JPS61130252A - Production of formaldehyde - Google Patents

Production of formaldehyde

Info

Publication number
JPS61130252A
JPS61130252A JP59253715A JP25371584A JPS61130252A JP S61130252 A JPS61130252 A JP S61130252A JP 59253715 A JP59253715 A JP 59253715A JP 25371584 A JP25371584 A JP 25371584A JP S61130252 A JPS61130252 A JP S61130252A
Authority
JP
Japan
Prior art keywords
catalyst
zinc
formaldehyde
coordination number
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59253715A
Other languages
Japanese (ja)
Other versions
JPH055818B2 (en
Inventor
Shoichi Sago
正一 佐合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP59253715A priority Critical patent/JPS61130252A/en
Publication of JPS61130252A publication Critical patent/JPS61130252A/en
Publication of JPH055818B2 publication Critical patent/JPH055818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce formaldehyde extremely stably in a gaseous phase in high yield, by dehydrogenating methanol in the absence of oxygen by the use of a catalyst consisting of zinc and synthetic mica. CONSTITUTION:In producing formaldehyde by dehydrogenating methanol in the absence of oxygen in a gaseous-phase flow reaction, a synthetic mica (especially preferably sodium teterasilicic mica, sodium taeniolite, or lithium taeniolite) shown by the formula (W is cation having 12 coordination number; X and Y are cations with 6 coordination number, and Z is cation with 4 coordination number) whose interlaminar W is subjected to ion exchange with zinc ion is used as a catayst. The catalyst subjected to ion exchange may be directly used, preferably it is calcined at 400-800 deg.C in air or in nitrogen air and used.

Description

【発明の詳細な説明】 本発明は気相流通反応において、メタノ−μの脱水素に
よυホルムアルデヒドを製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing υ formaldehyde by dehydrogenating methanol-μ in a gas phase flow reaction.

さらに詳しくは亜鉛及び合成雲母からなる触媒を使用す
ることを特徴とするホルムアルデヒドの製造方法に関す
るものである〇 ホルムアルデヒドの一般的な工業的製法としては、銀触
媒による接触酸化脱水素法あるいは酸化鉄と酸化モリブ
デンの混合物を触媒として使用する接触酸化法が知られ
ており、これらの方法では通常ホルムアルデヒドは水溶
液として得られている。前者は触媒として高価な銀を大
量に使用しかつまた650°〜720℃という高い温度
で反応がおこなわれさらに原料メタノール中のハロゲン
や硫黄の他微量の金属の混入に対しては非常に敏感であ
る為、原料メタノールの充分な精製が必要であり、また
触媒寿命を延長させる為多量の水蒸気を混入させねばな
らないなどの欠点を有している◎また後者は反応温度は
350〜450℃と比較的低いものの大過剰の空気とメ
タノール蒸気を触、謀上に流通させねばならず装置的に
高額の投資とエネルギーコストを要し、また副生物とし
て水やギ酸を生じ易くかつまたM’S後の廃ガスは、燃
料として使用もできず、特別の処理が必要であるなどの
欠点を有しているO また、いずれの場合も反応後のガスを、水に吸収させて
30チ〜50チ濃度のホルムアルデヒド水溶液としてホ
ルムアルデヒドを回収する為ホルムアルデヒドの大きな
工業的用途であるホリアセタール樹脂、尿素樹脂、フェ
ノールホ7レムアルデヒド樹脂等の製造にもちいる際、
1権、精製等の工程を必要とし、多大なエネルギーロス
を生じているのが実情である。
More specifically, it relates to a method for producing formaldehyde characterized by using a catalyst consisting of zinc and synthetic mica. General industrial methods for producing formaldehyde include catalytic oxidative dehydrogenation using a silver catalyst or iron oxide Catalytic oxidation methods using mixtures of molybdenum oxides as catalysts are known, and in these methods formaldehyde is usually obtained as an aqueous solution. The former uses a large amount of expensive silver as a catalyst, and the reaction takes place at a high temperature of 650°C to 720°C, and is extremely sensitive to trace amounts of metals such as halogen and sulfur in the raw methanol. Because of this, it is necessary to sufficiently purify the raw material methanol, and it also has disadvantages such as the need to mix in a large amount of water vapor to extend the catalyst life. Also, in the latter case, the reaction temperature is 350 to 450 °C. Although it is low, a large excess of air and methanol vapor must be brought into contact and deliberately distributed, requiring a large investment in equipment and energy costs, and is likely to produce water and formic acid as by-products. The waste gas cannot be used as fuel and has disadvantages such as requiring special treatment. In order to recover formaldehyde as a concentrated formaldehyde aqueous solution, formaldehyde is used in the production of major industrial applications such as polyacetal resin, urea resin, and phenolformaldehyde resin.
The reality is that it requires processes such as processing and refining, resulting in a large amount of energy loss.

