JPS61130476A - Manufacture of high tensile copper alloy material - Google Patents

Manufacture of high tensile copper alloy material

Info

Publication number
JPS61130476A
JPS61130476A JP25052284A JP25052284A JPS61130476A JP S61130476 A JPS61130476 A JP S61130476A JP 25052284 A JP25052284 A JP 25052284A JP 25052284 A JP25052284 A JP 25052284A JP S61130476 A JPS61130476 A JP S61130476A
Authority
JP
Japan
Prior art keywords
magnetic field
alloy
copper alloy
alloy material
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25052284A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP25052284A priority Critical patent/JPS61130476A/en
Publication of JPS61130476A publication Critical patent/JPS61130476A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To improve electrical and thermal conductivities, strength, by stretch working Cu alloy contg. prescribed ratios of Co, CuO, Cu2O, A4l2O3, ZrO2, rare earth elements, while conducting electricity in a prescribed magnetic field. CONSTITUTION:Cu alloy composed of 5-20wt% Co, 0.1-1.5wt% >= one kind among CuO, CuO2, Al2O3 or ZrO2, 0.1-1% rare earth element, and the balance Cu is prepd. The Cu alloy is rolled or drawing worked while conducting electricity in 3,000-6,000Oe magnetic field in direction orthogonal thereto.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ワイヤカット放電加工装置等に用いるワイヤ
電極、或いはIC及びLST等に使用される鋼合金材、
特に高張力を有する銅合金材の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to wire electrodes used in wire-cut electric discharge machining equipment, steel alloy materials used in ICs, LSTs, etc.
In particular, the present invention relates to a method of manufacturing a copper alloy material having high tensile strength.

〔従来の技術〕[Conventional technology]

ワイヤカット放電加工は、ワイヤ電極と被加工体との間
で放電を起こさせ、その放電侵蝕現象により被加工体を
切断加工するもので、複雑な形状を有するプレス金型の
ような工作物の加工には特に適している。
Wire-cut electrical discharge machining involves creating an electrical discharge between a wire electrode and the workpiece, and cutting the workpiece through the resulting discharge erosion phenomenon. Especially suitable for processing.

上記の如きワイヤカット放電加工に於て使用されるワイ
ヤ電極の材料としては、線引加工が容易であること、導
電性が良好であること、電極として使用したとき大きな
加工速度が得られ且つ好ましくは消耗比が小さいこと、
耐熱性に優れ特に高温時に抗張力が劣化せず使用中に断
線し難いこと、また、加工硬化を起さず、2次元加工、
3次元加工更にはワイヤ電極を巻いた箇所若しくは曲げ
た箇所での加工が容易であること、これに加えて更には
放電加工時のワイヤ電極のたわみ量(所謂タイコ量μ)
が小さく、親水性が良いこと等々の性質が要求される。
The material for the wire electrode used in the above-mentioned wire-cut electrical discharge machining is preferably one that is easy to draw, has good conductivity, and can provide a high processing speed when used as an electrode. has a small consumption ratio,
It has excellent heat resistance and does not deteriorate in tensile strength especially at high temperatures and is difficult to break during use.It also does not cause work hardening and is suitable for two-dimensional processing.
In addition to three-dimensional machining, machining at locations where the wire electrode is wound or bent is easy, and in addition to this, the amount of deflection of the wire electrode during electrical discharge machining (so-called tying amount μ)
properties such as small pore size and good hydrophilicity are required.

このた°め、電極材料としては、一般的には純銅若しく
は黄銅等の銅合金、或いは純銅に亜酸化銅(Cu20)
を加えた銅合金が使用され、特殊な用途の場合にはタン
グステンやモリブデン又はその合金等が用いられている
For this reason, the electrode material is generally pure copper or a copper alloy such as brass, or pure copper with cuprous oxide (Cu20).
For special purposes, tungsten, molybdenum, or their alloys are used.

