JPS61129596A - Main steam piping tunnel chamber with horizontal type radiation monitor - Google Patents

Main steam piping tunnel chamber with horizontal type radiation monitor

Info

Publication number
JPS61129596A
JPS61129596A JP59198504A JP19850484A JPS61129596A JP S61129596 A JPS61129596 A JP S61129596A JP 59198504 A JP59198504 A JP 59198504A JP 19850484 A JP19850484 A JP 19850484A JP S61129596 A JPS61129596 A JP S61129596A
Authority
JP
Japan
Prior art keywords
main steam
detector
radiation
steam piping
radiation monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59198504A
Other languages
Japanese (ja)
Inventor
西詰 勝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59198504A priority Critical patent/JPS61129596A/en
Publication of JPS61129596A publication Critical patent/JPS61129596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、主蒸気放射線モニタの取付方法及び放射線検
出器の保護ケース形状に係わり、特に、主蒸気管トンネ
ル室内の配管サポート構造材等を、利用し、横置設置が
出来、取付及び保守点検スペースを必要最少限で、原子
炉建屋を設計可能にする、主蒸気配管トンネル室に係わ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for attaching a main steam radiation monitor and a protective case shape for a radiation detector, and in particular, to a method for attaching a main steam radiation monitor and a protective case shape for a radiation detector. It relates to a main steam piping tunnel room that can be used and installed horizontally, and allows the design of a reactor building with the minimum necessary installation and maintenance/inspection space.

〔発明の背景〕[Background of the invention]

従来技術による主蒸気放射線モニタ、取付方法では、現
在計画中プラントの第10.11図に示す如く、主蒸気
配管トンネル室上部、コンクIJ−ト床に、250人の
鋼管を埋設しその中に強固顛固定出来る様な、支持構造
物と一緒に収納する為、モニタ設置上階に、先ず、取付
/取外しスペース34が必要であった。第13〜14図
に示す先行プラントでは、部会長<、34U通路スペー
スの一部を利用出来る建物設計であったが、第10゜1
1図に示す計画プラントは、従来とは建屋構造が異なる
プラント設計を実施中であり、主蒸気配管トンネル室上
部は、中央制御室及びケーブル処理室であるため、前記
34と、検出器アクセススペース51t−確保する為巾
3m長さ27m高さ45mの計81°m2のスペースが
、下部中操室52及びケーブル処理室53を狭くかつ形
状を複雑にしており、53内のケーブルトレー58には
、約6000本のケーブルが収納されておシ、その延線
作業を困難にする、主原因と成っている。又、51は、
ダーティエリア(放射線管理区域)であり、下部中操5
2、ケーブル処理室53、中央制御室55、及びケーブ
ル処理室56は、クリーンエリア(非放射線区域)であ
る為、それらを区分する必要があシ、遮蔽壁として、厚
さ1m、高さ4.5m、長さ30mもの、鉄筋コンクリ
ート壁を設けてあシそのコンクリート量は約135m”
を使用している。
In the main steam radiation monitor and installation method according to the conventional technology, as shown in Figure 10.11 of the plant currently being planned, 250 steel pipes are buried in the concrete IJ floor above the main steam piping tunnel room. First, an installation/removal space 34 was required on the upper floor where the monitor was installed in order to store it together with a support structure that could be firmly fixed. In the previous plant shown in Figures 13 and 14, the building design was such that a part of the 34U aisle space could be used.
The planned plant shown in Figure 1 is currently undergoing a plant design with a building structure that is different from the conventional one, and the upper part of the main steam piping tunnel room is the central control room and cable processing room, so the above 34 and the detector access space are In order to secure 51 tons, a space of 3 m width, 27 m length, and 45 m height, totaling 81 m2, is required, making the lower central operation room 52 and the cable processing room 53 narrow and complicated in shape, and the cable tray 58 inside 53 is Approximately 6,000 cables are housed in the building, and this is the main reason why the cable extension work is difficult. Also, 51 is
It is a dirty area (radiation control area) and is located in the lower central control room 5.
2. Since the cable processing room 53, central control room 55, and cable processing room 56 are clean areas (non-radiation areas), it is necessary to separate them. A shielding wall with a thickness of 1 m and a height of 4. 5m long and 30m long, with reinforced concrete walls and the amount of concrete is approximately 135m.
are using.

