JPS6112991B2 - - Google Patents

Info

Publication number
JPS6112991B2
JPS6112991B2 JP2934681A JP2934681A JPS6112991B2 JP S6112991 B2 JPS6112991 B2 JP S6112991B2 JP 2934681 A JP2934681 A JP 2934681A JP 2934681 A JP2934681 A JP 2934681A JP S6112991 B2 JPS6112991 B2 JP S6112991B2
Authority
JP
Japan
Prior art keywords
treatment
depth
layer
nitriding
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2934681A
Other languages
Japanese (ja)
Other versions
JPS57143473A (en
Inventor
Hiroshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2934681A priority Critical patent/JPS57143473A/en
Publication of JPS57143473A publication Critical patent/JPS57143473A/en
Publication of JPS6112991B2 publication Critical patent/JPS6112991B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、表面の自己潤滑性ならびに耐摩耗
性に優れかつ素材自体の強度および靭性にも優れ
た摺動用部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sliding member that has excellent surface self-lubricating properties and wear resistance, as well as excellent strength and toughness of the material itself.

摺動用部材としては、例えば、シリンダおよび
シリンダライナ、シリンダコア、ピストンリング
などがある。第1図は、摺動用部材として射出シ
リンダを備えた圧力ダイカスト装置の一構造例を
示すもので、固定金型1と移動金型2との間に所
定形状の金型キヤビテイ3を形成し、固定金型1
には射出シリンダ(射出スリーブ)4を取付け
て、この射出シリンダ4内でプランジヤ5を摺動
可能に配設し、射出シリンダ4内に注湯口6より
注入した溶融金属を上記プランジヤ5の押出作動
によつて金型キヤビテイ3内に加圧供給し、凝固
後にダイカスト製品を得る構造をなすものであ
る。
Examples of sliding members include cylinders, cylinder liners, cylinder cores, and piston rings. FIG. 1 shows an example of the structure of a pressure die-casting device equipped with an injection cylinder as a sliding member, in which a mold cavity 3 of a predetermined shape is formed between a fixed mold 1 and a movable mold 2. Fixed mold 1
An injection cylinder (injection sleeve) 4 is attached to the injection cylinder 4, and a plunger 5 is slidably disposed within the injection cylinder 4, and the molten metal injected into the injection cylinder 4 from the pouring port 6 is pushed out by the plunger 5. The structure is such that the material is supplied under pressure into the mold cavity 3 and a die-cast product is obtained after solidification.

このような圧力ダイカスト装置に使用される射
出シリンダ4は、高温たとえばアルミニウム合金
ダイカストの場合約650℃前後の高温でかつ500〜
1500Kg/cm2程度の高圧でプランジヤ5との間でく
りかえし摺動を受けるため、高温での強度をはじ
めとして、良好な潤滑性、耐摩耗性、耐酸化性、
耐焼もどし抵抗性、耐ヒートチエツク性などが要
求され、溶損(エロージヨン)などにも耐えうる
特性を有するものが要求される。
The injection cylinder 4 used in such a pressure die-casting device is heated to a high temperature of, for example, about 650°C in the case of aluminum alloy die-casting, and a temperature of 500°C to
Because it is repeatedly slid against the plunger 5 under high pressure of approximately 1500 kg/ cm2 , it has excellent lubricity, wear resistance, oxidation resistance, and strength at high temperatures.
It is required to have properties such as tempering resistance and heat check resistance, as well as properties that can withstand erosion.

従来、上述した射出シリンダ4を製造するにあ
たつては、素材として例えば熱間ダイス鋼を用
い、所定の寸法に対し研磨代を残して機械加工を
おこなつたのち、焼入れおよび焼もどしを施して
RC40〜50程度に調質し、その後長時間の窒化
処理を施して硬化層深さ0.3〜0.5mm程度の窒化層
を形成し、最後に仕上研磨をおこなうようにして
いた。
Conventionally, in manufacturing the above-mentioned injection cylinder 4, hot die steel, for example, is used as the material, and after being machined to a predetermined dimension leaving a grinding allowance, it is then quenched and tempered. The material was tempered to about H R C 40 to 50, then subjected to a long nitriding treatment to form a nitrided layer with a hardened layer depth of about 0.3 to 0.5 mm, and finally finished polished.

