JPS6113086B2 - - Google Patents

Info

Publication number
JPS6113086B2
JPS6113086B2 JP53011300A JP1130078A JPS6113086B2 JP S6113086 B2 JPS6113086 B2 JP S6113086B2 JP 53011300 A JP53011300 A JP 53011300A JP 1130078 A JP1130078 A JP 1130078A JP S6113086 B2 JPS6113086 B2 JP S6113086B2
Authority
JP
Japan
Prior art keywords
intake
separated
air
mixture
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53011300A
Other languages
Japanese (ja)
Other versions
JPS54103914A (en
Inventor
Junji Ootani
Toshihiko Sato
Yasuo Ikenotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1130078A priority Critical patent/JPS54103914A/en
Publication of JPS54103914A publication Critical patent/JPS54103914A/en
Publication of JPS6113086B2 publication Critical patent/JPS6113086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関の燃焼室内において、総合
空燃比が理論空燃比より希薄な混合気による成層
燃焼が有効に行われ、高出力でしかも有害成分の
放出を可及的に減少できるようにした、内燃機関
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention effectively performs stratified combustion in the combustion chamber of an internal combustion engine using a mixture whose total air-fuel ratio is leaner than the stoichiometric air-fuel ratio, making it possible to achieve high output and release harmful components. This relates to an internal combustion engine that is designed to reduce energy consumption.

従来内燃機関において、1つの燃焼室当りに、
吸気弁によつて開閉される2つ以上の吸気口を設
け、高負荷運転時の吸気効率を高めて出力上昇を
図るようにした高出力内燃機関は知られている
が、かゝる従来の機関では高出力が得られる反
面、未燃成分等の有害成分の大気への放出量も多
くなり、大気を汚染するという欠陥があり、近年
では殆んど実用化されていない。
In conventional internal combustion engines, per combustion chamber,
High-output internal combustion engines are known that are equipped with two or more intake ports that are opened and closed by intake valves to increase intake efficiency and increase output during high-load operation. While these engines can provide high output, they also release a large amount of harmful components such as unburned components into the atmosphere, polluting the atmosphere, so they have hardly been put into practical use in recent years.

ところが、上記高出力内燃機関は単位出力当り
の重量が小さいことから出力を限定すれば、内燃
機関の総重量を小さくすることができ、その結果
理論的には燃焼消費量が少なくなり排ガス対策上
有利であるので、これに加えて燃焼室内での燃焼
過程を改善し、総合空燃比が理論空燃比よりも希
薄な空燃比の混合気による良好な燃焼が可能にな
れば、従来の高出力内燃機関に比較して高出力運
転時の出力低下を最小限に止め、且つ有害成分の
放出を著しく軽減して高出力、低公害内燃機関を
得ることが可能である。
However, since the above-mentioned high-output internal combustion engine has a small weight per unit of output, by limiting the output, the total weight of the internal combustion engine can be reduced, and as a result, theoretically, the amount of combustion consumed will be reduced, which will be effective in terms of exhaust gas countermeasures. In addition to this, if the combustion process in the combustion chamber can be improved and good combustion can be achieved with an air-fuel mixture whose total air-fuel ratio is leaner than the stoichiometric air-fuel ratio, conventional high-power internal combustion It is possible to obtain a high-output, low-pollution internal combustion engine by minimizing the decrease in output during high-output operation and significantly reducing the release of harmful components compared to the engine.

本発明は、かゝる目的を達成できるようにし
た、構成簡単な内燃機関を提供しようとするもの
である。
The present invention aims to provide an internal combustion engine with a simple structure that can achieve the above object.