従って、前記スペースの削減及びコンクリートを無くす
為には、従来技術の取付方法による、上部階床からの吊
下げ方式を止め、主蒸気配管トンネル崖30と同階のス
ペースを、利用する事を検討する必要が生じた。そこで
、計画中の主蒸気管用サポート27の構造部材を利用し
、横取付方式にすることで、少なくとも上部階のスペー
ス81m2と、135m3の鉄筋コンクリートを削減す
る事が出来、かつケーブル処理室53、下部中操塞52
を広くし、作業を容易にすると共に、52と53の仕切
壁形状を、シンプルにすることも可能である。又吊下げ
方式では、計測範囲39(検吊器1と主蒸気管26の間
の空間)には、他系統構成物(例えば、配管HVACダ
クト電線管etc)の設置は避ける必要があり、本発明
では、この制限に対する検討も不要となる。
Therefore, in order to reduce the space and eliminate the need for concrete, consider stopping the conventional installation method of hanging from the upper floor and using the space on the same floor as the main steam pipe tunnel cliff 30. It became necessary to do so. Therefore, by using the structural members of the planned main steam pipe support 27 and installing it horizontally, it is possible to reduce the space of at least 81 m2 on the upper floor and 135 m3 of reinforced concrete. Central control block 52
It is also possible to make the partition walls 52 and 53 simpler in shape, making the work easier. In addition, in the hanging method, it is necessary to avoid installing other system components (for example, piping, HVAC ducts, conduit pipes, etc.) in the measurement range 39 (space between the hanging device 1 and the main steam pipe 26). The invention also eliminates the need to consider this limitation.

又、検出器1の保護ケース形状を従来第12図に示す円
柱形から、第1図に示す三角柱(角柱)等にし、取付面
も改善する必要があった。
Furthermore, it was necessary to change the shape of the protective case of the detector 1 from the conventional cylindrical shape shown in FIG. 12 to the triangular prism (prismatic) shown in FIG. 1, and to improve the mounting surface.

従来形の円柱形では、横取付が不適であった為第13〜
15図に示す様に、建築設計上の制限もあり主蒸気放射
線モニタの検出器1は、主蒸気管トンネル室30上階の
床よ9250人鋼管を吊り下げ、その中に収納して、計
測していた、従来型では、第13.15図に示す様、上
部階に取付及び保守スペース34が必要であり、また第
14゜15図に示す、計測範囲39内には、他系統構成
物の設置が出来ず、プラント実施設計時の調整業務に、
多大な時間を要しておる、又検出器lの設置する最適な
場所は、原子炉31出口直後の主蒸気管26(通常運転
中における異常放射能の検出)部分であるが格納容器3
5内設置と成シ、まず通常雰囲気放射線レベルが高く、
事故時放射線レベルとの比較が困難である。次に通常運
転中は、35内部に立入ことか出来ないので保守点検が
出来ない。又高温多湿(事故時想定温度171 C。
The conventional cylindrical shape was not suitable for horizontal mounting, so the 13th to
As shown in Figure 15, due to architectural design limitations, the detector 1 of the main steam radiation monitor suspends a steel pipe from the floor of the upper floor of the main steam pipe tunnel room 30, stores it inside the pipe, and performs measurements. The conventional type requires an installation and maintenance space 34 on the upper floor, as shown in Figures 13 and 15, and there are other system components within the measurement range 39, as shown in Figures 14 and 15. could not be installed, and coordination work during the plant implementation design,
It takes a lot of time, and the best place to install the detector is the main steam pipe 26 immediately after the reactor 31 exit (for detecting abnormal radioactivity during normal operation), but it is not suitable for the containment vessel 3.
First of all, the radiation level in the atmosphere is usually high,
It is difficult to compare with the radiation level at the time of the accident. Next, during normal operation, it is only possible to enter the inside of 35, so maintenance and inspection cannot be performed. It is also hot and humid (estimated temperature at the time of the accident was 171 degrees Celsius).