しかしながら、このような従来の場合には、窒
化処理だけによつて表面の耐摩耗性を得るように
していたため、潤滑性という点では不足をきたし
やすく、とくに注湯口6より高温の溶融金属が注
入されて射出シリンダ4に熱変形を生じた場合に
かじりを生じやすく、射出シリンダ4の寿命が短
かくなつて交換頻度が高くなるという問題を有し
ていた。そして、このような窒化処理だけによつ
て高寿命を得ようとする場合には、射出シリンダ
4の摩耗によつて生ずるプランジヤ5との間のク
リアランス増加を調整するための摺動部材を別に
用意せねばならないという問題を有していた。
However, in such conventional cases, the wear resistance of the surface was achieved only by nitriding, which tends to result in insufficient lubricity, especially when hot molten metal is injected from the pouring port 6. When the injection cylinder 4 is heated and thermally deformed, galling is likely to occur, which shortens the life of the injection cylinder 4 and increases the frequency of replacement. If a long life is to be obtained only by such nitriding treatment, a sliding member is separately prepared to adjust the increase in clearance between the injection cylinder 4 and the plunger 5 caused by wear. The problem was that it had to be done.

また、射出シリンダ4とプランジヤ5との間で
の潤滑性を高めるために、摺動部分に黒鉛粉末を
供給することもおこなわれるが、黒鉛粉末が飛散
して使用効率を低下したり、作業環境を悪化した
りするという問題を有し、さらには焼付を生ずる
おそれがあるなどの問題を有していた。
Furthermore, in order to improve the lubricity between the injection cylinder 4 and the plunger 5, graphite powder is supplied to the sliding parts, but the graphite powder scatters, reducing usage efficiency and causing problems in the working environment. This has the problem of worsening the temperature and furthermore, there is a risk of causing seizure.

そのほか、射出シリンダ4をはじめとする摺動
用部材の表面に塩浴による浸硫処理を施して表面
の自己潤滑性の向上をはかることも試みられてお
り、塩浴中に窒素を含む場合(例えばNaCNを含
む塩浴の場合)には浸硫層の形成と同時に窒化層
の形成も若干認められる。しかしながら、浸硫層
と同時に形成される窒化層の厚さはせいぜい0.1
mm止まりであると共に、この窒化層の硬度は窒化
処理単独の場合に比べてかなり低く、主に浸硫に
よる表面の自己潤滑性を向上させているだけであ
つて、十分な硬化深さならびに耐摩耗性を得るこ
とができないため、摺動用部材の長寿命という観
点からは未だ不十分であるという問題を有してい
た。また、上記塩浴による浸硫処理において窒化
層の硬化深さを増大させるために、浸硫時間を長
くすることも考えられるが、長時間の浸硫処理に
よつて浸硫層も厚くなるため、表面に肌荒れを生
じたり、表面の剥離を生じたり、さらには寸法変
化をきたしたりしやすく、このため研摩仕上代が
増加して研磨時間の増大ならびに表面硬化層の減
少という不具合を生ずる問題を有していた。さら
にまた、浸炭後に直ちに低温浸硫浴中に浸漬し、
マルテンパー処理中に浸硫層を形成させる方法
(特開昭50−114355号公報)もあるが、この場合
に形成される浸硫層の厚さはせいぜい2〜3μm
であつて、とくに負荷の大きな摺動条件下におい
ては長時間の使用に耐え得ないものであるという
問題点があつた。
In addition, attempts have been made to improve the self-lubricating properties of the surfaces of sliding members such as the injection cylinder 4 by sulfurizing them in a salt bath. In the case of a salt bath containing NaCN), the formation of a nitrided layer is also slightly observed at the same time as the formation of a sulfurized layer. However, the thickness of the nitrided layer formed at the same time as the sulfurized layer is at most 0.1
In addition, the hardness of this nitrided layer is considerably lower than that in the case of nitriding treatment alone, and the hardness of this nitrided layer is mainly to improve the self-lubricating property of the surface due to sulfurization, and it has sufficient hardening depth and durability. Since it is not possible to obtain abrasion resistance, there has been a problem that the sliding member is still insufficient from the viewpoint of long life. In addition, in order to increase the hardening depth of the nitrided layer in the sulfurizing treatment using the salt bath mentioned above, it is possible to lengthen the sulfurizing time, but since the sulfurizing layer becomes thicker due to the long sulfurizing treatment. , it is easy to cause surface roughness, surface peeling, and even dimensional changes, which increases the polishing finish amount, increases polishing time, and reduces the hardened surface layer. had. Furthermore, immediately after carburizing, it is immersed in a low-temperature sulfurizing bath,
There is also a method of forming a sulfurized layer during martempering (Japanese Patent Laid-Open No. 50-114355), but the thickness of the sulfurized layer formed in this case is at most 2 to 3 μm.
However, there was a problem in that it could not withstand long-term use, especially under heavy sliding conditions.