一方、いわゆるメタノールの脱水素によるホルムアルデ
ヒド 法が提案されている。たとえば銅、銀、及びケイ素よシ
成る触媒をもちいる方法(特公昭41−11859)、
溶融した亜鉛、ガリウム、インジウムまたはアルミニウ
ムもしくはこれらの合金をもちいる方法(特公昭47−
49251)、炭素を含有する溶融状亜鉛又は亜,鉛を
含む合2今に戸タダーM−接触させる方法(特開昭48
−97808)などが提案されている。しかしながらこ
れらの方法でも触媒の寿命が短かい、反応率が低いなど
種々の欠点があり工業的な製造法としては満足できるも
のではない。また銅、亜鉛、いおうよりなる触媒をもち
いる方法(特開昭51−4407)及び銅、亜鉛あるい
は銅、亜鉛及びいおう触媒をもちい、ガス状いおう化合
物を供給しつつメタノールの脱水素を実施する方法(特
開昭51−76209)は反応生成物あるいは排出する
ガス中にいおうが混入し、工業的には種々の問題が生じ
る0これを改良する為銅、亜鉛、及びセレンよシ成る触
媒をもちいる方法(特開昭52−215)も提案されて
いるが触媒寿命、選択性の点で工業的にいまだ不満足な
ものであった0 本発明者はこれら問題点を改善すべく鋭意、研究を重ね
た結果、亜鉛及び合成雲母よ)見られた触媒を使用する
ことによって、メタノールの脱水素により収率よくかつ
またきわめて安定にホルムアルデヒドが得られることを
見出し、本発明を完成するに至った0 本発明で用いられる合成雲母はその主成分が配位数4の
陽イオン(2))の酸化物(例えばSin4正四面体)
であって、雲母結晶はこうした正四面体を基本としてお
り、この四面体が六角網目の板状に連なっている0この
上下の層間に八面体配位をとる配位数6の陽イオン(X
,Y)(例えばkl″, Fe” 、 Mg’+等)が
イオン結合している0 このサンドイッチ層の一組をタブレ.,トと呼びこれが
層状に重なっている0タブレツトとタブレットの間に層
間イオン光と呼ばれる配位数12の陽イオン、例えばア
ルカリ金属又はアルカリ土類金属イオンが酸素に囲まれ
非常に弱い結合をして存在している0 すなわち、本発明で使用される合成雲母は−2:配位数
4の陽イオン、0:酸素、F:フッ素)で示されるもの
であるO 上記一般式においてWとしては、例えばNa”。
On the other hand, a so-called formaldehyde method using methanol dehydrogenation has been proposed. For example, a method using a catalyst consisting of copper, silver, and silicon (Japanese Patent Publication No. 41-11859),
Method using molten zinc, gallium, indium or aluminum or alloys thereof
49251), a method of contacting carbon-containing molten zinc or a mixture containing zinc and lead (Japanese Patent Application Laid-open No. 48
-97808) have been proposed. However, these methods have various drawbacks such as short catalyst life and low reaction rate, and are not satisfactory as industrial production methods. Furthermore, a method using a catalyst consisting of copper, zinc, and sulfur (Japanese Unexamined Patent Publication No. 51-4407) and a method using a catalyst consisting of copper, zinc, or copper, zinc, and sulfur are used to dehydrogenate methanol while supplying a gaseous sulfur compound. The method (Japanese Unexamined Patent Publication No. 51-76209) involves the mixing of sulfur into the reaction products or the exhaust gas, which causes various industrial problems.To improve this, a catalyst consisting of copper, zinc, and selenium is used. A mochiru method (Japanese Unexamined Patent Publication No. 52-215) has also been proposed, but it is still unsatisfactory industrially in terms of catalyst life and selectivity. The present inventor has conducted extensive research to improve these problems. As a result of repeated research, they discovered that formaldehyde can be obtained in high yield and in an extremely stable manner by dehydrogenation of methanol by using a catalyst found in zinc and synthetic mica, leading to the completion of the present invention. 0 The main component of the synthetic mica used in the present invention is an oxide (for example, a Sin4 tetrahedron) of a cation (2) with a coordination number of 4.
Mica crystals are based on regular tetrahedrons, and these tetrahedrons are connected in a hexagonal network plate shape. Between the upper and lower layers are cations with a coordination number of 6 (X
, Y) (e.g., kl'', Fe'', Mg'+, etc.) are ionically bonded. , These are layered. Between the tablets, cations with a coordination number of 12 called interlayer ion light, such as alkali metal or alkaline earth metal ions, are surrounded by oxygen and form a very weak bond. In other words, the synthetic mica used in the present invention is represented by -2: a cation with a coordination number of 4, 0: oxygen, and F: fluorine. , for example, “Na”.

