLl = (rbl + Ro ) ・i     
   ・−・・(21また、ゼロサプレッション抵抗R
,の両端には(3)式で表わさ几る延圧ef  が生ず
る。
eLl = (rbl + Ro) ・i
...(21 Also, zero suppression resistance R
, a rolling pressure ef expressed by equation (3) is generated at both ends of .

e f  =  Ro−i             
         −−(31(3)式で表わされる電
圧ef  は、ドライバ20に負帰還されており、ドラ
イバ20は、ef=Vrefとなるように出力直流iを
市1j御する。よって、出力電流1は、(4)式の通り
となり、基準電圧Vrefに対応した一定1直に維持さ
れる。
e f = Ro−i
--(31) The voltage ef expressed by equation (3) is negatively fed back to the driver 20, and the driver 20 controls the output DC i so that ef=Vref. Therefore, the output current 1 is , (4), and is maintained at a constant value of 1 corresponding to the reference voltage Vref.

・  Vr@f           ・・・・・・(
4)O 共通の信号処理回路5は、第2.第3のマルチプレクサ
MX2. MX3  を介して前記+11式、(21式
で表わされる電圧信号eH1、eLl ’に入力し、(
5)式に示す演算を行ない、出力電圧e。全得る。
・Vr@f・・・・・・(
4)O The common signal processing circuit 5 is connected to the second. Third multiplexer MX2. Input the voltage signals eH1 and eLl' expressed by the +11 formula and (21 formula) through the MX3, and (
5) Perform the calculation shown in the formula to obtain the output voltage e. Get all.

e  = eHl −2・eLl          
  ・・・・・・(5)■ = (ral + Rtl −rbl +Ro ) ・
12frb1+Ro)・ t (5)式において、配線抵抗ra1=rb1  とする
と、(5)式は(6)式の通りとなる。
e = eHl −2・eLl
・・・・・・(5) ■ = (ral + Rtl −rbl +Ro) ・
12frb1+Ro)·t In equation (5), if wiring resistance ra1=rb1, equation (5) becomes equation (6).

e  = (Rtl −Ro ) ・i       
−−tel従って、信号処理回路5の出力電圧e μ、
配線抵抗ra1 、 rbl等の影擲を受は丁゛、セン
サ抵抗Rt1の値に対応したものとなる。
e = (Rtl-Ro) ・i
--tel Therefore, the output voltage e μ of the signal processing circuit 5,
Under the influence of the wiring resistances ra1, rbl, etc., the value corresponds to the value of the sensor resistance Rt1.

以下、第1.第2.第3のマルチプレクサMX1゜MX
2 、 MX3によって、各測温抵抗体12・・・1n
を同様に選択することによって、各センサ抵抗Rt2・
・・Rtn f各配線抵抗ra2・・・ran、 rb
2・・・rbn  の影響金堂けずに測定することがで
きる。
Below, Part 1. Second. Third multiplexer MX1゜MX
2. By MX3, each resistance temperature sensor 12...1n
By selecting similarly, each sensor resistance Rt2・
...Rtn f each wiring resistance ra2...ran, rb
2...The influence of rbn can be measured without any damage.

なお、上記の実施例では、信号処理回路5を演算増巾器
で構成したものであるが、他の回路、例えばA/D変換
器やマイクロプロセッサ等を含むディジタル回路で構成
してもよい。
In the above embodiment, the signal processing circuit 5 is constructed of an operational amplifier, but it may be constructed of other circuits, such as a digital circuit including an A/D converter, a microprocessor, and the like.

(発明の効果) 以上説明したように、本発明によれば、ドライバ及びゼ
ロサプレッション抵抗が全体でひとつで済むので、簡単
な構成で、各測温抵抗体への配線抵抗の影響を受けない
抵抗測定装置が実現できる。
(Effects of the Invention) As explained above, according to the present invention, only one driver and one zero suppression resistor are required, so the configuration is simple and the resistance is not affected by the wiring resistance to each resistance temperature detector. A measuring device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す構成朕続図、第2図は
従来装置の接続図である。
FIG. 1 is a configuration diagram showing an example of the device of the present invention, and FIG. 2 is a connection diagram of a conventional device.