以下、図面により本発明の一実施例について説
明すると、Eは内燃機関本体で、ピストン2の摺
合される気筒1上に形成される燃焼室3には、第
2図に明瞭に示すように、その一側に第一、第二
吸気口5,6が、燃焼室3の左右に離隔して並列
に開口され、またその他側に1個の排気口7が穿
設され、それら第一、第二吸気口5,6と排気口
7はそれぞれ内燃機関本体Eのシリンダヘツド4
に形成した吸気管8と排気管9に連通されてい
る。前記第一、第二吸気口5,6は、それぞれシ
リンダヘツド4に昇降可能に支持される第一、第
二吸気弁10,11によつて開閉されるようにな
つており、同じく前記1個の排気口7は、シリン
ダヘツド4に昇降可能に支持される排気弁12に
よつて開閉されるようになつている。第一、第二
吸気弁10,11および排気弁12は、シリンダ
ヘツド4上に設けられる、従来公知の動弁機構V
により所定のタイミングを以て強制開閉作動され
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. E is an internal combustion engine body, and the combustion chamber 3 formed on the cylinder 1 into which the piston 2 is slidably connected, as clearly shown in FIG. First and second intake ports 5 and 6 are opened in parallel and spaced apart on the left and right sides of the combustion chamber 3 on one side, and one exhaust port 7 is provided on the other side. The two intake ports 5, 6 and the exhaust port 7 are respectively connected to the cylinder head 4 of the internal combustion engine main body E.
The intake pipe 8 and the exhaust pipe 9 are connected to each other. The first and second intake ports 5 and 6 are opened and closed by first and second intake valves 10 and 11, respectively, which are supported on the cylinder head 4 so as to be movable up and down. The exhaust port 7 is opened and closed by an exhaust valve 12 supported by the cylinder head 4 so as to be movable up and down. The first and second intake valves 10, 11 and the exhaust valve 12 are connected to a conventionally known valve operating mechanism V provided on the cylinder head 4.
It is forced to open and close at a predetermined timing.

また第2図に示すようにシリンダヘツド4には
点火栓Pが螺着され、この点火栓Pの電極は、前
記第一吸気口5の近傍の燃焼室3内に臨んでい
る。
Further, as shown in FIG. 2, an ignition plug P is screwed onto the cylinder head 4, and an electrode of the ignition plug P faces into the combustion chamber 3 near the first intake port 5.

前記吸気管8内は、その内壁上面より一体に延
びる、捩曲された隔壁13によつて各独立した上
部分離吸気路14と下部分離吸気路15とに分離
されており、そしてその隔壁13の捩曲により、
上部分離吸気路14の下流端は第二吸気口6に、
また下部分離吸気路15の下流端は前記第一吸気
口5にそれぞれ連通されている。したがつて吸気
管8内に導入される混合気は前記隔壁13によつ
て上、下部分離吸気路14,15に分流され、第
二、第一吸気口6,5を通つて燃焼室3内に導か
れるが、その場合に上、下部分離吸気路14,1
5を流れる混合気は、前記捩曲された隔壁13に
よつて流れ方向に旋回力が与えまた下部分離吸気
路15の混合気流れ方向前方に、前記第一吸気口
5近傍の点火栓P電極が臨むことになる。
The inside of the intake pipe 8 is separated into an upper separated intake passage 14 and a lower separated intake passage 15 by a twisted partition wall 13 that extends integrally from the upper surface of the inner wall of the intake pipe 8. Due to twisting,
The downstream end of the upper separated intake passage 14 is connected to the second intake port 6,
Further, the downstream ends of the lower separated air intake passages 15 are communicated with the first air intake ports 5, respectively. Therefore, the air-fuel mixture introduced into the intake pipe 8 is divided into upper and lower separated intake passages 14 and 15 by the partition wall 13, and flows into the combustion chamber 3 through the second and first intake ports 6 and 5. In that case, the upper and lower separated intake passages 14, 1
5 is given a swirling force in the flow direction by the twisted partition wall 13, and the ignition plug P electrode near the first intake port 5 is placed in front of the lower separation intake passage 15 in the flow direction of the mixture. will come.

