JPS61129539A - Spectrometer - Google Patents

Spectrometer

Info

Publication number
JPS61129539A
JPS61129539A JP25050784A JP25050784A JPS61129539A JP S61129539 A JPS61129539 A JP S61129539A JP 25050784 A JP25050784 A JP 25050784A JP 25050784 A JP25050784 A JP 25050784A JP S61129539 A JPS61129539 A JP S61129539A
Authority
JP
Japan
Prior art keywords
light
spectrometer
photoelectric detector
depth direction
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25050784A
Other languages
Japanese (ja)
Inventor
Yoshiji Suzuki
鈴木 義二
Masaru Sugiyama
優 杉山
Hiroshi Nagata
浩 永田
Masayoshi Noguchi
野口 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Nikon Corp
Original Assignee
Hamamatsu Photonics KK
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Nippon Kogaku KK filed Critical Hamamatsu Photonics KK
Priority to JP25050784A priority Critical patent/JPS61129539A/en
Publication of JPS61129539A publication Critical patent/JPS61129539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Abstract

PURPOSE:To prevent the spectrometer from protruding from the substrate of a photoelectric detector and to standardize a unit and to reduce its size by changing the direction of the photodetection surface of the photoelectric detector without reference to the direction of light incident from an entrance slot and the wavelength dispersion direction of a dispersing element. CONSTITUTION:The entrance slit 1, diffraction grating 2, and the photoelectric detector are mounted on the substrate 4. Then, a photodetection part 5 is arranged in the detector 3 slantingly to a plane crossing its depth direction 3a at right angles and its photodetection surface is parallel (right opposite) to the wavelength dispersion direction of diffracted light from the diffraction grating 2. Namely, a microchannel plate (MCP)5 which operates as the photodetection part and a fluorescent plate 6 are arranged slanting to a housing 30 and an array sensor 8 and a circuit part 9 do not slant to the housing. A fiber plate 7 is made wedgelike so as to correct the inclination of the MCP5 and fluorescent plate 6 to the array sensor 8. Consequently, the depth direction of the detector 3 is nearly parallel to the optical axis of the incident light L1 and the whole unit is mounted without protruding from the substrate 4.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は分光器に関するものである。[Detailed description of the invention] (Technical field of invention) The present invention relates to a spectrometer.

(発明の背景) 従来、入口スリット、分散素子及び光電検出器等を1枚
の基板上に配置し、分光測定の波長域に応じた複数の分
光ユニットを形成すると共に、該分光ユニットを収納す
る容器に上記分光ユニットを取シ外し可能に設けた分光
装置が知られている(例えば特開昭58−68629号
公報)。この種の分光器は、例えば核融合プラズマから
発せられる光を同時□ に多波長域にわたって測定すべく開発されたものである
。そして測定の対象となる波長が真空紫外域の場合には
各分光ユニットは核融合炉と接続された真空容器に収納
される。この場合に、分光ユニットが大型化してしまっ
てはそれを収納する真空容器も大型化し、結果的に真空
ポンプの負荷増大をもたらすという欠点がある。
(Background of the Invention) Conventionally, an entrance slit, a dispersive element, a photoelectric detector, etc. are arranged on one substrate to form a plurality of spectroscopic units according to the wavelength range of spectroscopic measurement, and to house the spectroscopic units. A spectroscopic device is known in which the spectroscopic unit is removably provided in a container (for example, Japanese Patent Laid-Open No. 58-68629). This type of spectrometer was developed to simultaneously measure light emitted from, for example, nuclear fusion plasma over multiple wavelength ranges. When the wavelength to be measured is in the vacuum ultraviolet region, each spectroscopic unit is housed in a vacuum container connected to the fusion reactor. In this case, if the spectroscopic unit becomes large, the vacuum container housing it also becomes large, resulting in an increased load on the vacuum pump.