然しなから、これらの電極材料はいずれも一長一短があ
り、ワイヤ電極として要求される上記の各種特性を兼ね
備えておらず、特に導電性と抗張力の両方に優れたもの
は提供されていない。
However, all of these electrode materials have advantages and disadvantages, and do not have the above-mentioned various properties required for wire electrodes, and no material has been provided that is particularly excellent in both conductivity and tensile strength.

i方、IC及びLSI等に使用される合金としては、最
初コバールが使用され、次いで42アロイ、52アロイ
等が使用されるようになった。そして、VLS I等の
超大規模集積回路が開発されるに到って、特に、電気伝
導度、熱伝導度及び強度等の優れた合金が要求されるよ
うになり、現在では鉄合金及び銅合金が略同じ比率で使
用されている。
On the other hand, Kovar was first used as an alloy for ICs, LSIs, etc., and then 42 alloy, 52 alloy, etc. were used. With the development of ultra-large-scale integrated circuits such as VLSI, alloys with particularly excellent electrical conductivity, thermal conductivity, and strength were required, and currently iron alloys and copper alloys are being used. are used in approximately the same ratio.

この種の合金に於ても、ワイヤ電極の場合と同様に電気
伝導度と強度の両方に優れていることが要求される。゛ 然しなから、電気伝導度と強度との関係は、一般に電気
伝導度を上げれば強度が低下すると云う特性があり、今
後、電気伝導度を上昇させるに伴い低下する強度を如何
にして高く保つかが重要な研究課題となっている。
This type of alloy is also required to be excellent in both electrical conductivity and strength, as in the case of wire electrodes. However, the relationship between electrical conductivity and strength generally has the characteristic that as the electrical conductivity increases, the strength decreases, and in the future, how can we maintain the strength that decreases as the electrical conductivity increases? This has become an important research topic.

電気伝導度と強度を共に高く保つ方法は種々研究されて
いるが、そのうちスピノーダル分解及びその他の機構と
の複合処理が最も良い方法であると考えられている。
Various methods have been studied to maintain high electrical conductivity and strength, among which a combination treatment with spinodal decomposition and other mechanisms is considered to be the best method.

例えば、従来Cu−Ni合金は全率固溶型合金と考えら
れていたが、特殊な元素を添加することにより、又は処
理を施すことによってスピノーダル分解を起す。
For example, Cu--Ni alloys were conventionally considered to be completely solid solution alloys, but spinodal decomposition occurs by adding special elements or by performing treatments.

一般に銅合金では他の元素を添加するとヤング率が低下
する性質があるにも拘わらず、Cu−Niスピノーダル
合金では上記元素を添加すると共に、ヤング率が向上し
且つ電気伝導度の低下を低く押えることができる。
Although copper alloys generally have the property that the Young's modulus decreases when other elements are added, in Cu-Ni spinodal alloys, the addition of the above elements improves the Young's modulus and suppresses the decrease in electrical conductivity. be able to.

而して、Cu−Ni合金にスピノーダル分解処理と強化
手段等の複合処理を行なうと、例えば、強度60kg/
1m2、電気伝導度80%とすることができ、これは現
時点に於けるLSI用の合金としては極めて優秀な値で
あり、また、VLS I用の合金としても適合する値で
ある。
Therefore, when a Cu-Ni alloy is subjected to a combined treatment such as spinodal decomposition treatment and strengthening means, the strength can be increased to, for example, 60 kg/
1 m2 and an electrical conductivity of 80%, which is an extremely excellent value for an alloy for LSI at present, and also a value suitable for an alloy for VLSI.

更に、この種の合金の必要条件としては熱膨張係数が小
さいことが要求される。、一般に鉄系の合金は熱膨張係
数が小さく、銅系の合金は大きい値を示す。然しなから
、銅系の合金は熱伝導度が鉄系の合金の約10倍と極め
て良いためリードフレーム用合金に利用される。従って
、銅系の合金は今後如何にして熱膨張係数を下げるかが
最大の課題となっている。
Furthermore, a requirement for this type of alloy is that it has a low coefficient of thermal expansion. In general, iron-based alloys have a small coefficient of thermal expansion, and copper-based alloys have a large coefficient of expansion. However, copper-based alloys are used as alloys for lead frames because their thermal conductivity is approximately 10 times that of iron-based alloys. Therefore, the biggest challenge in the future is how to lower the coefficient of thermal expansion of copper-based alloys.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は叙上の観点に立ってなされたものであり、その
目的とするところは、高い張力を有すると共に、電気伝
導度、熱伝導度及び強度等にも優れ、LSIは勿論のこ
と■LS■、更にはワイヤ電極材等としても使用するこ
とができる高張力の銅合金材を提供しようとするもので
ある。
The present invention has been made based on the above-mentioned viewpoint, and its purpose is to have high tensile strength, as well as excellent electrical conductivity, thermal conductivity, strength, etc., and is suitable for LSI as well as LS (2) Furthermore, the present invention aims to provide a high tensile strength copper alloy material that can be used as a wire electrode material, etc.