K” 、 Ca” 、 Ba” 、 Rh” ・Sr2
+など、XおよびYとしては、例えばMg  、 Fe
  、 Ni  + Mn  + AJ  +Fe”+
,Li+など、2としては、例えば(A71”、Si”
)。
K”, Ca”, Ba”, Rh”・Sr2
+, etc., as X and Y, for example, Mg, Fe
, Ni + Mn + AJ + Fe”+
, Li+, etc. 2 is, for example (A71", Si"
).

Si4 + 、 Ga 4+ 、 A!3+ 、 p+
e3+ 、 B3+などが挙けられる。
Si4+, Ga4+, A! 3+, p+
Examples include e3+ and B3+.

これらの合成雲母として具体的にはフッ素金雲母[KM
g3(AJSi30,o)F2) 、カリ四ケイ素雲母
(KMg.(st*o+。)F2〕 Naテトラシリシックマイカ [NaMg2.5(Si
4016)F2]Naテニオライト      〔Na
Mg2L1(S140+o)FJLiテニオライト  
     (r,iMg2Li (S i40+o)F
z)Naヘクトライト      [Na+Mg,;、
Lf,(Si401。)F2]■ Li67門”    [Li,Mg 24 Li4 (
Si・0・・)F・]などがある。これらの合成雲母の
うちNaテトラシリシックマイカ3&テニオライト、L
1テニオライトが本発明において特に適している0本発
明においてもちいられる触媒はこれら合本発明にもちい
られる触媒の調製方法としては、公知のイオン交換法の
いずれも採用することができる。中でも好ましくは、精
製したNaテトラシリシリ7クマイカの懸濁液に塩化亜
鉛。
Specifically, these synthetic mica include fluorine phlogopite [KM
g3(AJSi30,o)F2), Potassium tetrasilicic mica (KMg.(st*o+.)F2) Na tetrasilicic mica [NaMg2.5(Si
4016)F2]Na teniolite [Na
Mg2L1 (S140+o) FJLi Taeniolite
(r,iMg2Li (S i40+o)F
z) Na hectorite [Na+Mg,;,
Lf, (Si401.)F2] ■ Li67 gates” [Li, Mg 24 Li4 (
Si・0...)F・] and so on. Among these synthetic micas, Na tetrasilicic mica 3 & teniolite, L
1. Taeniolite is particularly suitable in the present invention. 0. The catalyst used in the present invention can be prepared by any of the known ion exchange methods. Among them, zinc chloride is preferably added to a suspension of purified Na tetrasilisilisili7 quack squid.