これを第1図を参照して説明する。第1図において、分
光ユニットは入口スリット1、分散素子2、光電検出器
3及びユニット基板4から成る。光電検出器3は、マイ
クロチャンネルプレート(Michrochannel
 Plate :以下MCPという)5、螢光板6、フ
ァイバー板7及びアレイセンサー8から成る光電変換部
と、電気回路部9から構成されている。MCPは、内径
10〜20μmの細いガラス管(チャンネル)を多数束
ね、個々のチャンネルの内壁に二次亀子放出材料をコー
ティングして各チャンネルの各々を連続二次電子増倍器
としたものである。そして、束ねられたチャンネルは所
定の厚さに切断されている。さて、MCP5の各チャン
ネルに入射した光はそこで光電子増倍されて螢光板6に
衝突する。螢光板6はMCP5から出射してきた電子を
可視光に変換し、ファイバー板7は各チャンネルに対応
した可視光を7レイセンサー8まで伝送し、アレイセン
サー8はこの各チャンネルに対応した可視光をそれぞれ
光電変換する。この種の分光ユニットにあっては、真空
容器に対して着脱自在とするために、入口スリット1、
分散素子2、光電検出器3を基板上に載置している。し
かしながら、光電検出器は、MCP5の切断面が分散素
子2の結像面又はその近傍で該結像面に沿うように基板
4に対して斜めに配置されているために、分光ユニット
全体の移動軌跡(真空容器に分光ユニットを着脱するに
際しての移動軌跡)は、該光電検出器3の傾きふんに応
じて大きくなる。従って、上述せる欠点が生じていたの
である。
This will be explained with reference to FIG. In FIG. 1, the spectroscopic unit consists of an entrance slit 1, a dispersive element 2, a photoelectric detector 3 and a unit substrate 4. The photoelectric detector 3 is a microchannel plate (Microchannel plate).
The photoelectric conversion unit includes a plate (hereinafter referred to as MCP) 5, a fluorescent plate 6, a fiber plate 7, and an array sensor 8, and an electric circuit unit 9. MCP is made by bundling a large number of thin glass tubes (channels) with an inner diameter of 10 to 20 μm, and coating the inner wall of each channel with a secondary Kame emission material, making each channel a continuous secondary electron multiplier. . The bundled channels are then cut to a predetermined thickness. Now, the light incident on each channel of the MCP 5 is photoelectron multiplied there and impinges on the fluorescent plate 6. The fluorescent plate 6 converts the electrons emitted from the MCP 5 into visible light, the fiber plate 7 transmits the visible light corresponding to each channel to the 7-ray sensor 8, and the array sensor 8 converts the visible light corresponding to each channel into visible light. Each converts photoelectrically. In this type of spectroscopy unit, in order to be able to attach and detach it to the vacuum container, the inlet slit 1,
A dispersion element 2 and a photoelectric detector 3 are placed on a substrate. However, in the photoelectric detector, since the cut surface of the MCP 5 is arranged obliquely with respect to the substrate 4 along the imaging plane of the dispersive element 2 or in the vicinity thereof, the entire spectroscopic unit cannot be moved. The locus (trajectory of movement when attaching and detaching the spectroscopic unit to and from the vacuum container) increases depending on the inclination of the photoelectric detector 3. Therefore, the above-mentioned drawbacks occurred.

(発明の目的) 本発明の目的は、小型化の可能な分光器を提供し、もっ
て異なる波長域を測定対象とする分光器を共通ユニット
に規格化するのに便ならしめることである。
(Objective of the Invention) An object of the present invention is to provide a spectrometer that can be miniaturized, thereby making it convenient to standardize spectrometers that measure different wavelength ranges into a common unit.

(発明の概要) 本発明は、入口スリットから入射してくる光の方向と分
散素子による波長分散方向に依らず、光電検出器の受光
面の方向を変えることによって上記目的を達成する。本
発明によれば、入口スリット、該入口スリットから入射
してきた光をその入射方向とは異なった方向へ分散する
分散素子、及び該分散光を受光する受光部を少なくとも
備えた光電検出器とから成る分光器において、前記光電
検出器の匡体の奥行き方向を前記入射方向又は前記分散
光の中心波長の主光線方向と平行に成すとともに、前記
分散光を受光すべく前記受光部を前記奥行き方向と直交
する面に対して傾斜させた分光器が提供される。受光部
としてはマイクロチャンネルプレートがあり、また分散
素子としては回折格子や結晶分散素子がある。
(Summary of the Invention) The present invention achieves the above object by changing the direction of the light-receiving surface of a photoelectric detector, regardless of the direction of light incident from the entrance slit and the direction of wavelength dispersion by the dispersion element. According to the present invention, the photoelectric detector includes at least an entrance slit, a dispersion element that disperses light incident from the entrance slit in a direction different from the direction of incidence, and a light receiving section that receives the dispersed light. In the spectrometer, the depth direction of the casing of the photoelectric detector is parallel to the incident direction or the principal ray direction of the center wavelength of the dispersed light, and the light receiving section is arranged in the depth direction to receive the dispersed light. A spectrometer is provided that is tilted relative to a plane orthogonal to the plane. The light receiving section includes a microchannel plate, and the dispersion element includes a diffraction grating and a crystal dispersion element.