〔問題点を解決するための手段〕[Means for solving problems]

而して、上記の目的は、重量百分率で5〜20%のCo
と、0.1−1.5%のCub、 Cu20. A12
03又はZrO2のうちから選ばれたいずれか一の化合
物と、0.1〜1%の希土類元素と、残部がCu並びに
不可避の不純物とから成る銅合金を、磁界内で上記磁界
と直交する方向に通電しつ一圧延若しくは引抜き加工す
ることによって達成される。
Therefore, the above purpose is to achieve a concentration of 5 to 20% Co by weight percentage.
and 0.1-1.5% Cub, Cu20. A12
A copper alloy consisting of a compound selected from ZrO2 or ZrO2, 0.1 to 1% of a rare earth element, and the balance being Cu and unavoidable impurities is placed in a magnetic field in a direction perpendicular to the above magnetic field. This is accomplished by applying current to the material and rolling or drawing it.

〔作 用〕[For production]

上記の如き方法により銅合金材を製造すれば、磁界内で
上記磁界と直交する方向に通電する過程に於て合金内部
で一種の電磁攪拌が行なわれ、或いは電磁応力が内部に
於ても作用し、結晶の粗大化が防止されるため、従来の
銅合金材に比べて穫めて高い張力が得られると共に、電
気伝導度及び熱伝導度も高く保たれ、LSIは勿論のこ
とVLSl用の銅合金材としても使用することができ、
更にはワイヤ電極材としても最適であり、広い分野で利
用可能な銅合金材が製造されるものである。
If a copper alloy material is produced by the method described above, a kind of electromagnetic stirring will occur inside the alloy during the process of passing current within a magnetic field in a direction perpendicular to the magnetic field, or electromagnetic stress will also act inside the alloy. However, since coarsening of the crystals is prevented, it is possible to obtain much higher tensile strength than conventional copper alloy materials, and it also maintains high electrical conductivity and thermal conductivity, making it suitable for not only LSI but also VLSI. It can also be used as copper alloy material,
Furthermore, it is suitable as a wire electrode material, and a copper alloy material can be produced that can be used in a wide range of fields.

〔実 施 例〕〔Example〕

以下、図面並びに幾つかの実施例を参照しつ\本発明方
法を具体的に説明する。
Hereinafter, the method of the present invention will be specifically explained with reference to the drawings and some examples.

第1図は本発明方法を実施するための装置の基本構成を
示す説明図、第2図は同種の装置の異なった構成のもの
を示す説明図である。
FIG. 1 is an explanatory diagram showing the basic configuration of an apparatus for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram showing the same type of apparatus with a different configuration.

而して、第1図中、1は素材となる銅合金、2はヨーク
2a及びコイル2bから成る電磁石、3及び4は素材1
に通電を行なう通電ローラ、5及び6はピンチローラ、
7は通電用電源、8及び9は圧延ローラである。
In FIG. 1, 1 is a copper alloy material, 2 is an electromagnet consisting of a yoke 2a and a coil 2b, and 3 and 4 are material 1.
energizing rollers that energize; 5 and 6 are pinch rollers;
7 is a power source for energizing, and 8 and 9 are rolling rollers.

素材1としては、重量百分率で5〜20%のCoト・0
.1〜1.5%のCub、 Cu20.^1203又は
ZrO2のうちから選ばれたいずれか一の化合物と、0
.1〜1%の希土類元素と、残部がCu並びに不可避の
不純物とから成る銅合金が通している。
As material 1, 5 to 20% Co
.. 1-1.5% Cub, Cu20. Any one compound selected from ^1203 or ZrO2, and 0
.. A copper alloy consisting of 1-1% rare earth elements and the remainder Cu and unavoidable impurities is passed through.