前記吸気管8の外端には、気化器Cが接続さ
れ、その吸気路16にはベンチユリ17を挾んで
上流側にチヨーク弁18、下流側に絞り弁19が
それぞれ枢支され、さらに吸気路16の下面にお
いて絞り弁19近傍に低速ノズル21、それより
も下流側に緩速ノズル20、ベンチユリ17内に
高速ノズル22がそれぞれ開口している。緩速ノ
ズル20、低速ノズル21および高速ノズル22
は何れもフロート室23に連通される。而して前
記気化器Cは従来公知のものであるので、詳細な
説明を省略する。
A carburetor C is connected to the outer end of the intake pipe 8, and a choke valve 18 is pivotally supported on the upstream side of the intake passage 16, and a throttle valve 19 is pivotally supported on the downstream side of the intake passage 16, with a bench lily 17 in between. 16, a low speed nozzle 21 is opened near the throttle valve 19, a slow speed nozzle 20 is opened downstream of the throttle valve 19, and a high speed nozzle 22 is opened inside the bench lily 17. Slow speed nozzle 20, low speed nozzle 21 and high speed nozzle 22
Both are communicated with the float chamber 23. Since the vaporizer C is conventionally known, a detailed explanation thereof will be omitted.

次に上記の如く構成される本発明の実施例の作
用について説明すると、内燃機関がアイドリング
運転等の無負荷運転の場合は、気化器Cの絞り弁
19は略全閉状態にあるので、燃料は絞り弁19
よりも下流側に存する緩速ノズル20よりのみ噴
出し、また機関を低負荷運転すべく絞り弁19が
若干開かれると、低速ノズル21も絞り弁19よ
りも下流側に存するようになり、燃料は緩速ノズ
ル20および低速ノズル21の何れからも噴出す
る。またさらに機関を高負荷運転すべく絞り弁1
9を開き方向に回動すれば、前記緩速および低速
ノズル20,21からの燃料噴出が止む一方、ベ
ンチユリ17の下面に開口する高速ノズル22か
ら燃料が噴出し、アイドリングから高負荷までの
機関の運転に見合う燃料が供給される。
Next, the operation of the embodiment of the present invention configured as described above will be explained. When the internal combustion engine is in no-load operation such as idling, the throttle valve 19 of the carburetor C is in a substantially fully closed state, so the fuel is the throttle valve 19
When the throttle valve 19 is slightly opened to operate the engine at a low load, the low-speed nozzle 21 also exists downstream of the throttle valve 19, and the fuel is ejected only from the slow speed nozzle 20 located downstream of the is ejected from both the slow speed nozzle 20 and the low speed nozzle 21. In addition, in order to operate the engine at a higher load, the throttle valve 1
9 in the opening direction, fuel injection from the slow and low speed nozzles 20 and 21 stops, and fuel is ejected from the high speed nozzle 22 opened on the lower surface of the bench lily 17, allowing the engine to operate from idling to high load. Fuel is supplied for the operation of the vehicle.

