JPS61130404A - Sintering method of aluminum powder - Google Patents

Sintering method of aluminum powder

Info

Publication number
JPS61130404A
JPS61130404A JP59251179A JP25117984A JPS61130404A JP S61130404 A JPS61130404 A JP S61130404A JP 59251179 A JP59251179 A JP 59251179A JP 25117984 A JP25117984 A JP 25117984A JP S61130404 A JPS61130404 A JP S61130404A
Authority
JP
Japan
Prior art keywords
powder
aluminum
alloy
sintering
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59251179A
Other languages
Japanese (ja)
Inventor
Akio Isotani
磯谷 彰男
Senichi Yamada
山田 銑一
Masahiko Kato
昌彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59251179A priority Critical patent/JPS61130404A/en
Publication of JPS61130404A publication Critical patent/JPS61130404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered alloy having excellent wear resistance by forming a chemical conversion-treated layer consisting of K2AlF5 on the surface of Al powder which is sintering base body then mixing the powder with brazing filler metal powder and subjecting the powder mixture to compaction molding and sintering. CONSTITUTION:The chemical conversion-treated layer consisting of potassium pentafluoroaluminate (K2AlF5) is formed on at least one surface of the Al or Al alloy powder which is the sintering base body or the low melting Al alloy powder which is a brazing filler metal. Al-Si eutectic alloy powder contg., for example, about 7-12% Si is preferable for the low melting Al alloy powder as the brazing filler metal. About 99.5-97wt% Al powder and 0.5-3wt% low melting Al alloy powder are then mixed and after the powder mixture composed thereof is subjected to compaction molding, the molding is sintered in an atmosphere of an inert gas or reducing gas at the temp. above the m.p. of the brazing filler metal and below the m.p. of the Al powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム系粉体の焼結方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for sintering aluminum-based powder.

〔従来の技術〕[Conventional technology]

焼結合金は、溶製合金では得られない合金特性を示すほ
か、多孔質であるため摩擦部材として用いたとき、孔の
部分が油だまりとなり、良好な潤滑特性金示す。@量な
摩擦部材としてアルミニウムあるいはアルミニウム合金
の焼結体が従来よシ望まれているが、アルミニウムは酸
化されやすく、それらの表面は酸化アルミ(A40m 
)  で覆われているため、アルミニウム粉体あるいは
アルミニウム合金粉体の焼結は困難であった◎ アルミニウム系粉体KMt−添加すると、焼結合金が得
られるが、銅は潤滑油などの油を劣化嘔せるとか、腐食
の原因となることから、銅を含むアルミニウム系焼結合
金は望ましくない。
In addition to exhibiting alloying properties that cannot be obtained with ingot alloys, sintered alloys are porous, so when used as friction members, the pores become oil pools, exhibiting good lubrication properties. @ Sintered bodies of aluminum or aluminum alloy have traditionally been desired as friction members, but aluminum is easily oxidized, and their surfaces are coated with aluminum oxide (A40m).
), it was difficult to sinter aluminum powder or aluminum alloy powder.◎ When aluminum-based powder KMt- is added, a sintered alloy can be obtained, but copper cannot be coated with oil such as lubricating oil. Aluminum-based sintered alloys containing copper are not desirable because they deteriorate and cause corrosion.

それ故、従来より銅を含まない多孔質アルミニウム系焼
結合金が要望されている。
Therefore, there has been a demand for a porous aluminum-based sintered alloy that does not contain copper.

−万、シリコンcst)v含むアルミニ9ム合金は、耐
摩性に富むことから摩擦部材として多用されているが、
該合金の粉体を高温で瞬結するとSiが粒成長し、特性
を低下式せる。そのため、低温で焼結させることがi!
!−要となるが、低温では粉体表面にA403被膜が形
成烙れているなどの前記理由により焼結が不可能であっ
た。
Aluminum alloy containing silicon (cst)v is widely used as a friction member due to its high wear resistance.
When powder of this alloy is instantaneously solidified at high temperature, Si grains grow and the properties deteriorate. Therefore, it is important to sinter at low temperatures!
! - Last but not least, sintering was impossible at low temperatures due to the aforementioned reasons such as the formation of an A403 film on the powder surface.