電磁石2のヨーク2aの先端の磁極部分は、図に示す如
(圧延ローラ8及び9と微小な間隙を保って配置され、
ヨークに巻き付けられたコイル2bに電流を通じて励磁
すれば、その磁力線は、磁性体で作製された圧延ローラ
8及び9を通して素材l中を図中上下方向に通過する。
The magnetic pole portion at the tip of the yoke 2a of the electromagnet 2 is arranged with a small gap from the rolling rollers 8 and 9 as shown in the figure.
When the coil 2b wound around the yoke is excited by passing current through it, the lines of magnetic force pass through the material 1 in the vertical direction in the figure through the rolling rollers 8 and 9 made of a magnetic material.

この場合、コイル2bに通ずる電流は、圧延ローラ8及
び9間に3000〜6000工ルステツド程度の磁界が
生じるよう調整される。
In this case, the current flowing through the coil 2b is adjusted so that a magnetic field of about 3,000 to 6,000 degrees is generated between the rolling rollers 8 and 9.

素材1は、図では省略した送りローラ等により通電ロー
う3部分を経て上記3000〜6000エルステッドの
磁界内に送り込まれ、圧延ローラ8及び9で圧延されつ
\引き取られ、もう1つの通電ローラ4を経て取り出さ
れる。
The material 1 is fed into the magnetic field of 3,000 to 6,000 oersteds through three parts that are energized by a feed roller (not shown), rolled by rolling rollers 8 and 9, and then taken out by another energized roller 4. It is taken out after passing through.

而して、素材1が磁界内を通過する期間中、素材lには
通電用電源7から通電ローラ3及び4を介して5ないし
数10Aの直流、パルス若しくは交流電流が通電される
。従って、この電流は上記磁界と略直交する形で流され
ることになる。然るときは、素材1内を流れる電流によ
り生ずる磁場と、電磁石2による外部からの磁場の交互
作用によって素材1内では電磁攪拌が起り、又は電磁応
力による歪力が作用し、素材合金の粗大結晶化が防止さ
れる。
During the period when the material 1 passes through the magnetic field, a DC, pulsed or alternating current of 5 to several tens of amperes is applied to the material 1 from the energizing power source 7 via the energizing rollers 3 and 4. Therefore, this current is caused to flow approximately perpendicularly to the magnetic field. In such a case, electromagnetic stirring occurs within the material 1 due to the alternation between the magnetic field generated by the current flowing within the material 1 and the external magnetic field generated by the electromagnet 2, or a strain force due to electromagnetic stress acts, causing coarsening of the material alloy. Crystallization is prevented.

而して、素材1は上記の如く電磁攪拌されている期間中
に於て、圧延ローラ8及び9で圧延されて引き出され、
以後適宜の時効処理が施こされるものである。
Thus, during the period of electromagnetic stirring as described above, the material 1 is rolled and drawn out by the rolling rollers 8 and 9.
Thereafter, appropriate aging treatment will be performed.

第2図には、本発明方法に従って丸棒状の素材1を引抜
き加工してワイヤ電極等の線材を得る装置の基本構成が
示されており、第1図と同一の符号を付したものは同−
又は同等の作用効果を有する構成要素を示している。1
0は引抜きダイスであり、素材1に通電するための通電
子を兼ねている。
FIG. 2 shows the basic configuration of an apparatus for producing wire rods such as wire electrodes by drawing a round bar-shaped material 1 according to the method of the present invention, and the same reference numerals as in FIG. −
Or it indicates a component that has an equivalent effect. 1
0 is a drawing die, which also serves as an energizer for energizing the material 1.

この場合に於ても、第1図の場合と同様に電磁石2の磁
界内に送り込まれた素材1に対し、電源7から通電ロー
ラ3及び引抜きダイス10を介して磁界と直交する方向
へ通電が行なわれて電磁攪拌がなされるのと同時に、引
抜きダイスlOにより引抜き加工が行なわれる。
In this case, as in the case of FIG. 1, the material 1 fed into the magnetic field of the electromagnet 2 is energized from the power supply 7 through the energizing roller 3 and the drawing die 10 in a direction perpendicular to the magnetic field. At the same time as electromagnetic stirring is carried out, drawing is carried out using a drawing die IO.