湿度loom)であり、検出器1の設置には不適である
ことから、格納容器35外側の出来る限シ、近い(物理
的)位置を選択しているが、止むを得ず最適な場所(3
5と25の間)より5〜6m下流に取付けているのが現
状である。
Since the humidity (room) is unsuitable for installing the detector 1, a location outside the containment vessel 35 as close as possible (physically) was selected;
The current situation is that it is installed 5 to 6 meters downstream from the center (between 5 and 25).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子力発電所の原子炉建屋自主蒸気配
管トンネル室に主蒸気管放射線モニタを、横置設置する
ことに依る、原子炉建屋有効スペースの拡大が可能な、
主蒸気配管トンネル室の提供にある。
The purpose of the present invention is to expand the effective space of the reactor building by horizontally installing a main steam pipe radiation monitor in the independent steam piping tunnel room of the reactor building of a nuclear power plant.
The main steam piping is in the provision of tunnel rooms.

〔発明の概要〕[Summary of the invention]

本発明は、検出器1の保護ケース形状を三角柱(角柱)
にし、主蒸気管サポート27に、検出器用ガイド28内
に取付け、主蒸気管26内部流体(蒸気)に含まれる放
射線を検出する装置であり前記検出器を横置設置にする
為、設置スペース及び保守点検スペースを最少と出来る
、原子炉建屋内、主蒸気配管トンネル室。
In the present invention, the protective case shape of the detector 1 is a triangular prism (prismatic prism).
This device is installed on the main steam pipe support 27 and inside the detector guide 28 to detect radiation contained in the fluid (steam) inside the main steam pipe 26. Since the detector is installed horizontally, the installation space and The main steam piping tunnel room inside the reactor building minimizes maintenance and inspection space.

〔発明の実施例〕[Embodiments of the invention]

第1〜9図に本発明の実施例を示す。 Embodiments of the present invention are shown in FIGS. 1-9.

第1図は、改良形(三角柱又は角柱)保護ケースを採用
した、放射線検出器(空間γ像線量率計)1を示す。本
検出器は、主蒸気管内の流体に含まれている放射線(γ
線)を計測するものであり、通常運転時の放射線強度の
6〜10倍程度の数値の信号で原子炉をスクラムさせる
、機能を持たせており、ガスの封入されたケース内部に
、2ツの電極を向き合せ、その間に高電圧(約600ボ
ルト)で電場を作シ、放射線の電離作用によって生じた
イオンを、電極に集める他方の電極は、検出器附近に設
置したプリアンプ(前置信号増幅器)を介して、中央制
御室に設置した、電気計器に接続し、その電気量の変化
をもって、放射線の強度を、計測するものである。
FIG. 1 shows a radiation detector (spatial gamma image dose rate meter) 1 that employs a modified (triangular prism or prismatic) protective case. This detector detects radiation (γ) contained in the fluid in the main steam pipe.
It has the function of scramming the reactor with a signal with a numerical value of about 6 to 10 times the radiation intensity during normal operation. The two electrodes face each other, and an electric field is created at a high voltage (approximately 600 volts) between them, and the other electrode collects ions generated by the ionizing action of radiation. It is connected to an electric meter installed in the central control room via an amplifier), and the intensity of radiation is measured based on changes in the amount of electricity.

形状を三角柱に改善した為(従来型は、円柱形しかなく
横置設置が、不向きな形状)、横置設置が可能と成った
固定用ロッド4は、据付時使用するスプリング21を挿
入する為のものであυ、ネジ構造としている為、エリア
放射線計測の如く、縦置設置が有効な場合は、4を取外
し、固定用ボルト穴として、使用する事が、出来る構造
にしている。本形状は、引抜/取付装置を勘案し、有効
面積を拡大する為三角柱としているが、前記取付上の制
限が無い場合は、四角柱にしても有効でおる。
Because the shape has been improved to a triangular prism (the conventional model was only cylindrical and unsuitable for horizontal installation), the fixing rod 4, which can be installed horizontally, is used to insert the spring 21 used during installation. Since it has a threaded structure, when vertical installation is effective, such as in area radiation measurement, 4 can be removed and used as a fixing bolt hole. The present shape is a triangular prism in consideration of the extraction/attachment device and in order to expand the effective area, but if there are no restrictions on installation, a rectangular prism may also be effective.

第2〜6図に、放射線検出器1用の取付/引抜装置の一
例を示す。
An example of a mounting/extracting device for the radiation detector 1 is shown in FIGS. 2-6.