ところで緩速、低速および高速ノズル20,2
1および22は何れも気化器Cの吸気路16の底
面に開口しているので、前記ノズル20,21お
よび22より噴出する燃料の絶対流量は吸気路1
6の下層側において多く、上層側において少なく
なる傾向になり、気化器Cの吸気路16内上層に
は空燃比の大きい希薄混合気が、またその下層に
は空燃比の小さい濃厚混合気が生成される。そし
て気化器Cの吸気路16下層の濃厚混合気は、下
部分離吸気路15を通つて点火枢Pに近い側の第
一吸吸気口5に至り、第一吸気弁10の開弁によ
り燃焼室3内に吸入される一方、気化器Cの吸気
路16上層の希薄混合気は上部分離吸気路14を
通つて点火栓Pから遠ざかる側の第二吸気口6に
吸入される。そして濃厚および希薄混合気は、下
部および上部分離吸気路15,14を流れる際、
捩曲した隔壁13によつて旋回されつゝ渦流とな
つて燃焼室3内に流入する。したがつて吸入行程
の終り近くでは、燃焼室3内では第一吸気口5の
周囲に理論空燃比よりも濃厚な濃厚混合気層が存
在し、また第二吸気口6の周囲には理論空燃比よ
りも希薄な希薄混合気層が存在する。そしてピス
トン2の上昇する圧縮行程では燃料の蒸発、ある
いは濃厚混合気の拡散があつても圧縮行程の終了
近くにおける点火時期には点火栓Pの周囲は最も
燃焼の良好な、理論空燃比よりも若干濃厚な空燃
比の混合気によつて囲まれることになり点火栓P
の電気火花による点火により、その周囲の濃厚混
合気は確実容易に着火され、それによつて生成さ
れる火焔は成長しつゝ第二吸気口6の周囲を含む
残余の希薄混合気層へと伝播し、これにより濃厚
混合気層から希薄混合気層へと良好な成層燃焼が
行われ、全体として理論空燃比よりも希薄な空燃
比の混合気による良好な成層燃焼が行われる。
By the way, slow speed, low speed and high speed nozzles 20,2
Since nozzles 1 and 22 are both open at the bottom of the intake passage 16 of the carburetor C, the absolute flow rate of fuel ejected from the nozzles 20, 21 and 22 is equal to that of the intake passage 1.
There is a tendency for the amount to increase in the lower layer of 6 and to decrease in the upper layer, and a lean mixture with a high air-fuel ratio is generated in the upper layer of the intake passage 16 of the carburetor C, and a rich mixture with a low air-fuel ratio is generated in the lower layer. be done. Then, the rich air-fuel mixture in the lower layer of the intake passage 16 of the carburetor C passes through the lower separated intake passage 15 and reaches the first intake port 5 on the side closer to the ignition center P, and when the first intake valve 10 is opened, the rich mixture flows into the combustion chamber. On the other hand, the lean air-fuel mixture in the upper layer of the intake passage 16 of the carburetor C is sucked into the second intake port 6 on the side away from the spark plug P through the upper separated intake passage 14. When the rich and lean mixtures flow through the lower and upper separated intake passages 15 and 14,
It is swirled by the twisted partition wall 13 and flows into the combustion chamber 3 in the form of a vortex. Therefore, near the end of the intake stroke, a rich air-fuel mixture layer that is richer than the stoichiometric air-fuel ratio exists in the combustion chamber 3 around the first intake port 5, and a stoichiometric air-fuel mixture layer exists around the second intake port 6. There is a lean mixture layer that is leaner than the fuel ratio. Even if there is evaporation of fuel or diffusion of a rich mixture during the upward compression stroke of the piston 2, at the ignition timing near the end of the compression stroke, the area around the ignition plug P is lower than the stoichiometric air-fuel ratio, where the best combustion occurs. The spark plug P will be surrounded by a mixture with a slightly rich air-fuel ratio.
By the ignition by the electric spark, the rich mixture around it is reliably and easily ignited, and the flame thus generated grows and propagates to the remaining lean mixture layer including the area around the second intake port 6. However, as a result, good stratified charge combustion is performed from the rich air-fuel mixture layer to the lean air-fuel mixture layer, and overall good stratified charge combustion is performed with the air-fuel mixture having an air-fuel ratio leaner than the stoichiometric air-fuel ratio.