〔発明が解決しようとする′問題点〕[Problem that the invention attempts to solve]

本発明は、得られた焼結体の用途を制限するような銅な
どの金属粉を使用することなく、アルミニウム合金粉体
を主原料として、特別な焼結条件を必要とすることなく
低温度で焼結することができるアルミニウム系粉体の焼
結方法全提供せんとするものである。
The present invention uses aluminum alloy powder as the main raw material, without using metal powder such as copper, which would limit the uses of the obtained sintered body, and without requiring special sintering conditions. It is an object of the present invention to provide a complete method for sintering aluminum-based powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のアルミニウム系粉体の焼結方法は、焼結体の基
体であるアルミニウム粉体あるいはアルミニウム合金粉
体またはろう材である低融点アルミニウム合金粉体の少
なくとも一方の表面にペンタフルオロアルミニウム酸カ
リウムCKtAtFs )からなる化成処理層を形成す
る工程と、上記焼結基体用粉末とろう材粉末と全混合し
たのち圧粉成形し、焼結する工程とからなることを特徴
とする。
In the method for sintering aluminum-based powder of the present invention, potassium pentafluoroaluminate is added to at least one surface of aluminum powder or aluminum alloy powder that is the base of the sintered body, or low melting point aluminum alloy powder that is the brazing material. CKtAtFs), and a step of completely mixing the powder for the sintered base with the brazing filler metal powder, compacting, and sintering.

本発明において、アルミニウムおよびアルミニウム合金
粉体(以下アルミニウム系粉体という)は、その組成に
ついては特に限定されることなく、通常のアルミニウム
合金に含まれる珪素(Si)、銅(Cu )、−r7ガ
:’(Mn)、亜鉛(Zn)、チタン(Ti) 、クロ
ム(Cr) 、ジルコニウム(Zr)、マグネシウム(
Mg )等の添加元素t−1種または2種以上含んでい
てよく、その含有量についても特別限定嘔れない。しか
しながら、好ましくはMg金多量に含まないものがよい
In the present invention, the aluminum and aluminum alloy powder (hereinafter referred to as aluminum-based powder) is not particularly limited in its composition, and contains silicon (Si), copper (Cu), -r7, which is contained in ordinary aluminum alloys. Ga:' (Mn), zinc (Zn), titanium (Ti), chromium (Cr), zirconium (Zr), magnesium (
It may contain one or more types of additive elements such as Mg), and there are no particular restrictions on the content. However, it is preferable that Mg does not contain a large amount of gold.

焼結の際に使用てれるろう材(結合材)としての低融点
アルミニウム合金粉体としては、アルミニウム系粉体よ
りも若干融点の低いAt−8t共晶合金の粉体が主とし
て用いられる。より具体的にはアルミニウム系粉体より
も融点が10〜100℃低く、Ks htFsの融点(
約540℃)以上の合金、例えばSi?7〜12チ(重
量、以下同じ)含有したht−st共晶合金の粉体が好
ましい。なお、上記低融点At合金はそれ自体の粉体と
して通常用いるが、場合によってはアルミニウム系粉体
の表面に被覆した形で用いてもよい。低融点At合金は
アルミニウム系材料のろう付けの際に、ろう材として用
いられるものが使用できる。
As the low melting point aluminum alloy powder used as a brazing material (binding material) during sintering, At-8t eutectic alloy powder, which has a slightly lower melting point than aluminum powder, is mainly used. More specifically, the melting point is 10 to 100°C lower than that of aluminum powder, and the melting point of Ks htFs (
(approximately 540°C) or higher, such as Si? A powder of an ht-st eutectic alloy containing 7 to 12 units (by weight, the same hereinafter) is preferable. Note that the above-mentioned low melting point At alloy is usually used as its own powder, but in some cases it may be used in the form of being coated on the surface of aluminum powder. As the low melting point At alloy, one used as a brazing material when brazing aluminum-based materials can be used.