放射線検出器1を、検出器用ガイド28内に取付ける、
その構成は、角形の検出器用ガイド28内に固定(回転
は出来る)した、ネジ切棒11に、メスネジ付ロッド2
0を、検出器1の固定用ロッド4を利用して、スプリン
グ21と押工金Jilf22で、固定する。スプリング
21は、検出器1の固定を強固にし、耐震性能を向上す
る目的で使用しであるためクローズエンド型(研削)の
ものを使j       用する、尚材質は、不銹鋼(
ステンレス鋼)等、錆難いものを選択する。又、スプリ
ング21は、さらバネを組合せる事も可能である。
installing the radiation detector 1 within the detector guide 28;
Its structure consists of a threaded rod 11 fixed (but rotatable) in a rectangular detector guide 28, and a female threaded rod 2.
0 is fixed using the fixing rod 4 of the detector 1 with a spring 21 and a push metal JILF22. The spring 21 is used for the purpose of firmly fixing the detector 1 and improving seismic performance, so a closed-end type (ground) spring 21 is used.The material is stainless steel (
Select a material that does not easily rust, such as stainless steel. Further, the spring 21 can also be combined with a countersunk spring.

信号用コネクター2及び電源用コネクター3に接続する
ケーブルは、28内に設置したケーブル移動用ワイヤー
14に、第5図に示す滑車24a。
The cables connected to the signal connector 2 and the power supply connector 3 are connected to the cable moving wire 14 installed in the cable 28 by a pulley 24a shown in FIG.

ケーブル締付用ビス24bを組合せた、ケーブル   
  −移動金具23を利用し、取付け/引抜時、ケーブ
ルも一緒に移動する、構造としておシ、検出器1の移動
及びそれに供う検出器用ガイド28内面との、接触に起
因する外傷等に依るケーブルのシース及び絶縁物(外被
)の保護が出来る構造にしである。
Cable combined with cable tightening screw 24b
- The structure uses the movable fitting 23 and the cable moves with it when it is installed/removed, and the structure is such that the movement of the detector 1 and the damage caused by contact with the inner surface of the detector guide 28 accompanying the movement of the detector 1 are avoided. It has a structure that can protect the cable sheath and insulation (outer jacket).

尚信号用コネクター2及び電源用コネクター3は、カッ
プリングナツト付レセプタクルを使用し、容易に外れな
い構造に成っている為、運転中不用意(偶然)に外れた
シ、緩るみに起因する、接触不良等の故障は発生しない
。又、ケーブル(信号用、電源用)は、建物建設時電線
管13を埋設し、28の据付後、布設すれば良い、建設
上(強度、スペース等)の制限の有る場合は、露出で布
設する事も可能である。
The signal connector 2 and the power connector 3 use receptacles with coupling nuts and are structured so that they do not come off easily. Failures such as poor contact will not occur. In addition, cables (for signals and power) can be laid by burying the conduit 13 during building construction and after installing 28, or if there are restrictions due to construction (strength, space, etc.), they can be laid exposed. It is also possible to do so.

検出器1の移動は、組合せ歯車16〜18で行ない実際
は、歯車16に取付けであるハンドル19を操作し、そ
の回転力を17.18の順に伝達し、ネジ切棒11を回
転させる事により、メスネジ付ロッド20にて、検出器
1を押し進める構造にしである。
The detector 1 is moved by the combination gears 16 to 18.Actually, by operating the handle 19 attached to the gear 16 and transmitting its rotational force in the order of 17 and 18, the threaded rod 11 is rotated. The detector 1 is pushed forward using a female threaded rod 20.

その際、電源及び信号用のケーブルは、14に取付けた
23で、1と一緒に移動出来る。
At that time, the power and signal cables can be moved together with 1 at 23 attached to 14.

検出器1の取付は及び保守点検時の引抜いた場合落下に
起因する、検出器の破損を防止する目的及び作業性を向
上する為の検出器落下防止板(装置)15を取付ける構
造にしである。
The detector 1 is installed with a detector fall prevention plate (device) 15 for the purpose of preventing damage to the detector due to falling when pulled out during maintenance and inspection, and for improving workability. .