(実施例) 以下、本発明を実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on examples.

第2図は本発明の実施例を表わす説明図である。入口ス
リット1、回折格子2、及び光電検出器3は基板4の上
に載置されている。これが分光器ユニットとなる。受光
部5は光電検出器3の内部で、該光電検出器の奥行き方
向に直交する面に対して斜めに配置されている。この奥
行き方向とは光電検出器の矩形の匡体30の奥行き方向
3aである。このとき、受光部5は回折格子2の結像面
又はその近傍に配置されている。ここでは、受光部5の
受光面は回折格子2による回折光の波長分散方向と平行
(正対)している。波長分散方向とは、被測定波長域を
λl〜λnとし、またこの波長域内の回折(分散)光の
回折角をβ1〜βnとしたとき、回折角β=(βl十β
n)/2なる波長(中心波長)の主光線(回折格子の中
心で回折する光線)に直交する方向である。
FIG. 2 is an explanatory diagram showing an embodiment of the present invention. The entrance slit 1, the diffraction grating 2 and the photodetector 3 are mounted on the substrate 4. This becomes the spectrometer unit. The light receiving section 5 is arranged inside the photoelectric detector 3 at an angle with respect to a plane perpendicular to the depth direction of the photoelectric detector. This depth direction is the depth direction 3a of the rectangular casing 30 of the photoelectric detector. At this time, the light receiving section 5 is arranged at or near the imaging plane of the diffraction grating 2. Here, the light-receiving surface of the light-receiving section 5 is parallel to (directly opposite to) the wavelength dispersion direction of the diffracted light by the diffraction grating 2 . The wavelength dispersion direction is defined as the diffraction angle β = (βl + β
This is the direction perpendicular to the principal ray (the ray diffracted at the center of the diffraction grating) having a wavelength of n)/2 (center wavelength).

これによって光電検出器3の奥行き方向は入射光L!の
光軸とほぼ平行になる。従って、分光器ユニット全体は
基板4からはみ出すことなく載置できるようになる。こ
のことは、真空容器(不図示)に対して分光器ユニット
を着脱自在と成すときに、該分光器ユニットの該真空容
器内での移動軌跡Fi第1図示のものより縮少される。
As a result, the depth direction of the photoelectric detector 3 is the incident light L! almost parallel to the optical axis of Therefore, the entire spectrometer unit can be placed without protruding from the substrate 4. This means that when the spectrometer unit is detachably attached to a vacuum vessel (not shown), the movement trajectory Fi of the spectrometer unit within the vacuum vessel is reduced compared to that shown in the first figure.

従って、分光器ユニットを異なる波長域毎に用意してひ
とつの真空容器に着脱自在とする場合にも該真空容器の
大型化を防止できる。
Therefore, even when spectrometer units are prepared for different wavelength ranges and are detachably attached to one vacuum container, it is possible to prevent the vacuum container from becoming larger.

第3図は第2図の光電検出器3の構造を具体的に表わす
。受光部として作用するMCP5は匡体30に対して斜
めに配置されている。
FIG. 3 specifically shows the structure of the photoelectric detector 3 shown in FIG. The MCP 5, which acts as a light receiving section, is arranged diagonally with respect to the casing 30.

螢光板6もMCP5に倣って斜めに配置されている。ア
レイセンサー8及び回路部9は匡体に対して特別には傾
いていない。少なくともアレイセンサー8は入射光1,
1と直交する面内に配置されている。ファイバー板Tは
MCP5及び螢光板6の7レイセンサー8に対する傾斜
を補正すべく楔状となっている。
The fluorescent plate 6 is also arranged diagonally following the MCP 5. The array sensor 8 and the circuit section 9 are not particularly inclined with respect to the casing. At least the array sensor 8 receives the incident light 1,
It is arranged in a plane perpendicular to 1. The fiber plate T is wedge-shaped to correct the inclination of the MCP 5 and the fluorescent plate 6 with respect to the 7-ray sensor 8.

第4図は本発明の別の実施例を表わす説明図である。光
電検出器3の匡体30は、その奥行き方向3aが回折格
子2による回折光のうちの中心波長の主回折光線の方向
と平行になるように容器10内に配置されている。
FIG. 4 is an explanatory diagram showing another embodiment of the present invention. The casing 30 of the photoelectric detector 3 is arranged in the container 10 so that its depth direction 3a is parallel to the direction of the main diffracted ray at the center wavelength of the diffracted light by the diffraction grating 2.