Kt AtFs化成処理層の形成は、本発明者らがさき
に提案した特願昭48−191311号に記載した方法
にしたがって行う。
The Kt AtFs chemical conversion treatment layer is formed according to the method described in Japanese Patent Application No. 191311/1983, which was previously proposed by the present inventors.

本発明における化成処理工程は、焼結体の基体となるア
ルミニウム系粉体またはろう材である低融点アルミニウ
ム合金粉末の少なくとも一方をカリウムおよびフッ素を
含有する処理溶液と接触せしめることによって行なわれ
る。
The chemical conversion treatment step in the present invention is carried out by bringing at least one of the aluminum-based powder serving as the base of the sintered body or the low-melting aluminum alloy powder serving as the brazing material into contact with a treatment solution containing potassium and fluorine.

本発明の化成処理層の形成工程において使用嘔れる化成
処理液は種々の方法によって調製できるが、例えば次の
方法により調製される。そのひとつは、フッ化水素カリ
ウム(KHR)t−水に溶解する方法である。フッ化水
素カリウムの溶解量は、水1を当り1〜80gとしたも
のがペンタフルオロアルミニウム酸カリウムを生成する
のに適当である。6他の調製方法としては、フッ化カリ
ウム(KF)とフッ化水素(HF)と含水に溶解して混
合水溶液としてもよい。咳だ、水酸化カリウム(KOH
)  とフッ化水素とを水に溶解したものでもよい。こ
れらの水溶液は、フッ素とカリウムのモル比が1〜10
であって、かつカリウムが0.5〜40 g/l 含有
しているものがよい。
The chemical conversion treatment liquid used in the process of forming the chemical conversion treatment layer of the present invention can be prepared by various methods, and for example, by the following method. One method is to dissolve potassium hydrogen fluoride (KHR) in t-water. The amount of potassium hydrogen fluoride dissolved is 1 to 80 g per 1 part of water, which is suitable for producing potassium pentafluoroaluminate. 6. Another preparation method is to prepare a mixed aqueous solution by dissolving potassium fluoride (KF) and hydrogen fluoride (HF) in water. Cough, potassium hydroxide (KOH)
) and hydrogen fluoride dissolved in water may also be used. These aqueous solutions have a fluorine to potassium molar ratio of 1 to 10.
Preferably, it contains 0.5 to 40 g/l of potassium.

アルミニウム系粉体などの原料粉体と上記化成処理液と
t−接触させる方法としては、浸漬、塗布、吹き付けな
どの方法が挙げられるが、その接触時間は、化成処理液
中のカリウムおよびフッ素の濃度、該処理液の温度など
によって一概には決まらないが、たとえば0.5秒〜2
0分程度の範囲がよい。該接触によって、アルミニウム
系粉体の表面に存在する酸化物被膜が破壊てれ、アルミ
ニウムとカリウムとフッ素が化学反応し、KshtFs
が生成する。この化合物の生成は、温度によって変化す
る。当然、常温でも充分に化学反応が進行する。しかし
、接触時の温度t−aえば40〜70℃に上昇せしめる
と、FF“に酸化被膜の除去が完全に、しかも急速に行
なわれる。その結果、Ks AAFs化成処理層の皮膜
がアルミニウム系粉体の表面に強固に形成される。
Methods for bringing raw material powder such as aluminum powder into t-contact with the chemical conversion treatment solution include dipping, coating, and spraying, but the contact time is determined by the amount of potassium and fluorine in the chemical conversion treatment solution. Although it cannot be determined unconditionally depending on the concentration, temperature of the processing liquid, etc., for example, 0.5 seconds to 2 seconds.
A range of about 0 minutes is good. Due to this contact, the oxide film existing on the surface of the aluminum powder is destroyed, and aluminum, potassium, and fluorine react chemically, forming KshtFs.
is generated. The formation of this compound varies with temperature. Naturally, the chemical reaction proceeds sufficiently even at room temperature. However, when the temperature at the time of contact is raised to 40 to 70°C, the oxide film on the FF is completely and rapidly removed. Formed firmly on the surface of the body.