硝酸亜鉛,酢酸亜鉛,修酸亜鉛.蟻酸亜鉛,硫酸亜鉛の
ような2価の亜鉛塩の水溶液を調製して加えるか、好ま
しくはさらに洲、を亜鉛1moJキ あたF) 1 mol〜20 mol加える。ずの際添
加されるを使用するのが望ましい0その後適当な温度に
加熱しながら攪拌をおこなってイオン交換処理をおこな
った後、固相を濾過しさらに充分水洗して、濾過をくり
返し、最後に適当な温度で乾燥させる。
Zinc nitrate, zinc acetate, zinc oxalate. An aqueous solution of a divalent zinc salt such as zinc formate or zinc sulfate is prepared and added, or preferably 1 mol to 20 mol of zinc is added. After that, the solid phase is filtered, washed thoroughly with water, repeated filtration, and finally Dry at appropriate temperature.

得られた粉末を本発明ではそのまま触媒としてもちいて
もよいが好ましくは400’C〜soo’cの温度で空
気若しくは窒素気流中焼成処理をおこなうのが二い。
Although the obtained powder may be used as a catalyst as it is in the present invention, it is preferable to perform a calcination treatment in air or nitrogen stream at a temperature of 400'C to 400'C.

本発明の反応は、通常固定床気相流通式で実施されるの
が望ましい。反応条件に関しては触媒層温度で通常45
0〜650℃でろ、?、500C〜600Cが好適であ
る。
The reaction of the present invention is usually preferably carried out in a fixed bed gas phase flow system. Regarding the reaction conditions, the catalyst layer temperature is usually 45
0-650℃, right? , 500C to 600C are suitable.

またメタノールは触媒層へは気化器等をもちいて通常蒸
気状で不活性ガスもしくは水素と共に供給される。メタ
ノール供給量は反応器の大きさ、形状等にもよるが触媒
1ノあたシ、1〜100七ル/時が適当である01七ル
/時以下では実用的ではなく100七p/時を超えると
メタノールの反応率は低下する。
Further, methanol is usually supplied to the catalyst layer in vapor form together with an inert gas or hydrogen using a vaporizer or the like. The amount of methanol supplied depends on the size, shape, etc. of the reactor, but the appropriate amount is 1 to 1007 p/hour per catalyst.If it is less than 0.17 p/hour, it is not practical and it is 1007 p/hour. If the methanol reaction rate is exceeded, the reaction rate of methanol decreases.

本発明によって得られる生成物はホルムアルデヒド5w
t%以上、水θ〜1 wt−及び残余のメタノールから
なシ、生成物中の水分は極めて少なく高収率でホルムア
μデヒドを得ることができる。また反応によって水素が
高収率で得られる為反応のオフガスも熱源あるいはその
他の原料としても有効に使用することも可能である。
The product obtained according to the invention is formaldehyde 5w
t% or more, water θ˜1 wt− and the remaining methanol, the water content in the product is extremely small, and formadehyde can be obtained in high yield. Furthermore, since hydrogen can be obtained in high yield through the reaction, the off-gas from the reaction can also be effectively used as a heat source or other raw materials.

本発明における触媒はメタノールの反応率が高くきわめ
て高収率で、ホルムアμデヒドを得ることができる0触
媒の活性も10時間以上持続して活性であシ、炭素質の
触媒上への沈着もほとんどみられない。また銅系の触媒
に生じ易い触媒ベレット間の融着によるブロッキング現
象も全く生じないことも大きな特徴である〇以下に本発
明を実施例によりさらに詳しく説明するが本発明はこれ
らに限定されるものではない。
The catalyst of the present invention has a high reaction rate of methanol and an extremely high yield, and the activity of the catalyst that can obtain form μdehyde is sustained for more than 10 hours, and there is no deposition on the carbonaceous catalyst. Almost never seen. Another major feature is that the blocking phenomenon caused by fusion between catalyst pellets, which tends to occur in copper-based catalysts, does not occur at all. The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these. isn't it.