この発明は、上述した従来の問題点に着目して
なされたもので、自己潤滑性ならびに耐摩耗性に
優れ、素材自体の強度および靭性にも著しく優れ
ており、負荷の大きな摺動条件下においても耐用
寿命の長い摺動用部材を得ることを目的としてい
る。
This invention was made by focusing on the above-mentioned conventional problems, and has excellent self-lubricating properties and wear resistance, and the material itself has extremely excellent strength and toughness, and can be used under heavy sliding conditions. Another objective is to obtain a sliding member with a long service life.

この発明は、表面の摺動用に適する部材を製造
するにあたり、あらかじめ焼入れ焼もどしなどに
よつて調質した鋼表面に表面硬化処理を施したの
ち、浸硫処理を施すことを特徴とし、その実施態
様において表面硬化処理として、硬化層深さ0.3
〜0.5mmの窒化処理、あるいは硬化層深さ0.5〜0.7
mmの浸炭処理を施し、浸硫処理の深さを0.1〜0.4
mmとして、前記表面硬化処理による耐摩耗性向上
と浸硫処理による自己潤滑性向上の相乗作用によ
つて耐摩耗性ならびに潤滑性に非常に優れた摺動
用部材を製造するようにしたことを特徴としてい
る。
This invention is characterized in that, in manufacturing a member suitable for surface sliding, a surface hardening treatment is applied to a steel surface that has been previously tempered by quenching and tempering, and then a sulfurizing treatment is applied. In the embodiment, as surface hardening treatment, the hardened layer depth is 0.3
~0.5mm nitriding treatment or hardened layer depth 0.5~0.7
Carburized to 0.1 mm to 0.4 mm, and sulfurized to a depth of 0.1 to 0.4
mm, a sliding member with extremely excellent wear resistance and lubricity is manufactured by the synergistic effect of the improvement in wear resistance by the surface hardening treatment and the improvement in self-lubricity by the sulfurization treatment. It is said that

上記した表面硬化処理および浸硫処理を施す鋼
としては、炭素工具鋼(SK)および合金工具鋼
(SKS,SKD,SKT,SKH)その他の適宜な鋼を
使用することができる。そして、選択した鋼材に
対し必要な焼なまし処理を施して十分に球状化さ
れた均質な素材とし、この素材を所定の仕上代を
含む所定の形状寸法に加工したのち焼入れおよび
焼もどしをおこない、HRC40〜50程度の硬度に
調質する。その後、上記鋼表面に、たとえば硬化
層深さ0.3mm以上の表面硬化処理を施す。このと
き、硬化層深さを0.3mm以上とするのが好ましい
のは、摺動用部材としての十分な耐摩耗性を得る
ためである。この表面硬化処理としては、硬化層
深さが0.3〜0.5mm程度の窒化処理あるいは硬化層
深さが0.5〜0.7mm程度の浸炭処理をおこなうのが
よく、必要に応じて浸炭窒化処理をおこなうのも
よい。
Carbon tool steel (SK), alloy tool steel (SKS, SKD, SKT, SKH) and other appropriate steels can be used as the steel to be subjected to the above-described surface hardening treatment and sulfurization treatment. Then, the selected steel material is subjected to the necessary annealing treatment to make it into a homogeneous material that is sufficiently spherical, and this material is processed into a predetermined shape and dimension including a predetermined finishing allowance, and then quenched and tempered. , H R C to a hardness of about 40 to 50. Thereafter, the steel surface is subjected to surface hardening treatment, for example, to a hardened layer depth of 0.3 mm or more. At this time, the reason why the hardened layer depth is preferably 0.3 mm or more is to obtain sufficient wear resistance as a sliding member. As this surface hardening treatment, it is best to perform nitriding treatment with a hardened layer depth of approximately 0.3 to 0.5 mm or carburization treatment with a hardened layer depth of approximately 0.5 to 0.7 mm, and carbonitriding treatment may be performed as necessary. Good too.