以上のように本発明によれば、内燃機関本体E
に形成される気筒1に対応する燃焼室3に、それ
ぞれ吸気弁10,11によつて開閉される第一お
よび第二吸気口5,6を互いに離隔して開口し、
それら第一および第二吸気口5,6に連通する単
一の吸気管8を単一の気化器Cの吸気路16に連
通し、前記吸気管8内には、そこを、前記気化器
Cの吸気路16で生成される濃厚混合気がそれぞ
れ導入される下部および上部分離吸気路15,1
4に区画する隔壁13を設け、前記下部および上
部分離吸気路15,14を第一および第二吸気口
5,6にそれぞれ連通し、前記下部分離吸気路1
5の混合気流れ方向前方において前記第1吸気口
5近傍の燃焼室3内に、点火栓P電極を臨ませた
ので、燃焼室3内において、下部分離吸気路15
および第一吸気口5を経て導入される濃厚混合気
と、上部分離吸気路14および第二吸気口6を経
て導入される希薄混合気とを可及的に離隔させ
て、それら混合気の混合を効果的に回避すること
ができ、その上、その濃厚混合気のみを第一吸気
口5近傍の点火栓P周囲に効率よく集めて容易確
実に着火燃焼させることができ、従つて、一つの
燃焼室3当り吸気弁10,11によつて開閉され
る二個の吸気口5,6を設けた高出力内燃機関で
ありながら、全体として理論空燃比よりも希薄な
空燃比の混合気による極めて安定した成層燃焼が
全運転域に亘り可能となり、高負荷運転時の吸気
効率を高めて機関の高出力化を達成すると同時
に、末燃成分等の有害成分の発生量を低減して排
ガス清浄化に寄与し得る。
As described above, according to the present invention, the internal combustion engine main body E
First and second intake ports 5 and 6 opened and closed by intake valves 10 and 11, respectively, are opened and separated from each other in a combustion chamber 3 corresponding to a cylinder 1 formed in
A single intake pipe 8 that communicates with the first and second intake ports 5 and 6 is communicated with an intake passage 16 of a single carburetor C, and a single intake pipe 8 is connected to the intake pipe 8 of the carburetor C. Lower and upper separated intake passages 15, 1 into which the rich air-fuel mixture generated in the intake passage 16 of the
A partition wall 13 is provided which divides the lower and upper separated intake passages 15 and 14 into first and second intake ports 5 and 6, respectively.
Since the ignition plug P electrode faces into the combustion chamber 3 near the first intake port 5 in the forward direction of the air-fuel mixture flow direction, the lower separated intake passage 15
The rich mixture introduced via the first intake port 5 and the lean mixture introduced via the upper separation intake passage 14 and the second intake port 6 are separated as much as possible to mix the mixture. In addition, only the rich air-fuel mixture can be efficiently collected around the spark plug P near the first intake port 5 and ignited and burned easily and reliably. Although it is a high-output internal combustion engine with two intake ports 5 and 6 per combustion chamber 3 that are opened and closed by intake valves 10 and 11, the engine as a whole has an extremely lean air-fuel ratio than the stoichiometric air-fuel ratio. Stable stratified combustion becomes possible over the entire operating range, increasing intake efficiency during high-load operation and achieving high engine output, while at the same time reducing the amount of harmful components such as end combustion components generated and purifying exhaust gas. can contribute to