Claims (1)

【特許請求の範囲】[Claims] 第1のマルチプレクサと、各測温抵抗体のセンサ抵抗(
Rt)の一端にそれぞれ配線抵抗(ra)及び前記第1
のマルチプレクサを介して電流を供給するドライバと、
前記各センサ抵抗(Rt)の他端にそれぞれ配線抵抗(
rb)を介して共通に接続したひとつのゼロサプレッシ
ョン抵抗(Ro)と、このゼロサプレッション抵抗に生
する電圧を前記ドライバに負帰還させる回路手段と、前
記配線抵抗(ra)、センサ抵抗(Rt)、配線抵抗(
rb)及びゼロサプレッション抵抗(Ro)からなる各
直列回路の電圧を前記第1のマルチプレクサと同期して
順次選択して取出す第2のマルチプレクサと、前記配線
抵抗rb及びゼロサプレッション抵抗に生ずる電圧を前
記第1のマルチプレクサと同期して順次選択して取出す
第3のマルチプレクサと、前記第2のマルチプレクサで
取出した電圧信号eHと前記第3のマルチプレクサで取
出した電圧信号eLとを入力し、少なくとも(eH−2
・eL)なる演算を含む信号処理を行なって各センサ抵
抗(Rt)の抵抗値に関連した信号を出力する信号処理
回路とを備えた抵抗測定装置。
The first multiplexer and the sensor resistance (
A wiring resistance (ra) and the first
a driver that supplies current through a multiplexer of
A wiring resistor (
one zero-suppression resistor (Ro) commonly connected through one zero-suppression resistor (Ro), a circuit means for negative feedback of the voltage generated in this zero-suppression resistor to the driver, the wiring resistor (RA), and the sensor resistor (Rt). , wiring resistance (
a second multiplexer that sequentially selects and extracts the voltage of each series circuit consisting of the wiring resistance rb) and the zero suppression resistor (Ro) in synchronization with the first multiplexer; A third multiplexer that sequentially selects and extracts data in synchronization with the first multiplexer, a voltage signal eH extracted by the second multiplexer, and a voltage signal eL extracted by the third multiplexer are input, and at least (eH -2
- A resistance measuring device equipped with a signal processing circuit that performs signal processing including calculations such as eL) and outputs a signal related to the resistance value of each sensor resistor (Rt).
JP25320884A 1984-11-30 1984-11-30 Resistance measuring apparatus Pending JPS61130879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25320884A JPS61130879A (en) 1984-11-30 1984-11-30 Resistance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25320884A JPS61130879A (en) 1984-11-30 1984-11-30 Resistance measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61130879A true JPS61130879A (en) 1986-06-18

Family

ID=17248057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25320884A Pending JPS61130879A (en) 1984-11-30 1984-11-30 Resistance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61130879A (en)

Similar Documents

Publication Publication Date Title
JP5081239B2 (en) Temperature measuring apparatus and measuring method
US2707880A (en) Relative humidity measuring apparatus
US3913403A (en) Temperature measurement with three-lead resistance thermometers by dual constant current method
KR101662354B1 (en) Apparatus for Multi Channel Resistance Measurement using Constant Current Source
CN210862965U (en) Temperature acquisition device
JPS61130879A (en) Resistance measuring apparatus
US2508424A (en) Measuring of voltage by voltage opposition
KR200417455Y1 (en) A resistor measuring apparatus
JPH01227030A (en) Detecting circuit of resistance temperature characteristic
RU2586084C1 (en) Multi-channel converter of resistance of resistive sensors into voltage
JPS61130878A (en) Resistance measuring apparatus
US2588564A (en) Thermoelectrically balanced meter network
JPS6212873A (en) Multipoint three wire measuring circuit
JPS63304123A (en) Temperature measuring circuit
JP2017083221A (en) Multipoint temperature measurement device
RU2807963C1 (en) Multichannel temperature measuring device
US3453536A (en) Common power supply resistance bridge system providing excitation,individual bridge sensor resistance,and signal output terminals all referenced to a common potential
US1724296A (en) Apparatus for measuring the velocities of fluids
JPS57194325A (en) Multipoint temperature measuring device
SU1332163A1 (en) Device for multipoint measurement of temperature in explosion hazard medium
RU2722084C1 (en) Method for remote conversion of resistor resistance into dc voltage and device for its implementation
SU838468A1 (en) Device for measuring ratio of two pressures
JPS594263Y2 (en) Temperature difference measuring device
CN215865540U (en) Thermocouple cold junction compensation circuit and thermocouple temperature measurement system
SU718804A1 (en) Arrangement for measuring resistances of resistors forming closed circuit