実施例1〜5.比較例1 (1)触媒調製法 触媒A 硝酸亜鉛(Zn(NO3)! ・6H20) 15.0
7 Fを200 mAの純水に溶解しこれに28チアン
モニア水26m1を加えてA液を得る〇一方ナトリウム
テトラシリシリ7クマイカ(NaMg 2.5 (S 
k 40B(1) F2 )の10 wt%ゾル水溶液
200fに純水1.81を加えて混合しこれを40℃の
湯浴中で加熱混合をおこないB液を得る。このB液にA
液を加え40℃で加熱攪拌を90分続ける。その後この
混合液を濾過しさらに純水で洗浄する操作を3回くシ返
し、得られた固形物を150℃オーブン中で20時間乾
燥した後、空気気流中中600℃5時間焼成をおこなう
。こうして得られた触媒AのBIT表面積は13.2m
’/r 、 Zn含有量は14. Owt%であった。
Examples 1-5. Comparative Example 1 (1) Catalyst Preparation Method Catalyst A Zinc nitrate (Zn(NO3)! ・6H20) 15.0
7 F was dissolved in 200 mA pure water and 26 ml of 28 thiammonium water was added thereto to obtain solution A. On the other hand, sodium tetrasilisili 7 quaika (NaMg 2.5 (S
1.81 g of pure water is added to 200f of a 10 wt% aqueous sol solution of k40B(1)F2) and mixed, and the mixture is heated and mixed in a 40°C water bath to obtain liquid B. A to this B liquid
Add the liquid and continue heating and stirring at 40°C for 90 minutes. Thereafter, the mixed liquid was filtered and further washed with pure water, which was repeated three times, and the obtained solid was dried in an oven at 150°C for 20 hours, and then calcined at 600°C in a stream of air for 5 hours. The BIT surface area of catalyst A thus obtained was 13.2 m
'/r, Zn content is 14. It was Owt%.

触媒B 硝酸亜鉛(Zn(No3)2・6H20) 7.58f
を200mJの純水に溶解しこれに28チアンモニア水
13m1を加えてD液を得る。触媒Aを調製した時にも
ちいたのと同一処方のB液にD液を加え、40℃で加熱
攪拌を90分続ける。その後この混合液を濾過しさらに
純水で洗浄する操作を3回くシ返し、得られた固形物を
150℃のオーブン中で20時間乾燥した後、空気気流
中で600℃5時間焼成をおこなう◇こうして得られた
触IIeBのBET表面積は8.8rl、yy 、 Z
n含有量は7.8 wtチであった。
Catalyst B Zinc nitrate (Zn(No3)2.6H20) 7.58f
was dissolved in 200 mJ of pure water, and 13 ml of 28 thiammonia water was added thereto to obtain Solution D. Add solution D to solution B, which has the same recipe as that used when preparing catalyst A, and continue heating and stirring at 40°C for 90 minutes. After that, the mixed liquid was filtered and further washed with pure water, which was repeated three times, and the obtained solid was dried in an oven at 150°C for 20 hours, and then calcined at 600°C for 5 hours in an air stream. ◇The BET surface area of the catalytic IIeB thus obtained is 8.8 rl, yy, Z
The n content was 7.8 wt.

触媒C 硝酸亜鉛(Zn (No、 )2 ’ 6 H2O) 
22.6 Ofを200mjlの純水に溶解し1.これ
に28チアンモニア水89 mJを加えてD液を得る。
Catalyst C Zinc nitrate (Zn (No, )2'6 H2O)
1. Dissolve 22.6 Of in 200 mjl of pure water. Add 89 mJ of 28 thiammonia water to this to obtain Solution D.

触媒Aを調製した時にもちいたのと同一処方のB液にD
液を加え、40℃で加熱撹拌を90分続ける。
Add D to solution B of the same formulation used when preparing catalyst A.
Add the liquid and continue heating and stirring at 40°C for 90 minutes.

その後この混合液を濾過しさらに純水で洗浄する操作を
8回くシ返し、得られた固形物を150℃のオーブン中
で20時間乾燥した後、空気気流中で600℃5時間焼
成をおこなう。
After that, the mixed liquid was filtered and further washed with pure water, which was repeated 8 times, and the obtained solid was dried in an oven at 150°C for 20 hours, and then calcined at 600°C for 5 hours in an air stream. .

こうし゛て得られた触媒BのBIT表面積は17.2屹
f、Zn含有量は18.9 wtチであった。
Catalyst B thus obtained had a BIT surface area of 17.2 f and a Zn content of 18.9 wt.