これらのうち、窒化処理としては、液体窒化を
おこなうことも可能であるが、ガス窒化またはイ
オン窒化をおこなうことが望ましく、これによつ
て必要な硬化層深さと高い硬度(Hv=900〜1100
程度)を得る。ここで、硬化層深さを0.3〜0.5mm
としたのは、0.3mmよりも小さいと必要でかつ長
期にわたる耐摩耗性を得ることができず、0.5mm
よりも大きくなると窒化処理時間が長くなること
による。他方、浸炭処理としては、液体浸炭をお
こなうことも可能であるが、雰囲気炉を用いるガ
ス浸炭をおこなうのが良い。ここで、硬化層深さ
を0.5〜0.7mmとしたのは、0.5mmよりも小さいと必
要でかつ長期にわたる耐摩耗性を得ることができ
ず、0.7mmよりも大きくなると浸炭処理時間が長
くなることによる。
Among these nitriding treatments, liquid nitriding is possible, but gas nitriding or ion nitriding is preferable.
degree). Here, the hardening layer depth is 0.3~0.5mm
The reason for this is that if it is smaller than 0.3 mm, it will not be possible to obtain the necessary long-term wear resistance, so 0.5 mm
If it becomes larger than , the nitriding treatment time becomes longer. On the other hand, as the carburizing treatment, it is possible to perform liquid carburizing, but it is preferable to perform gas carburizing using an atmospheric furnace. Here, the hardened layer depth is set to 0.5 to 0.7 mm because if it is smaller than 0.5 mm, it will not be possible to obtain the necessary long-term wear resistance, and if it is larger than 0.7 mm, the carburizing treatment time will be longer. It depends.

次に、上記表面硬化処理後に深さ0.1〜0.4mm程
度の浸硫処理を施す。この浸硫処理は中性あるい
は還元性の塩浴を用いる液体法によつておこなう
のが簡便であるが、その他H2S等の気体を用いる
気体法によることもできる。塩浴を用いる場合に
は、混合塩に硫黄化合塩を添加させた塩浴剤を使
用するのが簡便である。なお、この場合前述した
ように、塩浴剤中に窒素が含まれている場合(例
えばNaCNが含まれている場合)には、浸硫と同
時に窒化を伴うのが普通である。しかしながら、
この際の窒化深さはせいぜい0.1mm止まりである
ため、十分満足しうる耐摩耗性を得ることができ
ず、浸硫処理単独では長寿命を目的とする射出シ
リンダ等の摺動用部材には適さない。ここで、浸
硫層の深さが0.1mmよりも小さいと良好な自己潤
滑性を得ることができなくなるので、浸硫層の深
さを0.1mm以上とすることが泌要である。他方、
0.4mmよりも大きな深さの浸硫層を形成したとし
ても自己潤滑性の向上にはあまり寄与せず、かえ
つて浸硫処理に必要な時間も長くなり、しかも表
面に肌荒れが生じるので、0.4mm以下とするのが
良い。
Next, after the above-mentioned surface hardening treatment, a sulfurization treatment is performed to a depth of about 0.1 to 0.4 mm. This sulfurization treatment is conveniently carried out by a liquid method using a neutral or reducing salt bath, but it can also be carried out by a gas method using a gas such as H 2 S. When using a salt bath, it is convenient to use a salt bath agent prepared by adding a sulfur compound salt to a mixed salt. In this case, as mentioned above, if the salt bath agent contains nitrogen (for example, if it contains NaCN), nitriding is usually performed at the same time as sulfurization. however,
Since the nitriding depth in this case is only 0.1 mm at most, it is not possible to obtain sufficiently satisfactory wear resistance, and sulfurizing treatment alone is not suitable for sliding parts such as injection cylinders that aim for long life. do not have. Here, if the depth of the sulfurized layer is less than 0.1 mm, good self-lubricating properties cannot be obtained, so it is essential that the depth of the sulfurized layer is 0.1 mm or more. On the other hand,
Even if a sulfurized layer with a depth greater than 0.4 mm is formed, it will not contribute much to improving self-lubricating properties, and the time required for sulfurization will become longer, and the surface will become rough. It is better to set it to less than mm.