第7〜9図は、本発明の検出器を主蒸気管トンネル内に
、横置設置した場合の全体(鳥敵、正面及び上面)図を
示し、主蒸気管26の原子炉格納容器36の原子炉格納
容器貫通孔40出口の最も近い部分に、主蒸気第二隔離
弁25は、取付けてあり、25を固定(アンカー)する
目的で、25と40の間を、ロッドにて、主蒸気管用サ
ポート27に固定しである。
FIGS. 7 to 9 show the overall view (front view and top view) of the detector of the present invention installed horizontally in the main steam pipe tunnel, and show the view of the reactor containment vessel 36 of the main steam pipe 26. The main steam second isolation valve 25 is installed at the part closest to the outlet of the reactor containment vessel through hole 40, and in order to anchor the main steam isolation valve 25, a rod is connected between the main steam It is fixed to the pipe support 27.

検出器1は、前記27の構造部材に、検出器用ガイド2
8を溶接、ボルト又はリベット等で、取付けその中に収
納する。
The detector 1 includes a detector guide 2 on the 27 structural members.
8 is attached by welding, bolts, rivets, etc. and stored therein.

27は、非常に高い耐震性能を要求(25を含む26は
、原子炉圧力バウンダリーで有る為)され、その構造形
状に於ける強度は、電算機にて解析究明し確保されてお
)、−膜構造圧延鋼材(8841)等をH形に組合せ九
溶接構造と成っているので、検出器取付状態に於ける、
サポート及び検出器用ガイドの耐震性態に関する設計考
慮は、前記ガイドの取付方法に対する強度の確認程度の
最少限で良い事になる。従って、ガイド28用として、
特別のサポートは不要である。
27 requires extremely high seismic performance (because 26, including 25, is at the reactor pressure boundary), and the strength of its structural shape has been ensured through computer analysis), - Membrane structure The rolled steel material (8841) etc. are combined into an H shape with nine welded structures, so when the detector is installed,
Design considerations regarding the seismic properties of the support and detector guide should be kept to a minimum of checking the strength of the guide mounting method. Therefore, for the guide 28,
No special support is required.

検出器用ガイド2Bは、建設時の高温多湿雰囲気を考慮
し、材質はステンレス鋼製とする。
The detector guide 2B is made of stainless steel in consideration of the high temperature and humidity atmosphere during construction.

本実施例では、検出器1をガイド両端から保守点検及び
取付は等出来る構造としである。
In this embodiment, the detector 1 is constructed so that maintenance, inspection, and installation can be performed from both ends of the guide.

〔発明の効果〕〔Effect of the invention〕

本発明の横置型放射線モニタを有する主蒸気配管トンネ
ル室を原子カプラントに採用すれば、第10.11図に
示す、取付/取外しスペース34と、検出器アクセスス
ペース51を合せた81M2のスペースが不要となりか
つ遮蔽壁が不要になるので約135m’のコンクリート
を削減出来る。
If the main steam piping tunnel room having the horizontal radiation monitor of the present invention is adopted as an atomic couplant, a space of 81M2 including the installation/removal space 34 and the detector access space 51 shown in Fig. 10.11 will be unnecessary. Since there is no need for a shielding wall, approximately 135 m' of concrete can be saved.

更らに、′下部中操室52、ケーブル処理室53を広く
かつシンプル(直線構造)に成る為ケーブルトレー58
の据付と、ケーブル総数6000本の174(約150
0本)の延線作業効率を向上することが出来る。又、第
8図に示す、計測範囲39は、従来の175程度に減少
し、更らには、位置的に他系統構成物が設置出来ない為
、調整業務が不要と成る。又、第1図に示す如く検出器
1の保護ケース形状を、三角柱(角柱)にすることによ
り、第8.9図に示す如く、横置設置が可能になる。
Furthermore, in order to make the lower central operation room 52 and the cable processing room 53 spacious and simple (straight line structure), a cable tray 58 is used.
installation and 174 cables totaling 6,000 (approximately 150
0 wires) can improve the efficiency of wire extension work. Further, the measurement range 39 shown in FIG. 8 is reduced to about 175 compared to the conventional one, and furthermore, since components of other systems cannot be installed due to the position, adjustment work is no longer necessary. Further, by making the protective case shape of the detector 1 triangular prism (prismatic) as shown in FIG. 1, horizontal installation is possible as shown in FIG. 8.9.