K夜鯉±1) 重量百分率で15%のCoと、0.5%のCu20と、
0.2%の希土類元素(Y)と、残部がCu並びに不可
避の不純物とから成る銅合金を、4000エルステッド
の磁界内を通過させ、同時に上記磁界と直交する方向に
5011Zの交流10Aの通電を行ないつ\圧延して厚
さ0.1msの銅合金材を得た。
K night carp ±1) 15% Co and 0.5% Cu20 by weight percentage,
A copper alloy consisting of 0.2% rare earth element (Y) and the remainder Cu and unavoidable impurities is passed through a magnetic field of 4000 oersteds, and at the same time a current of 5011Z AC 10A is applied in a direction perpendicular to the magnetic field. A copper alloy material with a thickness of 0.1 ms was obtained by rolling.

得られた合金材の導電率は6%(■^CS単位)、引張
り強さは83 kg / m 2であり、IC等のリー
ドフレーム用合金として従来の導電率70〜78%のも
のより格段に優れた特性のものが得られた。
The electrical conductivity of the obtained alloy material is 6% (■^CS unit) and the tensile strength is 83 kg/m2, which is much higher than the conventional alloy for lead frames such as ICs with electrical conductivity of 70-78%. A product with excellent properties was obtained.

実施例(2) 上記と同様の組成の銅合金を、5000エルステッドの
磁界内を通過させ、同時に上記磁界と直交する方向に5
011zの交流10Aの通電を行ないつ\引抜き加工し
、直径0.2++nの線材を得た。
Example (2) A copper alloy having the same composition as above is passed through a magnetic field of 5,000 oersteds, and at the same time, a copper alloy of 5,000 oersted is passed in a direction perpendicular to the magnetic field.
A wire rod with a diameter of 0.2++n was obtained by drawing the wire while applying an electric current of 011z at 10A AC.

上記線材をワイヤ電極としてワイヤカー/ )放電加工
を行なったところ、Ip−560A、  τ0N=0.
8μsの条件下で310m+m2/minの加工速度が
得られ、断線等もなく、良好なワイヤ電極となり得るこ
とが判明した。
When wire car/ ) electric discharge machining was performed using the above wire as a wire electrode, the result was Ip-560A, τ0N=0.
It was found that a processing speed of 310 m+m2/min was obtained under the condition of 8 μs, and there was no wire breakage, and a good wire electrode could be obtained.

なお、素材となる銅合金の組成中、Cu20の代りにC
uO、^1203或いはZrO2を用いても略同様の効
果が得られ、更にまた希土類元素としては、上記Y以外
にSmやPr、或いはミツシュメタルも利用し得る。
In addition, in the composition of the copper alloy that is the raw material, C is used instead of Cu20.
Substantially the same effect can be obtained by using uO, ^1203, or ZrO2, and Sm, Pr, or Mitsushi metal can also be used as the rare earth element in addition to the above-mentioned Y.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるので、本発明方法による
ときは、電気伝導度、熱伝導度及び強度等を共に高く保
つことができ、LSIは勿論のことVLS Iのリード
フレーム用合金としても使用でき、更にはワイヤ電極と
しても極めて優れた効果を発揮し得る高張力鋼合金材が
提供されるものである。
Since the present invention is constructed as described above, when using the method of the present invention, it is possible to maintain high electrical conductivity, thermal conductivity, strength, etc., and it can be used as an alloy for lead frames of not only LSI but also VLSI. The present invention provides a high tensile strength steel alloy material that can be used as a wire electrode and also exhibits extremely excellent effects as a wire electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の基本構成を
示す説明図、第2図は同種の装置の異なった構成のもの
を示す説明図である。
FIG. 1 is an explanatory diagram showing the basic configuration of an apparatus for carrying out the method of the present invention, and FIG. 2 is an explanatory diagram showing the same type of apparatus with a different configuration.

Claims (1)

【特許請求の範囲】 1)重量百分率(以下同じ)で5〜20%のCoと、0
.1〜1.5%のCuO、Cu_2O、Al_2O_3
又はZrO_2のうちから選ばれたいずれか一の化合物
と、0.1〜1%の希土類元素と、残部がCu並びに不
可避の不純物とから成る銅合金を、磁界内で上記磁界と
直交する方向に通電しつゝ圧延若しくは引抜き加工する
ことを特徴とする高張力銅合金材の製造方法。 2)上記磁界が3000〜6000エルステッドである
特許請求の範囲第1項記載の高張力鋼合金材の製造方法
[Claims] 1) 5 to 20% Co by weight percentage (the same applies hereinafter) and 0
.. 1-1.5% CuO, Cu_2O, Al_2O_3
Or, a copper alloy consisting of any one compound selected from ZrO_2, 0.1 to 1% of a rare earth element, and the remainder Cu and unavoidable impurities is placed in a magnetic field in a direction perpendicular to the above magnetic field. A method for manufacturing a high tensile strength copper alloy material, which comprises rolling or drawing while energizing the material. 2) The method for manufacturing a high-strength steel alloy material according to claim 1, wherein the magnetic field is 3,000 to 6,000 Oe.
JP25052284A 1984-11-29 1984-11-29 Manufacture of high tensile copper alloy material Pending JPS61130476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25052284A JPS61130476A (en) 1984-11-29 1984-11-29 Manufacture of high tensile copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25052284A JPS61130476A (en) 1984-11-29 1984-11-29 Manufacture of high tensile copper alloy material