このような表面処理をおこなつた状張では、摺
動用部材の最表面側から、自己潤滑性に富んだ硫
化皮膜、浸炭または窒化・硫化拡散層、浸炭また
は窒化拡散層、素地の順で形成されるため、最表
面の硫化皮膜によつて自己潤滑性の非常に優れた
ものにすることができると同時に、硫化皮膜が欠
損したときには前記した非常に硬くしかも潤滑性
を有する浸炭または窒化・硫化拡散層によつてこ
れを十分に補なうことができ、摺動用部材の自己
潤滑性ならびに耐摩耗性を長期間にわたつて良好
に維持することが可能である。そして、上記浸炭
または窒化・硫化拡散層と素地との間に形成され
た浸炭または窒化拡散層によつて、使用時におけ
る表層の欠損ないしは欠落を十分に防ぐことが可
能であり、これら各層の存在によつて摺動用部材
として非常に優れた摺動特性を発揮することがで
き、しかも、あらかじめ調質処理が施されている
ため素材自体の強度および靭性にも著しく優れた
ものである。
In a surface treated with this type of surface treatment, the following steps are formed from the outermost surface of the sliding member: a sulfide film with high self-lubricating properties, a carburized or nitrided/sulfurized diffusion layer, a carburized or nitrided diffusion layer, and the base material. Therefore, the sulfide film on the outermost surface can provide extremely excellent self-lubricating properties, and at the same time, when the sulfide film is damaged, carburization or nitriding/sulfiding, which is extremely hard and has lubricating properties, can be applied. This can be sufficiently compensated for by the diffusion layer, and it is possible to maintain good self-lubricating properties and wear resistance of the sliding member over a long period of time. The carburized or nitrided diffusion layer formed between the carburized or nitrided/sulfurized diffusion layer and the substrate can sufficiently prevent the surface layer from chipping or missing during use, and the presence of each of these layers Because of this, it can exhibit very excellent sliding properties as a sliding member, and because it has been heat-treated in advance, the material itself has excellent strength and toughness.

実施例 ここでは、第2図に示す工程図に従つて実施し
た。鋼材としては、重量%で、C:0.39%、Si:
1.00%、Mn:0.40%、Cr:5.15%、Mo:1.4%、
V:0.8%、残部Feおよび通常の不純物からなる
合金工具鋼(JIS SKD 61相当材)を用い、これ
を820〜870℃に加熱した後徐冷して十分な球状化
焼なまし処理(硬度HRC23以下)を施す。次い
で、外径220mm、内径120mm、長さ700mmの最終仕
上寸法に対して必要な仕上代を加味した寸法を設
定して機械加工に供し、外径部ターニングおよび
内径部ボーリングをおこなつてシリンダ素材に成
形した。次に、このシリンダ素材を1030〜1040℃
の温度に加熱したのち空冷焼入れし、HRC47以
上の焼入れ硬さを得た。この焼入れにおいては、
シリンダ素材の酸化脱炭を防ぐことができるよう
に、真空焼入炉あるいは雰囲気焼入炉を用いてお
こなうことが望ましく、焼入歪を極力おさえうる
ように炉内装入法をとることが望ましい。次い
で、上記焼入れ後のシリンダ素材を590℃に加熱
したのち空冷して焼もどしをおこない、硬度HR
C42〜48が得られるように調質した。この焼もど
しは、上記焼入れされたシリンダ素材に対して、
適正な硬度ならびに良好な靭性を付与するために
おこなうものであり、必要に応じて複数回にわけ
ておこなうことが望ましい。この場合、最初の方
の焼もどしを上記した焼もどし温度に加熱してお
こない、最後の方の焼もどしを後述する表面硬化
処理において兼用しておこなうこともできる。
Example Here, the process was carried out according to the process diagram shown in FIG. As for steel material, C: 0.39%, Si:
1.00%, Mn: 0.40%, Cr: 5.15%, Mo: 1.4%,
An alloy tool steel (JIS SKD 61 equivalent material) consisting of V: 0.8%, balance Fe and normal impurities is used, which is heated to 820 to 870°C and then slowly cooled to undergo sufficient spheroidizing annealing treatment (hardness H R C23 or below). Next, the final finished dimensions of 220 mm outside diameter, 120 mm inside diameter, and 700 mm length are set, and the required finishing allowance is set for machining, and the outside diameter section is turned and the inside diameter section is bored to obtain the cylinder material. It was molded into. Next, heat this cylinder material to 1030~1040℃.
After heating to a temperature of , air-cooling quenching was performed to obtain a quenched hardness of H R C47 or higher. In this hardening,
In order to prevent oxidation and decarburization of the cylinder material, it is desirable to use a vacuum quenching furnace or an atmosphere quenching furnace, and it is desirable to use an in-furnace quenching method to suppress quenching distortion as much as possible. Next, the cylinder material after quenching is heated to 590°C and then air cooled for tempering, and the hardness H R
It was tempered to obtain C42-48. This tempering is applied to the hardened cylinder material mentioned above.
This is done in order to impart appropriate hardness and good toughness, and it is desirable to do it in multiple batches if necessary. In this case, the first tempering may be performed by heating to the above-mentioned tempering temperature, and the last tempering may also be performed in the surface hardening treatment described below.