この化成処理層は強固に付着しているため、その後の圧
粉成形などの工程で粉体より落剥することはない。それ
故焼結が完全に行なわれる。
Since this chemical conversion treatment layer is firmly attached, it will not fall off from the powder during subsequent processes such as compaction. Sintering therefore takes place completely.

上記化成処理層の形成は、原料粉体の全てに施してもよ
く、また混合する低融点At粉体のみでもよく、またア
ルミニウム系粉体のみでもよい。化成処理は原料粉体に
施すのを原則とするが、場合によっては微粉砕する前の
粗粉またけ粗粒に施してもよい。アルミニウム系粉体は
、アトマイズド法1機械的粉砕法など種々の製法のもの
が使用できる。
The above chemical conversion treatment layer may be formed on all of the raw material powders, only on the low melting point At powder to be mixed, or only on the aluminum powder. In principle, the chemical conversion treatment is applied to the raw material powder, but in some cases it may be applied to the coarse particles before being pulverized. The aluminum-based powder can be produced by various methods such as an atomized method and a mechanical pulverization method.

本発明において原料粉体の粉粒度は、特に限定でれるこ
となく1通常の粉末冶金に用いられる粉粒度のものが使
用されるが、好ましくは100〜325 メツシュ程度
である。
In the present invention, the particle size of the raw material powder is not particularly limited and may be any particle size commonly used in powder metallurgy, but is preferably about 100 to 325 mesh.

原料粉末の調整方法としては、アルミニウム系粉体t−
99,5〜97を量チ、低融点アルミニウム合金粉体t
−0,5〜3重量%の範囲内で混合するのがよい。
As a method for preparing the raw material powder, aluminum-based powder t-
99.5~97 weighed, low melting point aluminum alloy powder t
It is preferable to mix within the range of -0.5 to 3% by weight.

低融点アルミニウム粉体が多くなると、焼結中にアルミ
ニウム系粉体が融解することがあり。
If the amount of low melting point aluminum powder increases, the aluminum powder may melt during sintering.

少なくなるとアルミニウム系粉体間の結合が不充分とな
る。
If the amount decreases, the bond between the aluminum powders becomes insufficient.

混合した粉体全所望の形状をした空洞を有する型に入れ
て圧粉成形する。圧粉時の圧力は得られる圧粉体が壊わ
れない程度の圧力以上であればよく、得られる焼結体の
見掛は密度全参考に適宜調節する。通常は3 ton/
c−前後の値が適当である。
The entire mixed powder is placed in a mold having a cavity of the desired shape and compacted. The pressure during compaction may be at least as high as a pressure that does not break the obtained compact, and the appearance of the obtained sintered body is adjusted as appropriate with reference to the total density. Usually 3 tons/
A value around c- is appropriate.

圧粉に際しては、圧粉体の成形の際に通常使用てれるス
テアリン陵亜鉛などの潤滑剤を併用してよい。焼結雰囲
気としては、不活性ガスもしくは還元性ガスが好ましい
。焼結温度は、ろう材の紳点以上でアルミニウム系粉体
の重点以下の温度である。
When compacting the powder, a lubricant such as stearin and zinc, which is commonly used when forming the compact, may be used in combination. The sintering atmosphere is preferably an inert gas or a reducing gas. The sintering temperature is above the temperature point of the brazing material and below the temperature point of the aluminum powder.