MCP5は回折格子2の結像面とほぼ一致するように匡
体30に対して傾斜している。このときには結像面は波
長分散方向に対して傾いているのでMCP5の切断面と
波長分散方向20を含んで第4図紙面と直交する面とは
正対していない(傾いて対向している)。
The MCP 5 is inclined with respect to the housing 30 so as to substantially coincide with the imaging plane of the diffraction grating 2. At this time, the imaging plane is tilted with respect to the wavelength dispersion direction, so the cut plane of the MCP 5 and the plane including the wavelength dispersion direction 20 and perpendicular to the plane of FIG. .

尚、以上の実施例では分散素子として回折格子を使用し
ていたが、結晶分散素子、であってもよい。結晶分散素
子を使用する場合には結像面が生成されるもの(ヨハン
ソン型分光器など)や、結像作用はないが結晶の回折作
用によシ特定の方向へは特定波長のスペクトル線のみを
回折しMCP上にスペクトル線が潜られるものがある。
In the above embodiments, a diffraction grating was used as the dispersion element, but a crystal dispersion element may also be used. When using a crystal dispersion element, there are those that generate an imaging plane (such as a Johansson spectrometer), and those that do not have an imaging effect but only spectral lines of specific wavelengths in a specific direction due to the diffraction effect of the crystal. There are some that diffract the spectral lines of the MCP.

しかし、いずれのものにも本発明は適用可能である。However, the present invention is applicable to any of them.

(発明の効果) 以上のように本発明によれば、分散素子の特性によシ像
面が入射方向あるいは分散光の中心波長の主光線方向に
直交する面から傾いていても、光電検出器はその方向に
沿うように配置できる。したがって、本発明による分光
器を分光器ユニットとする場合には光電検出器が基板か
らはみ出すことがなく、ユニットの規格化、小型化がで
きる。これにより、特性の異なる分光器ユニットを真空
容器のユニット取付枠に対して着脱自在とする場合には
、該真空容器を小型化できるという効果が期待できる。
(Effects of the Invention) As described above, according to the present invention, even if the image plane is tilted from the incident direction or the plane perpendicular to the principal ray direction of the center wavelength of the dispersed light due to the characteristics of the dispersive element, the photoelectric detector can be placed along that direction. Therefore, when the spectrometer according to the present invention is used as a spectrometer unit, the photoelectric detector does not protrude from the substrate, and the unit can be standardized and miniaturized. As a result, when spectrometer units with different characteristics are made removably attachable to the unit mounting frame of a vacuum container, the effect of making the vacuum container smaller can be expected.

さらに、光電検出器の機能アップのために検出器の匡体
が大きくなる場合でも、上述のような構造とすることに
よシ該匡体の奥行方向をさらに長くして対応できるので
、分光ユニットや分光器の改造は不要であったり、小改
造ですませられる。
Furthermore, even if the detector casing becomes larger to improve the functionality of the photoelectric detector, the above-mentioned structure allows the casing to be made longer in the depth direction. There is no need to modify the spectrometer or the spectrometer, or it can be done with a small modification.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光器を表わす説明図、第2図は本発明
の実施例を表わす説明図、第3図は光電検出器の構造を
表わす説明図、及び第4図は本発明の別の実施例を表わ
す説明図である。 (主要部の符号の説明) 1・・・入口スリット、2・・・回折格子、3・・・光
電検出器、5・・・MCP。 20・・・波長分散方向、30・・・充電検出器の匡体
、3a・・・匡体の奥行き方向。 第2図 第3図 3■ 第4図
Fig. 1 is an explanatory diagram showing a conventional spectrometer, Fig. 2 is an explanatory diagram showing an embodiment of the present invention, Fig. 3 is an explanatory diagram showing the structure of a photoelectric detector, and Fig. 4 is an explanatory diagram showing an embodiment of the present invention. It is an explanatory view showing an example of. (Explanation of symbols of main parts) 1... Entrance slit, 2... Diffraction grating, 3... Photoelectric detector, 5... MCP. 20... wavelength dispersion direction, 30... casing of charging detector, 3a... depth direction of the casing. Figure 2 Figure 3 Figure 3■ Figure 4

Claims (1)