そこで、上記最初の焼もどし後のシリンダ素材
に対し、わずかの仕上代を残して研磨をおこなつ
たのち、表面硬化処理を施す。
Therefore, the cylinder material after the above-mentioned first tempering is polished leaving a slight finishing allowance, and then surface hardening treatment is performed.

表面硬化処理として窒化処理を施すに際して
は、上記シリンダ素材を窒化処理炉内に装入し、
アンモニアガス雰囲気中で590℃×48時間保持し
た。この窒化処理によつて、硬さHv900〜1100、
深さ0.3〜0.5mmの窒化層を得た。
When performing nitriding treatment as a surface hardening treatment, the above cylinder material is charged into a nitriding furnace,
It was held at 590°C for 48 hours in an ammonia gas atmosphere. Due to this nitriding treatment, the hardness is Hv900~1100,
A nitrided layer with a depth of 0.3-0.5 mm was obtained.

一方、表面硬化処理として浸炭処理を施すに際
しては、ガス変成炉によつて調整された浸炭性ガ
ス(RXガス)雰囲気炉内に前記シリンダ素材を
装入し、860℃×6時間保持した。この浸炭処理
によつて、硬さHv550〜700、深さ0.5〜0.7mmの浸
炭層を得た。
On the other hand, when performing carburizing treatment as a surface hardening treatment, the cylinder material was placed in a carburizing gas (RX gas) atmosphere furnace adjusted by a gas conversion furnace and held at 860° C. for 6 hours. Through this carburizing treatment, a carburized layer with a hardness of Hv550 to 700 and a depth of 0.5 to 0.7 mm was obtained.

次いで、上記表面硬化処理を施した各シリンダ
素材に対して浸硫処理を施した。この浸硫処理に
際しては塩浴を用い、NaCN+NaCl+Na2CO3
らなる混合塩に、Na2S2O3からなる硫黄化合塩を
添加したものを使用してこれを570℃に保持し、
この塩浴中で各シリンダ素材を3〜6時間浸漬し
た。この浸硫処理によつて、硬さHv750〜850、
深さ0.3〜0.4mmの浸硫層を得た。なお、硫黄化合
塩としては、上記のほか、Na2S,Na2SO4
Na2SO3なども使用できる。この後、仕上研磨お
よび内径部ホーニングをおこなつて、第1図に示
す圧力ダイカスト装置用の射出シリンダを製作し
た。
Next, each cylinder material subjected to the above-mentioned surface hardening treatment was subjected to a sulfurization treatment. During this sulfurizing treatment, a salt bath was used, and a mixed salt consisting of NaCN + NaCl + Na 2 CO 3 was added with a sulfur compound salt consisting of Na 2 S 2 O 3 , and this was maintained at 570 ° C.
Each cylinder material was immersed in this salt bath for 3 to 6 hours. Through this sulfurization treatment, the hardness is Hv750~850,
A sulfurized layer with a depth of 0.3-0.4 mm was obtained. In addition to the above, examples of sulfur compound salts include Na 2 S, Na 2 SO 4 ,
Na 2 SO 3 etc. can also be used. Thereafter, final polishing and inner diameter honing were performed to produce an injection cylinder for a pressure die-casting machine as shown in FIG. 1.