また特に前記隔壁13は、前記下部および上部
分離吸気路15,14を通過する前記混合気をそ
れぞれ旋回させるように、且つそれら下部および
上部分離吸気路15,14の下流端を前記第一お
よび第二吸気口5,6にそれぞれ連通するよう
に、捩曲されているので、その隔壁13によつ
て、上、下部分離吸気路14,15内に流れる各
混合気をそれぞれ確実に旋回させて渦流化するこ
とができ、従つてその渦流化した各混合気が第
一、第二吸気口5,6を経て燃焼室3に到達する
までの間に、各混合気中の未蒸発燃料の気化が効
果的に促進されると共に各混合気の密度分布が一
様化し、該各混合気の、燃焼室3内における前記
成層燃焼を一層容易に行なわせることができる。
しかも上記隔壁13は、吸気管8内を上、下部分
離吸気路14,15に区画する隔壁本来の機能
と、各分離吸気路14,15を流れる混合気に旋
回流を生じさせる旋回流発生板としての機能を兼
備しており、従つて、一つの燃焼室3当たり吸気
口5,6を二個有しながら吸気管8および気化器
Cが各一個で済むことや、上記隔壁13が吸気管
8内にのみ設けられることと相俟つて、全体の構
造を著しく簡単化することができ、コストの低減
に寄与し得るものである。
In particular, the partition wall 13 separates the downstream ends of the lower and upper separated intake passages 15 and 14 from the first and upper separated intake passages so as to swirl the air-fuel mixture passing through the lower and upper separated intake passages 15 and 14, respectively. Since it is twisted so as to communicate with the two intake ports 5 and 6, the partition wall 13 ensures that each air-fuel mixture flowing into the upper and lower separated intake passages 14 and 15 is swirled into a vortex. Therefore, the unevaporated fuel in each mixture is vaporized until each mixture that has become a swirl flows through the first and second intake ports 5 and 6 and reaches the combustion chamber 3. This is effectively promoted and the density distribution of each air-fuel mixture is made uniform, so that the stratified combustion of each air-fuel mixture within the combustion chamber 3 can be performed more easily.
Moreover, the partition wall 13 has the original function of partitioning the intake pipe 8 into upper and lower separated intake passages 14 and 15, and a swirling flow generating plate that generates a swirling flow in the air-fuel mixture flowing through each of the separated intake passages 14 and 15. Therefore, although one combustion chamber 3 has two intake ports 5 and 6, only one intake pipe 8 and one carburetor C are required, and the partition wall 13 has two intake ports 5 and 6 per combustion chamber 3. Coupled with the fact that it is provided only within 8, the overall structure can be significantly simplified, which can contribute to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明内燃機関の一実施例を示し、第1
図は、第2図−線縦断側面図、第2図は第1
図−線横断面図、第3図は第1図−線縦
断部分図である。 1……気筒、3……燃焼室、5,6……第一、
第二吸気弁、8……吸気管、10,11……吸気
弁、13……隔壁、14……上部分離吸気路、1
5……下部分離吸気路、16……吸気路、C……
気化器、E……内燃機関本体、P……点火栓。
The drawings show one embodiment of the internal combustion engine of the present invention.
The figure is a vertical sectional side view of Figure 2, and Figure 2 is a vertical sectional side view of Figure 1.
FIG. 3 is a partial cross-sectional view along the line shown in FIG. 1; FIG. 1... Cylinder, 3... Combustion chamber, 5, 6... First,
Second intake valve, 8... Intake pipe, 10, 11... Intake valve, 13... Partition wall, 14... Upper separated intake passage, 1
5...Lower separated intake passage, 16...Intake passage, C...
Carburetor, E... Internal combustion engine body, P... Spark plug.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関本体Eに形成される気筒1に対応す
る燃焼室3に、それぞれ吸気弁10,11によつ
て開閉される第一および第二吸気口5,6を互い
に離隔して開口し、それら第一および第二吸気口
5,6に連通する単一の吸気管8を単一の気化器
Cの吸気路16に連通し、前記吸気管8内には、
そこを、前記気化器Cの吸気路16で生成される
濃厚混合気および希薄混合気がそれぞれ導入され
る下部および上部分離吸気路15,14に区画す
る隔壁13を設け、この隔壁13は、前記下部お
よび上部分離吸気路15,14を通過する前記混
合気をそれぞれ旋回させるように、且つそれら下
部および上部分離吸気路15,14の下流端を前
記第一および第二吸気口5,6にそれぞれ連通す
るように捩曲され、さらに前記下部分離吸気路1
5の混合気流れ方向前方において前記第1吸気口
5近傍の燃焼室3内に、点火栓P電極を臨ませて
なる内燃機関。
1 First and second intake ports 5 and 6 opened and closed by intake valves 10 and 11, respectively, are opened and separated from each other in the combustion chamber 3 corresponding to the cylinder 1 formed in the internal combustion engine main body E, and A single intake pipe 8 communicating with the first and second intake ports 5 and 6 is communicated with an intake passage 16 of a single carburetor C, and inside the intake pipe 8,
A partition wall 13 is provided which divides the space into lower and upper separated intake passages 15 and 14 into which the rich mixture and lean mixture generated in the intake passage 16 of the carburetor C are respectively introduced. The downstream ends of the lower and upper separated air intake passages 15 and 14 are connected to the first and second air intake ports 5 and 6, respectively, so as to swirl the mixture passing through the lower and upper separated air intake passages 15 and 14, respectively. The lower separated intake passage 1 is twisted so as to communicate with the lower separated intake passage 1.
An internal combustion engine in which an ignition plug P electrode faces into the combustion chamber 3 near the first intake port 5 at the front in the air-fuel mixture flow direction.
JP1130078A 1978-02-02 1978-02-02 Internal combustion engine Granted JPS54103914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130078A JPS54103914A (en) 1978-02-02 1978-02-02 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130078A JPS54103914A (en) 1978-02-02 1978-02-02 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPS54103914A JPS54103914A (en) 1979-08-15
JPS6113086B2 true JPS6113086B2 (en) 1986-04-11