【特許請求の範囲】 1、入口スリットと、該入口スリットから入射してきた
光をその入射方向とは異なつた 方向へ分散する分散素子と、該分散光を受 光する受光部を少なくとも備えた光電検出 器とから成る分光器において、 前記光電検出器の匡体の奥行き方向を前 記入射方向又は前記分散光の中心波長の主 光線方向と平行に成すとともに、前記分散 光を受光すべく前記受光部を前記奥行き方 向と直交する面に対して傾斜させたことを 特徴とする分光器。 2、前記光電検出器は、前記分散光を受光して光電子増
倍するマイクロチャンネルプレ ート、該光電子を可視光に変換する螢光板、アレイ型光
電変換器、及び前記可視光を前 記アレイ型光電変換器に伝達するファイバ ー部とを備え、前記マイクロチャンネルプ レート及び螢光板は前記奥行き方向と直交 する面に対して傾斜させ、また前記アレイ 型光電変換器は前記奥行き方向に対して直 交して配置され、前記ファイバー部は前記 アレイ型光電変換器に対する前記マイクロ チャンネルプレート及び螢光板の傾斜を補 正するために楔形とされていることを特徴 とする特許請求の範囲第1項に記載の分光 器。
[Claims] 1. Photoelectric detection comprising at least an entrance slit, a dispersion element that disperses light incident from the entrance slit in a direction different from the direction of incidence, and a light receiving section that receives the dispersed light. In the spectrometer, the depth direction of the casing of the photoelectric detector is parallel to the incident direction or the principal ray direction of the center wavelength of the dispersed light, and the light receiving part is configured to receive the dispersed light. A spectrometer, characterized in that the spectrometer is tilted with respect to a plane perpendicular to the depth direction. 2. The photoelectric detector includes a microchannel plate that receives the dispersed light and multiplies photoelectrons, a fluorescent plate that converts the photoelectrons into visible light, an array type photoelectric converter, and the array type photoelectric converter that converts the visible light into visible light. the microchannel plate and the fluorescent plate are inclined with respect to a plane perpendicular to the depth direction, and the array type photoelectric converter is arranged perpendicular to the depth direction. 2. The spectrometer according to claim 1, wherein the fiber section is wedge-shaped to correct the inclination of the microchannel plate and the fluorescent plate with respect to the array type photoelectric converter.
JP25050784A 1984-11-29 1984-11-29 Spectrometer Pending JPS61129539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25050784A JPS61129539A (en) 1984-11-29 1984-11-29 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25050784A JPS61129539A (en) 1984-11-29 1984-11-29 Spectrometer

Publications (1)

Publication Number Publication Date
JPS61129539A true JPS61129539A (en) 1986-06-17

Family

ID=17208912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25050784A Pending JPS61129539A (en) 1984-11-29 1984-11-29 Spectrometer

Country Status (1)

Country Link
JP (1) JPS61129539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360041B1 (en) 1999-03-30 2002-03-19 Nippon Sheet Glass Co., Ltd. Optical demultiplexer and method of assembling optical demultiplexer in optical axis alignment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360041B1 (en) 1999-03-30 2002-03-19 Nippon Sheet Glass Co., Ltd. Optical demultiplexer and method of assembling optical demultiplexer in optical axis alignment

Similar Documents

Publication Publication Date Title
Fonck et al. Multichannel grazing-incidence spectrometer for plasma impurity diagnosis: SPRED
US5329353A (en) High sensitive multi-wavelength spectral analyzer
US7038775B2 (en) Spectroscopic device
US3955084A (en) Electro-optical detector for use in a wide mass range mass spectrometer
US5050991A (en) High optical density measuring spectrometer
Tuithof et al. Simultaneous detection of a mass spectrum using a channeltron electron multiplier array
Utter et al. Grazing-incidence measurements of L-shell line emission from highly charged Fe in the soft x-ray region
EP0002152B1 (en) Mass spectrometer
JPS61129539A (en) Spectrometer
US8059272B2 (en) Time-resolved spectroscopic measurement apparatus
JP3919332B2 (en) Photomultiplier tube and spectrometer
JPS6199824A (en) Spectroscope
JP3137020B2 (en) Spectrometer
JPH0836059A (en) Radiation detector
CN2426981Y (en) Broadband spectral crystal spectrometer
RU2593423C1 (en) Spectrometer for soft x-ray and vuv ranges
JP3226308B2 (en) Bright high-resolution spectrometer
Bedo et al. Collimating grating monochromators for the vacuum ultraviolet
JPH08211216A (en) Reflection diffraction grating and its manufacture
JPH07318658A (en) X-ray energy detector
Evans et al. High-speed imager AXAF calibration microchannel plate detector
JP3499286B2 (en) Morphological image observation apparatus and method
Carruthers et al. Detection Efficiencies of Far-Ultraviolet Photon-Counting Detectors
JP3770976B2 (en) Photodetector
Niles et al. Radiometric calibration of a video fluorescence microscope for the quantitative imaging of resonance energy transfer