そこで、得られた射出シリンダを第1図に示す
圧力ダイカスト装置に組込んでアルミニウム合金
のダイカストをおこなつた一実施結果によれば、
約40万シヨツトまでの使用に耐えることができ
た。
According to the results of one experiment in which the obtained injection cylinder was assembled into a pressure die-casting device shown in Fig. 1 and die-casting of aluminum alloy was carried out,
It was able to withstand up to approximately 400,000 shots.

また、比較のために、上記実施例と同じ
SKD61を用い、HRC40〜50にあらかじめ調質し
たシリンダ素材に上記と同じ塩浴組成によつて浸
硫処理を施し、硬度Hv600〜700、深さ0.1〜0.3mm
の浸硫層を形成したのち仕上研磨して射出シリン
ダを製作し、同様に第1図に示す圧力ダイカスト
装置に組込んでアルミニウム合金のダイカストを
同一条件でおこなつたところ、約20万シヨツトで
交換の必要を生じた。
Also, for comparison, the same as the above example
Using SKD61, the cylinder material was previously tempered to H R C40-50 and was sulfurized using the same salt bath composition as above to obtain a hardness of Hv600-700 and a depth of 0.1-0.3mm.
After forming a sulfurized layer, an injection cylinder was manufactured by final polishing, and was similarly installed in the pressure die-casting machine shown in Figure 1 to die-cast an aluminum alloy under the same conditions, resulting in approximately 200,000 shots. The need for replacement arose.

なお、上述した実施例では圧力ダイカスト装置
の射出シリンダを例にとつて説明したが、そのほ
か、シリンダライナ、シリンダコア、ピストンリ
ング等の各種の摺動用部材に適用しうることはい
うまでもない。
In addition, although the above-mentioned embodiment was explained by taking the injection cylinder of a pressure die-casting device as an example, it goes without saying that the present invention can be applied to various other sliding members such as cylinder liners, cylinder cores, and piston rings.