本発明のアルミニウム系粉体の焼結にあたっては、他の
金属粉末またはグラファイト等の通常焼結時に添加され
る粉体?加えて行なうこともできる。また、得られた焼
結体に更に低融点のAt合金もしくは潤滑特性等を付与
する目的で、銅、鉛などの他の金属を溶浸させることも
できる。
When sintering the aluminum-based powder of the present invention, other metal powders or powders such as graphite that are normally added during sintering may be used. You can also do this in addition. Further, in order to further impart a low melting point At alloy or lubricating properties to the obtained sintered body, other metals such as copper and lead can be infiltrated.

〔作用〕[Effect]

本発明でアルミニウム系粉体の表面に形成嘔れる化成処
理層Fi、アルミニウム表面に形成されるA40s ’
l”破壊し、焼結のざいにろう付けのときの7ラツクス
と同じ作用tするため、互いに接触している粉体中の各
元素の相互拡散が容易に行なわれ良好な焼結合金が得ら
れる。特に前記低融点At合金粉体の融合、拡散が容易
となる。本発明の化成処理層は、空気中の水分は勿論、
水と接しても腐食の原因とならないため、焼結体中に化
成処理層が残っても何等問題とならないばかりでなく、
後のアルミニウム合金などの溶浸に有利に作用する。ま
た、化成処理層の形成を適当にすることによって、粉体
の圧粉成形性?!iIN整することもできる。
In the present invention, the chemical conversion treatment layer Fi formed on the surface of the aluminum powder and the A40s' formed on the aluminum surface
During sintering, the elements in the powder that are in contact with each other can easily diffuse into one another, resulting in a good sintered alloy. In particular, the fusion and diffusion of the low melting point At alloy powder becomes easy.The chemical conversion treatment layer of the present invention is free from moisture in the air,
Since it does not cause corrosion even if it comes into contact with water, there is no problem even if the chemical conversion layer remains in the sintered body.
This has an advantageous effect on the subsequent infiltration of aluminum alloys, etc. In addition, by appropriately forming the chemical conversion treatment layer, the powder compactability of the powder can be improved. ! iIN can also be adjusted.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

実施例1 ろう材としてのAt−12%3i合金粉体(100メツ
シ5)t−に、H,F−イオンを含む液に浸漬して、粉
体表面に化成皮膜全形成させた。該粉体30g とアル
ミニウム粉体(100メツシユ)IKFと混合して混合
粉体とした。これを直径6瓢、高さ6−のペレット状に
圧粉成形しく圧粉体密度2.4 g /ex’ ) 、
窒素ガス雰囲気中にて570℃で1時間加熱して焼結体
を得た(wF結結審密度26 g/eat’ )。
Example 1 At-12% 3i alloy powder (100 mesh 5) t- as a brazing material was immersed in a liquid containing H, F- ions to form a chemical conversion film on the entire surface of the powder. 30 g of this powder was mixed with aluminum powder (100 mesh) IKF to obtain a mixed powder. This was compacted into pellets with a diameter of 6 gourds and a height of 6 mm, and the compact density was 2.4 g/ex').
A sintered body was obtained by heating at 570° C. for 1 hour in a nitrogen gas atmosphere (wF final density: 26 g/eat').

このようにして得られた焼結体の摩擦特性を。The frictional properties of the sintered body thus obtained.

ビン−ディスク型摩擦試験棲により測定した。It was measured using a bottle-disk type friction test.

測定は、焼結体上ビン側にとりつけ、ディスクには5U
S430  ?用いて行なった。摩擦試験は。
For measurement, attach the sintered body to the upper bottle side, and 5U to the disk.
S430? It was done using Friction test.