触r!JE、D 硝酸亜鉛(Zn(NO3)z ・6H20) 15.0
7 tを200mjの純水に溶解しE液を得る。触媒A
を調製した時にもちいたのと同一処方のB液にE液を加
え、40℃で加熱攪拌を90分続ける。その後この混合
液を濾過しさらに純水で洗浄する操作を3回ぐり返し、
得られた固形物を150℃のオープン中で20時間乾燥
した後空気気流中で600℃5時間焼成をおこなう。こ
うして得られた触HDのBET表面積は1o、5rr?
it 、 Zn含有量は2.5 vt%・であった。
Touch! JE, D Zinc nitrate (Zn(NO3)z ・6H20) 15.0
7t was dissolved in 200 mj of pure water to obtain liquid E. Catalyst A
Add solution E to solution B, which has the same formulation as that used when preparing , and continue heating and stirring at 40°C for 90 minutes. After that, the process of filtering this mixture and washing with pure water was repeated three times.
The obtained solid material was dried in an open air at 150°C for 20 hours, and then calcined at 600°C for 5 hours in an air stream. The BET surface area of the touch HD thus obtained is 1o, 5rr?
It, Zn content was 2.5 vt%.

触媒E 塩化亜鉛(ZnCJt ) 8.5fを200mJO純
水に溶解しこれに28チアンモニア水18m1f:mえ
てpgを得る0触媒Aを調製した時にもちいたのと同一
処方のB液にF液を加え、40Cで加熱攪拌を90分続
ける。その後この混合液を濾過しさらに純水で洗浄する
操作を8回くり返し得られた固形物を150℃のオーブ
ン中で20時間乾燥した後空気気流中で600℃5時間
焼成をおこなう。こうして得られた触ilEのBIDT
表面積は9.1 m”/S’ 、 Zn含有量は7.1
 wtチであった。
Catalyst E Dissolve 8.5f of zinc chloride (ZnCJt) in 200mJO pure water and add 18ml of 1f:m of 28 thiammonia water to obtain pg0 Add solution F to solution B of the same formulation as used when preparing catalyst A. Add and continue heating and stirring at 40C for 90 minutes. Thereafter, the mixed solution was filtered and further washed with pure water, which was repeated eight times. The resulting solid was dried in an oven at 150°C for 20 hours, and then calcined at 600°C for 5 hours in an air stream. BIDT of the thus obtained tactile E.
Surface area is 9.1 m”/S', Zn content is 7.1
It was wt Chi.

触媒F 硝酸銀(*fNo、 ) 8.61 yを200mJの
純水に溶解しこれに28チアンモニア水18 mAを加
えてG液を得る。触媒Aを調製した時にもちいたのと同
一処方のB液にG液を加え40Cで加熱攪拌を90分続
ける。その後この混合液を濾過しさらに純水で洗浄する
操作を3回くり返し得られた固形物を150℃のオープ
ン中で20時間乾燥した後、空気気流中で600℃5時
間焼成をおこなう。こうして得られた触媒FOT3ET
表面積は18.1 m”zTであった。
Catalyst F silver nitrate (*fNo, ) 8.61 y was dissolved in 200 mJ of pure water, and 18 mA of 28 thiammonium water was added thereto to obtain liquid G. Add Solution G to Solution B, which has the same recipe as that used when preparing Catalyst A, and continue heating and stirring at 40C for 90 minutes. Thereafter, the mixed liquid was filtered and further washed with pure water three times, and the resulting solid was dried in an open air at 150° C. for 20 hours, and then calcined at 600° C. for 5 hours in an air stream. The catalyst FOT3ET thus obtained
The surface area was 18.1 m"zT.

触KG 塩化第二銅(CuCJ* ) 6.81 tを200m
Jの純水に溶解し、これに28チアンモニア水26 m
lを加えてH液を得る。触媒Aを調製した時にもちいた
のと同一処方のB液4CH液を加え、40℃で加熱攪拌
を90分続ける。その後この混合液を濾過しさらに純水
で洗浄する操作を3回くり返し得られた固形物を150
0のオープン中で20時間乾燥した後、空気気流中で6
00℃5時間焼成をおこなう0こうして得られた触媒G
のBET表面積は18.4 yl、yyであった。
Touch KG Cupric chloride (CuCJ*) 6.81t to 200m
Dissolve in pure water of J, add 26 m of 28 thiammonia
1 to obtain solution H. Add B solution 4CH solution having the same formulation as that used when preparing catalyst A, and continue heating and stirring at 40° C. for 90 minutes. After that, the operation of filtering this mixed liquid and washing with pure water was repeated three times, and the resulting solid matter was
After drying for 20 hours in the open at 0, dry in the air stream for 6
The catalyst G thus obtained was calcined at 00°C for 5 hours.
The BET surface area of was 18.4 yl, yy.