Publications (1)

Publication Number Publication Date
JPS61130476A true JPS61130476A (en) 1986-06-18

Family

ID=17209138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25052284A Pending JPS61130476A (en) 1984-11-29 1984-11-29 Manufacture of high tensile copper alloy material

Country Status (1)

Country Link
JP (1) JPS61130476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107843A (en) * 2015-06-17 2015-12-02 江苏大学 Method for rolling high-strength hard aluminum alloy
CN105624460A (en) * 2015-12-29 2016-06-01 刘雷 High-conductivity and high-tenacity copper alloy cable conductor and preparation method thereof
CN109504872A (en) * 2018-12-29 2019-03-22 山东阳谷电缆集团有限公司 A kind of high-strength wearable copper alloy contact wire and its preparation process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107843A (en) * 2015-06-17 2015-12-02 江苏大学 Method for rolling high-strength hard aluminum alloy
CN105624460A (en) * 2015-12-29 2016-06-01 刘雷 High-conductivity and high-tenacity copper alloy cable conductor and preparation method thereof
CN105624460B (en) * 2015-12-29 2017-10-31 陕西通达电缆制造有限公司 A kind of copper alloy cable wire of high conductivity high tenacity and preparation method thereof
CN107475557A (en) * 2015-12-29 2017-12-15 刘雷 A kind of copper alloy cable wire of high conductivity high tenacity and preparation method thereof
CN109504872A (en) * 2018-12-29 2019-03-22 山东阳谷电缆集团有限公司 A kind of high-strength wearable copper alloy contact wire and its preparation process

Similar Documents

Publication Publication Date Title
CN106086512B (en) A kind of processing method of the anti-oxidant copper-based ultra-fine wire of high-ductility
Sakai et al. High-strength and high-conductivity Cu-Ag alloy sheets: new promising conductor for high-fieId Bitter coils
Shikov et al. High strength, high conductivity Cu–Nb based conductors with nanoscaled microstructure
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
JPS61130476A (en) Manufacture of high tensile copper alloy material
JPS6117325B2 (en)
JPS61130475A (en) Manufacture of high tension copper alloy material
JPH04120227A (en) High strength and high conductivity copper alloy and its manufacture
JPS60423B2 (en) Manufacturing method of Nb↓3Sn composite material
JPS60199522A (en) Manufacture of superconductive alloy wire
EP1574327A2 (en) Method of making a semi-finished composite product consisting of copper alloy and use of the semi-finished product
WO1991002364A1 (en) Superconductive wire
JPH0570888B2 (en)
US3314786A (en) Electrical materials and devices
JP4817094B2 (en) Manufacturing method of superconducting alloy multi-core wire
US4215465A (en) Method of making V3 Ga superconductors
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH0760620B2 (en) Nb3 Al Extra-fine multi-core superconducting wire manufacturing method
Verhoeven et al. The influence of coarsening treatments upon properties of in situ Nb 3 Sn-Cu superconducting wire
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JPH0714442A (en) Nbti superconducting wire for palse or ac
Sachadel et al. THERMAL CONDUCTIVITY OF Ag‐Sn, Ag‐Cu‐Zr AND Ag‐Cu‐Ni SHEATH MATERIALS FOR BSCCO TAPES
Ikeno et al. Development of Nb3Sn Superconducting Wire Using an In-Situ Processed Large Ingot
JP2517867B2 (en) V3 Si superconducting ultra-fine multi-core wire manufacturing method
JPH05258626A (en) Composite tube for sheath and manufacture of superconductive wire using the same