Family

ID=11774135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130078A Granted JPS54103914A (en) 1978-02-02 1978-02-02 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPS54103914A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548528B2 (en) * 1983-04-30 1996-10-30 ヤマハ発動機株式会社 4-cycle internal combustion engine for motorcycles
GB2300225A (en) * 1995-04-29 1996-10-30 Ford Motor Co I.c.engine charge tumble intake system
AT4966U1 (en) * 2000-03-14 2002-01-25 Avl List Gmbh FOUR-STOCK COMBUSTION ENGINE WITH AT LEAST TWO INLET VALVES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260317A (en) * 1975-11-12 1977-05-18 Nissan Motor Co Ltd Internal combustion engine
JPS5238505B2 (en) * 1973-02-02 1977-09-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238505U (en) * 1975-09-11 1977-03-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238505B2 (en) * 1973-02-02 1977-09-29
JPS5260317A (en) * 1975-11-12 1977-05-18 Nissan Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JPS54103914A (en) 1979-08-15

Similar Documents

Publication Publication Date Title
US4210105A (en) Internal combustion engine injected accumulation chamber
CA2099446C (en) Internal combustion engine
US4071001A (en) Stratified combustion engine with prechamber
US4742804A (en) Spark-ignition engine
US4116191A (en) Internal combustion engine with an auxiliary chamber
US4250852A (en) Fuel injection internal combustion engine with prechamber torch ignition
JPS6212370B2 (en)
US4161927A (en) Fuel injection for divided auxiliary chamber of engine
KR870000253B1 (en) Torch ignition type gasoline internal combustion engine
JPS6113086B2 (en)
US4182284A (en) Divided auxiliary combustion chamber for internal combustion spark ignition engines
US4160431A (en) Insert liner for divided auxiliary combustion chamber of engine
US4181102A (en) Divided auxiliary combustion chamber for internal combustion engine
SU1280149A1 (en) Internal combustion engine
JPS5823217A (en) Torch ignition type gasoline internal combustion engine
JPH04287826A (en) Spark ignition internal combustion engine of auxiliary chamber
US4114569A (en) Internal combustion engine with an auxiliary combustion chamber
JPH06235329A (en) Spark ignition type engine
JP2774779B2 (en) Car lean burn engine
JPH0231546Y2 (en)
JPS5818514A (en) Torch-ignited internal-combustion gasoline engine
US4178889A (en) Internal combustion engine
JPH02305319A (en) Combustion chamber structure of engine
JPS59147819A (en) Stratified air feed combustion type internal-combustion engine
RU2055222C1 (en) Method of operating internal combustion engine and internal combustion engine