鉱油上滴下しながら行ない、摩擦係数μが1を超える荷
重全焼付荷重とした。また、比較のため鋳造(溶製)に
よるAt−12チSi合金についても同様の測定上行な
った。それらの懐付荷重を表1に示す。表1の結果から
れかるように焼結体とすることによって約50%の耐炉
付性の向上がみられる。
The test was carried out while dripping onto mineral oil, and the total seizure load had a friction coefficient μ of more than 1. Further, for comparison, similar measurements were performed on a cast (melted) At-12-Si alloy. Table 1 shows their mounting loads. As can be seen from the results in Table 1, by forming a sintered body, the furnace resistance is improved by about 50%.

実施例2 実施例1に記載した化成処理層したAL−Si合金粉体
と市販の燐結用グラファイト粉体會重量比で19:lの
割合で混合した。該粉体8gとアルミニウム粉体IKe
と金混合して混合粉体を得た。この混合粉体を実施例1
と同様にして、直径6mのペレット状く圧粉成形しく圧
粉体密度2.4g/6Nす、窒素ガス雰囲気中にて57
0 tll:で2時間加熱して焼結した(焼結体密度2
.6 g 10n’ )。
Example 2 The chemically treated AL-Si alloy powder described in Example 1 was mixed with commercially available graphite powder for phosphorization at a weight ratio of 19:1. 8 g of said powder and aluminum powder IKe
and gold to obtain a mixed powder. This mixed powder was used in Example 1.
In the same manner as above, the powder was compacted into pellets with a diameter of 6 m, and the density of the compact was 2.4 g/6N.
It was sintered by heating at 0 tll: for 2 hours (sintered body density 2
.. 6 g 10n').

得られた焼結体全ビン−ディスク型摩擦試験機により、
実施例1と同様の方法で雄擦試験を行ない、摩擦係数μ
および比摩耗量Ws f測定した。なお、本例の場合に
は、乾燥摩擦における特性を測定するため、油は使用し
ていない。
The resulting sintered body was tested using a bottle-disc friction tester.
A male friction test was conducted in the same manner as in Example 1, and the friction coefficient μ
and specific wear amount Ws f were measured. Note that in this example, oil was not used because the characteristics in dry friction were measured.

荷重け1. OKfとした。結果上表2に示す。Load 1. I marked it as OKf. The results are shown in Table 2 above.

表2には、比較のため鋳造によるAt−12%81 合
金の結果についても同時に示す。
For comparison, Table 2 also shows the results of the At-12%81 alloy obtained by casting.

上記表2の結果かられかるように、本例により製作した
焼結体はグラフアイ)?含むため、グラファイトt−含
まない鋳造品と比べて摩擦係数が小てくなっており、潤
滑性が良好であること管示している。
As can be seen from the results in Table 2 above, the sintered body produced according to this example is Graphai)? Because it contains graphite, the coefficient of friction is lower than that of a cast product that does not contain graphite, indicating that it has good lubricity.

〔発明の効果〕〔Effect of the invention〕

本発明は、アルミニウムまたはアルミニウム合金粉体の
表面に、低融点でかつろう付は時のフラツクスと同様な
作用tするKs ALF*からなる化成処理層を形成せ
しめたため、通常アルミニウム系粉体の表面に存在する
A40.による阻害がなく、良好に焼結できる。特に、
本発明方法によれば、銅あるいは鋼合金粉体を添加する
ことなく焼結できるため、本発明によって得られる焼結
合金は、油を劣化嘔せるとか他の金属部材を腐食きせる
ことがなく、そのため油潤滑が必要とされる個所の原振
部材として使用できる0また、本発明方法によれば、耐
摩性が良好と嘔れるSi金含むアルミニウム合金粉体も
焼結できるので、耐摩性のよい焼結部材が得られるなど
、種々の優れた効果含有する。
The present invention forms a chemical conversion layer on the surface of aluminum or aluminum alloy powder, consisting of Ks ALF*, which has a low melting point and has a similar effect to the flux during brazing. A40. Good sintering can be achieved without any interference caused by especially,
According to the method of the present invention, sintering can be performed without adding copper or steel alloy powder, so the sintered alloy obtained by the present invention does not deteriorate oil or corrode other metal members. Therefore, it can be used as a base member in places where oil lubrication is required. Furthermore, according to the method of the present invention, it is possible to sinter aluminum alloy powder containing Si gold, which has good wear resistance. It has various excellent effects such as the ability to obtain sintered parts.