又、第11図に示す如く検出器1は、主蒸気第二隔離2
5直後の、サポート27に取付は可能と成シ(本来の計
測点である35と250間)K、近づけて設置すること
が出来る。
In addition, as shown in FIG. 11, the detector 1 is connected to the main steam secondary
It is possible to install it on the support 27 immediately after 5 (between 35 and 250, which is the original measurement point), and it can be installed close to it.

1      本発明では、保護ケース内の検出器1は
、1器のみ収納しているが、複数収納することによシ、
更に取付/引抜装置を削減することが出来、効果は倍増
する。
1 In the present invention, only one detector 1 is stored in the protective case, but by storing multiple detectors,
Furthermore, the number of attachment/extraction devices can be reduced, which doubles the effect.

例えば、保護ケース内に検出器を2器収納すれば、ガイ
ド28及び引抜装置は半減し、2セット有れば良くなる
For example, if two detectors are housed in a protective case, the number of guides 28 and extraction devices will be reduced by half, and only two sets will be needed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放射線検出器説明図、第2図〜第5図
は本発明の放射線検出器の取付及び引抜装置の組合せ例
を示す図、第6図は本発明の検出器挿入装置取付部詳細
図、第7図は本発明に依る装置取付実施鳥諏図、第8図
は正面図、第9図はANA視図、第10図は計画プラン
トに於ける原子炉建屋躯体平面図、第11図は主蒸気管
放射線モニタ取付部附近の側面図、第12図は従来盤の
放射線検出器説明図、第13図は取付全体断面図、第1
4図は取付部分平面図、第15図は取付部分断面図でち
る。 1−・・・検出器、2・・・信号用コネクター、3・・
・電源用コネ・フタ−,4・・・固定用ロッド、5・・
・ボルト、11・・・ネジ切棒、12・・・ケーブル、
13・・・電線管、14・・・ケーブル移動用ワイアー
、15・・・検出器落下防止板、16〜18・・・歯車
、19・・・ノ・ンドル、20・・・メスネジ付ロッド
、21・・・スプリング、22・・・押工金具、23・
・・ケーブル移動金具、24a・・・滑車、24b・・
・締付ビス、25・・・主蒸気第二隔離弁、26・・・
主蒸気管、27・・・主蒸気管用サポート、28・・・
検出器用ガイド、30・・・主蒸気配管トンネル室、3
1・・・原子炉、32・・・主蒸気第一隔離弁、33・
・・検出器取付用鋼管、34・・・取付取外しスペース
、35・・・原子炉格納容器、36・・・原子炉建物、
37・・・サポート、38・・・柱、39・・・計測範
囲、40・・・原子炉格納容器貫通孔、51・・・検出
器アクセススペース、52・・・下部中操室、53・・
・同上用ケーブル処理室、54・・・主蒸気第三隔離弁
、55・・・中央制御室、56・・・同上用ケーブル処
理室、57・・・遮蔽壁、58・・・ケーブルトレー。
FIG. 1 is an explanatory diagram of the radiation detector of the present invention, FIGS. 2 to 5 are diagrams showing combination examples of the radiation detector mounting and extraction device of the present invention, and FIG. 6 is the detector insertion device of the present invention. Detailed view of the attachment part, Figure 7 is a bird's-eye view of equipment installation according to the present invention, Figure 8 is a front view, Figure 9 is an ANA view, and Figure 10 is a plan view of the reactor building frame in the planned plant. , Fig. 11 is a side view of the vicinity of the main steam pipe radiation monitor attachment part, Fig. 12 is an explanatory diagram of the radiation detector of the conventional panel, Fig. 13 is a sectional view of the entire installation, and Fig. 1
FIG. 4 is a plan view of the attached portion, and FIG. 15 is a sectional view of the attached portion. 1-...Detector, 2...Signal connector, 3...
・Power supply connector/lid, 4...Fixing rod, 5...
・Bolt, 11... Threaded rod, 12... Cable,
13... Electrical conduit, 14... Cable moving wire, 15... Detector fall prevention plate, 16-18... Gear, 19... Nodle, 20... Female threaded rod, 21...Spring, 22...Press fitting, 23.
...Cable moving bracket, 24a...Pulley, 24b...
・Tightening screw, 25... Main steam second isolation valve, 26...
Main steam pipe, 27...Main steam pipe support, 28...
Detector guide, 30...Main steam piping tunnel room, 3
1... Nuclear reactor, 32... Main steam first isolation valve, 33.
...Steel pipe for detector installation, 34...Mounting and removal space, 35...Reactor containment vessel, 36...Reactor building,
37...Support, 38...Column, 39...Measurement range, 40...Reactor containment vessel through hole, 51...Detector access space, 52...Lower central control room, 53...・
- Cable processing room for the above, 54... Main steam third isolation valve, 55... Central control room, 56... Cable processing room for the above, 57... Shielding wall, 58... Cable tray.