以上のように、この発明によれば、あらかじめ
焼入れ・焼もどし処理して組織の微細化ならびに
強度および靭性の向上をはかつたのち、この調質
した鋼表面に、例えば硬化層深さ0.3mm以上の表
面硬化処理を施すことによつて、浸硫処理前に上
記所定深さの硬化層を得るようにし、例えばその
後深さ0.1〜0.4mmの浸硫処理を施すようにしたか
ら、摺動用部材の芯部の強度ならびに靭性を良好
なものにしたうえで、前記表面硬化処理による耐
摩耗性向上と浸硫処理による自己潤滑性向上の相
乗作用によつて摺動用部材の耐摩耗性ならびに潤
滑性を非常に優れたものとすることができ、負荷
の大きな摺動条件下においても長期にわたつて支
障なく使用することが可能であるというきわめて
すぐれた効果をもたらすことができる。
As described above, according to the present invention, after quenching and tempering are performed in advance to refine the structure and improve strength and toughness, a hardened layer depth of, for example, 0.3 mm is applied to the tempered steel surface. By performing the above surface hardening treatment, a hardened layer of the predetermined depth is obtained before the sulfurization treatment, and then, for example, the sulfurization treatment is performed to a depth of 0.1 to 0.4 mm. After improving the strength and toughness of the core of the member, the wear resistance and lubrication of the sliding member are improved by the synergistic effect of the surface hardening treatment to improve wear resistance and the sulfurization treatment to improve self-lubricity. It is possible to achieve extremely excellent properties such as the ability to be used for a long period of time without any trouble even under heavy sliding conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用されうる射出シリンダ
を組込んだ圧力ダイカスト装置の断面説明図、第
2図はこの発明の一実施例における摺動用部材の
製造工程説明図である。
FIG. 1 is an explanatory cross-sectional view of a pressure die-casting device incorporating an injection cylinder to which the present invention can be applied, and FIG. 2 is an explanatory view of the manufacturing process of a sliding member in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 表面の摺動用に適する部材を製造するにあた
り、あらかじめ焼入れ・焼もどし処理して調質し
た鋼表面に表面硬化処理を施したのち、浸硫処理
を施すことを特徴とする摺動用部材の製造方法。 2 表面硬化処理が、硬化層深さ0.3〜0.5mmの窒
化処理である特許請求の範囲第1項記載の摺動用
部材の製造方法。 3 表面硬化処理が、硬化層深さ0.5〜0.7mmの浸
炭処理である特許請求の範囲第1項記載の摺動用
部材の製造方法。 4 浸硫処理の深さが0.1〜0.4mmである特許請求
の範囲第1項、第2項または第3項記載の摺動用
部材の製造方法。
[Claims] 1. In manufacturing a member suitable for surface sliding, a steel surface that has been previously quenched and tempered is subjected to a surface hardening treatment, and then a sulfurization treatment is performed. A method for manufacturing a sliding member. 2. The method of manufacturing a sliding member according to claim 1, wherein the surface hardening treatment is a nitriding treatment with a hardened layer depth of 0.3 to 0.5 mm. 3. The method for manufacturing a sliding member according to claim 1, wherein the surface hardening treatment is a carburizing treatment with a hardened layer depth of 0.5 to 0.7 mm. 4. The method for manufacturing a sliding member according to claim 1, 2 or 3, wherein the depth of the sulfurization treatment is 0.1 to 0.4 mm.
JP2934681A 1981-03-03 1981-03-03 Manufacture of sliding member Granted JPS57143473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2934681A JPS57143473A (en) 1981-03-03 1981-03-03 Manufacture of sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2934681A JPS57143473A (en) 1981-03-03 1981-03-03 Manufacture of sliding member

Publications (2)

Publication Number Publication Date
JPS57143473A JPS57143473A (en) 1982-09-04
JPS6112991B2 true JPS6112991B2 (en) 1986-04-11

Family

ID=12273659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2934681A Granted JPS57143473A (en) 1981-03-03 1981-03-03 Manufacture of sliding member

Country Status (1)

Country Link
JP (1) JPS57143473A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326293Y2 (en) * 1984-12-25 1991-06-06

Also Published As

Publication number Publication date
JPS57143473A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
EP2460906A1 (en) Steel member having nitrogen compound layer and process for producing same
US6454880B1 (en) Material for die casting tooling components, method for making same, and tooling components made from the material and process
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JPS6112991B2 (en)
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
JPS5831066A (en) Punch for cold working
KR100232268B1 (en) The heat treatment method of steel for die
KR20100107874A (en) A method for the surface treatmet of mold
JP3305972B2 (en) Warm mold and method for manufacturing the same
JPH0853711A (en) Surface hardening treating method
JPH01283430A (en) Bearing excellent in rolling fatigue life characteristic
US5064478A (en) Method and apparatus for surface austempering of cast iron parts
JP2000039079A (en) Aluminum alloy-made spool valve for automatic transmission
CN112576507A (en) Manufacturing method of compressor piston and compressor piston
KR102374815B1 (en) Method of manufacturing inner wheel for engine using hot forging
JP2827592B2 (en) Manufacturing method of steel parts
WO2022044392A1 (en) Sliding member and method for producing same
JP4650706B2 (en) Tool for hot working and gas nitronitriding method
JPH0436438A (en) Sliding member having sliding part and its manufacture
JP2896144B2 (en) Alloy steel with excellent wear resistance
KR100240043B1 (en) Heat treatment of die material
CN115418552B (en) Preparation method of nitrocarburizing low alloy steel machine tool friction plate
JP7310723B2 (en) Steel part and its manufacturing method
JP7289728B2 (en) Nitrided material manufacturing method and nitrided material
JP7178832B2 (en) Method for manufacturing surface hardening material