Claims (1)

【特許請求の範囲】[Claims] (1)焼結体の基体であるアルミニウムあるいはアルミ
ニウム合金粉体またはろう材である低融点アルミニウム
合金粉体の少なくとも一方の表面にペンタフルオロアル
ミニウム酸カリウムからなる化成処理層を形成する工程
と、上記基体用粉体とろう材用粉体とを混合したのち圧
粉成形し、焼結する工程とからなることを特徴とするア
ルミニウム系粉体の焼結方法。
(1) Forming a chemical conversion layer made of potassium pentafluoroaluminate on at least one surface of aluminum or aluminum alloy powder that is the base of the sintered body or low melting point aluminum alloy powder that is the brazing material; A method for sintering aluminum-based powder, comprising the steps of mixing a powder for a base material and a powder for a brazing filler metal, compacting the powder, and sintering the powder.
JP59251179A 1984-11-28 1984-11-28 Sintering method of aluminum powder Pending JPS61130404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59251179A JPS61130404A (en) 1984-11-28 1984-11-28 Sintering method of aluminum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59251179A JPS61130404A (en) 1984-11-28 1984-11-28 Sintering method of aluminum powder

Publications (1)

Publication Number Publication Date
JPS61130404A true JPS61130404A (en) 1986-06-18

Family

ID=17218855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59251179A Pending JPS61130404A (en) 1984-11-28 1984-11-28 Sintering method of aluminum powder

Country Status (1)

Country Link
JP (1) JPS61130404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286691A (en) * 1997-04-15 1998-10-27 Seiko Epson Corp Solder or brazer material and production
JP2004255466A (en) * 2004-03-29 2004-09-16 Seiko Epson Corp Production method of wax or solder material
CN106623897A (en) * 2016-12-16 2017-05-10 南通金源智能技术有限公司 3D printing aluminum oxide covered composite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286691A (en) * 1997-04-15 1998-10-27 Seiko Epson Corp Solder or brazer material and production
JP2004255466A (en) * 2004-03-29 2004-09-16 Seiko Epson Corp Production method of wax or solder material
CN106623897A (en) * 2016-12-16 2017-05-10 南通金源智能技术有限公司 3D printing aluminum oxide covered composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
US2372202A (en) Bearing
JPH08232029A (en) Nickel-base grain dispersed type sintered copper alloy and its production
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
US3899306A (en) Exothermic brazing of aluminum
JPH04320494A (en) Self-lubricating material and its preparation
Lin et al. The tribological performance of 6061 aluminum alloy/graphite composite materials in oil lubrications with EP additives
US5200003A (en) Copper graphite composite
JPS61130404A (en) Sintering method of aluminum powder
US3380820A (en) Method of making high iron content aluminum alloys
US6355207B1 (en) Enhanced flow in agglomerated and bound materials and process therefor
JP5403707B2 (en) Cu-based infiltration powder
JP4177534B2 (en) Alloy powder for copper-based high strength sintered parts
US4236925A (en) Method of producing sintered material having high damping capacity and wearing resistance and resultant products
JP3326072B2 (en) Iron-based mixture for powder metallurgy and method for producing the same
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
JPH0581655B2 (en)
JPH01230740A (en) Sintered alloy material for oiliness bearing and its manufacture
RU2549040C2 (en) Magnesium alloy suitable to be used at high temperature, and method for its obtaining
WO2001005552A1 (en) Soldering rings and a method of their production
JPH02274802A (en) Joining sintered friction material
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPH04191301A (en) Iron-based powder mixed material for powder meatallurgy
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
JPH101704A (en) Sliding material and its production