触媒H 塩化第一銅(CuCJ ) 5.1Ofを200mjt
の純水に溶解しこれに28%アンモニア水26 mal
 t、加えてI液を得る。触媒Aを調製した時にもちい
たのと同一処方のB液に工液を加え、40℃で加熱攪拌
を90分続ける。その後この混合液を濾過し、さらに純
水で洗浄する操作を3回くυ返し得られた固形物を15
0℃のオープン中で20時間乾燥した後空気気流中で6
00℃5時間焼成をおこなう。こうして得られた触媒H
のBUT表面積はL 8.Omン?であった。
Catalyst H Cuprous chloride (CuCJ) 5.1Of200mjt
Dissolve in pure water and add 26 mal of 28% ammonia water to this.
t, to obtain solution I. Add the working solution to Solution B, which has the same recipe as that used when preparing Catalyst A, and continue heating and stirring at 40°C for 90 minutes. After that, this mixed liquid was filtered, and the operation of washing with pure water was repeated three times.
After drying for 20 hours in the open at 0°C, dry in an air stream for 6 hours.
Firing was performed at 00°C for 5 hours. Catalyst H thus obtained
The BUT surface area of is L8. Om? Met.

以上触[A−Hの調製方法について述べたが、調製後の
触媒は24〜48メツシユの粒径に成形した後デシケー
タ中に保管した。
The preparation method of A-H was described above, and the prepared catalyst was molded to a particle size of 24 to 48 mesh and then stored in a desiccator.

また比表面積の測定は200℃で80分窒素気流中で脱
水処理を行なった後、モノソープ(カンタクローム社製
)を使用して測定した〇 一方触媒中のZn成分量(w t * )については原
子吸光分析によって測定した0 (2)触媒反応試験 触媒2.Ofを内径10%の石英製管型反応器に充填す
る。そしてこの反応器に150℃であらかじめ気化混合
させたメタノールと窒素の混合気体(CH,OH/N、
= 18/82モル比)を550mmoJ/hr常圧の
条件で流通させ・肺温550℃でメタノール脱水素反応
をおこなった。
In addition, the specific surface area was measured using Monosoap (manufactured by Quantachrome) after dehydration treatment at 200°C for 80 minutes in a nitrogen stream.On the other hand, the amount of Zn component in the catalyst (w t *) 0 (2) Catalytic reaction test catalyst 2. was measured by atomic absorption spectrometry. Of is charged into a quartz tube reactor having an inner diameter of 10%. A mixed gas of methanol and nitrogen (CH, OH/N,
= 18/82 molar ratio) was allowed to flow at 550 mmoJ/hr under conditions of normal pressure and a methanol dehydrogenation reaction was carried out at a lung temperature of 550°C.

反応器の出口ガスはそのまま保温されたガスサンプラー
によって、APS−201,20% FlusinT(
ガスクロ工業社Ifりカラム3m及びモレキュラーシー
ブ13Xカラム2m’)使用したl熱電導度型ガスクロ
マトグラフに導入し、反応生成物であるホルムアルデヒ
ド[HCHO] 。
The outlet gas of the reactor was collected using a gas sampler that was kept warm as it was.
The reaction product, formaldehyde [HCHO], was introduced into a thermal conductivity type gas chromatograph using a Gas Chromo Kogyo Co., Ltd. If column 3 m and a Molecular Sieve 13X column 2 m').

ギ酸メチル、ジメチルエーテル[DME]、水素[H4
F、−酸化炭素[CO3、メタン〔CH4〕及び未反応
のメタノール〔出口CM30H’l 、窒素の分析定蓋
をおこなった。
Methyl formate, dimethyl ether [DME], hydrogen [H4
F, -carbon oxide [CO3, methane [CH4] and unreacted methanol [outlet CM30H'l], nitrogen analysis fixed lid was performed.