Claims (1)

【特許請求の範囲】[Claims] 1、主蒸気配管トンネル室において、放射線検出器(空
間γ線量率計)の保護ケースを三角柱(角柱)構造とし
たことを特徴とする横置型放射線モニタを有する主蒸気
配管トンネル室。
1. A main steam piping tunnel room having a horizontal radiation monitor characterized in that the protective case of the radiation detector (space gamma ray dose rate meter) has a triangular prism (prismatic) structure.
JP59198504A 1984-09-25 1984-09-25 Main steam piping tunnel chamber with horizontal type radiation monitor Pending JPS61129596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198504A JPS61129596A (en) 1984-09-25 1984-09-25 Main steam piping tunnel chamber with horizontal type radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198504A JPS61129596A (en) 1984-09-25 1984-09-25 Main steam piping tunnel chamber with horizontal type radiation monitor

Publications (1)

Publication Number Publication Date
JPS61129596A true JPS61129596A (en) 1986-06-17

Family

ID=16392231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198504A Pending JPS61129596A (en) 1984-09-25 1984-09-25 Main steam piping tunnel chamber with horizontal type radiation monitor

Country Status (1)

Country Link
JP (1) JPS61129596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071637A (en) * 2004-08-31 2006-03-16 General Electric Co <Ge> Method and device for reducing pressure loss in steam tunnel of boiling water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071637A (en) * 2004-08-31 2006-03-16 General Electric Co <Ge> Method and device for reducing pressure loss in steam tunnel of boiling water reactor

Similar Documents

Publication Publication Date Title
US6430247B1 (en) Method and system for monitoring at least one operating parameter of the core of a nuclear reactor
US4078968A (en) Sealed head access area enclosure
US6400786B1 (en) Process and device for monitoring at least one operating parameter of the core of a nuclear reactor
US3916444A (en) Training simulator for nuclear power plant reactor monitoring
JPS61129596A (en) Main steam piping tunnel chamber with horizontal type radiation monitor
JP2016217890A (en) Fixing method of monitoring device to radioactive material storage container and radioactive material storage container
CN110570962A (en) Local shielding structure of return bend of shielding performance adjustable
KR20070102687A (en) Neutron detector assembly with variable length rhodium emitters
CN220895202U (en) Nuclear power plant spent fuel pool liquid level and temperature monitoring device
CN219392289U (en) Ray detection alarm device
Ruddy et al. Applications of solid state track recorder neutron dosimetry for fuel debris location in the Three Mile Island Unit 2 makeup and purification demineralizers
CN211319737U (en) Heavy water reactor nuclear power station steam generator transverse support state monitoring system
JP5049718B2 (en) Output region monitoring system for nuclear power generation
JP7234160B2 (en) Radiation detection device and its installation method
Böck et al. TRIGA reactor main systems
JPS60219590A (en) Measuring device for fuel channel box
JPH01260389A (en) Radiation measuring apparatus
CN112489833A (en) Heavy water reactor nuclear power station steam generator transverse support state monitoring system
Tallackson et al. INSTRUMENTATION AND CONTROLS DEVELOPMENT FOR MOLTEN-SALT BREEDER REACTORS.
Remley et al. Program review of the water boiler reactor kinetic experiments
GB910827A (en) Improvements in or relating to duct systems
Gold et al. Characterization of Fuel Distribution in the Three Mile Island Unit 2 (TMI-2) Reactor System by Neutron and Gamma-Ray Dosimetry
Ruddy et al. Applications of solid state track recorder neutron dosimetry for fuel debris location in the Three Mile Island Unit 2 reactor coolant system
Popper LMFBR neutron monitoring systems-A review of the State-of-the-Art
DE1943879A1 (en) Procedure for the detection of defects in fuel assemblies and for the identification of defective fuel assemblies