反応結果は表−1に示したが、いずれも設定温度に到達
後、8〜12時間反応を維続後の値でアシ、定常活性を
示している。ガスクロマトグラフによる分析では、ジメ
チルエーテルギ酸メチルはほとんど生成しなかった。
The reaction results are shown in Table 1, and the values after the reaction was maintained for 8 to 12 hours after reaching the set temperature showed stable activity. Analysis by gas chromatography showed that almost no methyl dimethyl ether formate was produced.

したがって、転化率、収率5選択率は次式により計算し
た。
Therefore, the conversion rate, yield, and selectivity were calculated using the following formula.

Claims (1)

【特許請求の範囲】[Claims] 酸素の非存在下においてメタノールの脱水素により気相
状でホルムアルデヒドを製造する方法において、一般式
W_1_/_3〜_1(X、Y)_2_._5〜_3(
Z_4O_1_0)F_2(Wは配位数12の陽イオン
、X、Yは配位数6の陽イオン、Zは配位数4の陽イオ
ンをそれぞれ表わす)で表わされる合成雲母の層間陽イ
オンWを亜鉛イオンとイオン交換することによって得ら
れた触媒をもちいることを特徴とするホルムアルデヒド
の製法。
In a method for producing formaldehyde in a gas phase by dehydrogenating methanol in the absence of oxygen, the general formula W_1_/_3 to_1(X,Y)_2_. _5~_3(
Z_4O_1_0)F_2 (W represents a cation with a coordination number of 12, X and Y represent a cation with a coordination number of 6, and Z represents a cation with a coordination number of 4). A method for producing formaldehyde characterized by using a catalyst obtained by ion exchange with zinc ions.
JP59253715A 1984-11-29 1984-11-29 Production of formaldehyde Granted JPS61130252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253715A JPS61130252A (en) 1984-11-29 1984-11-29 Production of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253715A JPS61130252A (en) 1984-11-29 1984-11-29 Production of formaldehyde

Publications (2)

Publication Number Publication Date
JPS61130252A true JPS61130252A (en) 1986-06-18
JPH055818B2 JPH055818B2 (en) 1993-01-25

Family

ID=17255137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253715A Granted JPS61130252A (en) 1984-11-29 1984-11-29 Production of formaldehyde

Country Status (1)

Country Link
JP (1) JPS61130252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041686A (en) * 1989-06-30 1991-08-20 Hoechst Aktiengesellschaft Process for the preparation of carbonyl compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041686A (en) * 1989-06-30 1991-08-20 Hoechst Aktiengesellschaft Process for the preparation of carbonyl compounds

Also Published As

Publication number Publication date
JPH055818B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
US4368346A (en) Oxidative dehydrogenation of paraffins with a promoted cobalt catalyst
KR20130132944A (en) Zeolite having copper and alkali earth metal supported thereon
JPH0729962B2 (en) Method for producing phenols
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
US3149082A (en) Calcium phosphate catalysts and method of production
US4455388A (en) Catalyst and process for producing diolefins
EP0109259B1 (en) Method for production or activation of antimony-containing metal oxide catalysts
WO1998039278A1 (en) USE OF Ce/Zr MIXED OXIDE PHASE FOR THE MANUFACTURE OF STYRENE BY DEHYDROGENATION OF ETHYLBENZENE
JPS6352612B2 (en)
JPH0596B2 (en)
US4092372A (en) Catalyst for the production of isoprene
JPS61130252A (en) Production of formaldehyde
JPS62270405A (en) Production of chlorine
JP2555636B2 (en) Method for producing copper-containing zeolite compact
JP2555637B2 (en) Method for producing copper-containing zeolite
JP3867305B2 (en) Carbon monoxide conversion catalyst
US4567314A (en) Process for producing diolefins
JPH0419984B2 (en)
JPH078812B2 (en) Formaldehyde manufacturing method
CN114618463B (en) Composite catalyst and preparation method and application thereof
US1851362A (en) Catalytic side chain oxidation of aromatic compounds
JP3292251B2 (en) Steam purification method
US1694620A (en) Base-exchange body
JPS6089441A (en) Production of formaldehyde
Jadhav et al. Alkylation of benzene with isopropanol on mixed oxides