JPS6112928B2 - - Google Patents

Info

Publication number
JPS6112928B2
JPS6112928B2 JP51055025A JP5502576A JPS6112928B2 JP S6112928 B2 JPS6112928 B2 JP S6112928B2 JP 51055025 A JP51055025 A JP 51055025A JP 5502576 A JP5502576 A JP 5502576A JP S6112928 B2 JPS6112928 B2 JP S6112928B2
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
epoxy
composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51055025A
Other languages
Japanese (ja)
Other versions
JPS53102400A (en
Inventor
Masaaki Hayashi
Kazuyoshi Tokida
Hiroshi Takada
Nobuhiro Kenmochi
Hiroji Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP5502576A priority Critical patent/JPS53102400A/en
Priority to US05/795,125 priority patent/US4177174A/en
Priority to DE2721779A priority patent/DE2721779C3/en
Priority to GB20198/77A priority patent/GB1534256A/en
Priority to NLAANVRAGE7705324,A priority patent/NL168857C/en
Publication of JPS53102400A publication Critical patent/JPS53102400A/en
Priority to MY3/80A priority patent/MY8000003A/en
Publication of JPS6112928B2 publication Critical patent/JPS6112928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無溶剤型のキレート形成能を有するエ
ポキシ樹脂組成物に関する。 従来、塗料用として使われているビヒクルは、
不飽和脂肪酸、アルキド系、オレフイン系、ジエ
チル系、アクリル系、ポリエステル系、エポキシ
系、ウレタン系又はそれらの共重合体系樹脂な
ど、多岐にわたつている。 なかでも、エポキシ樹脂はその優秀な物理性
(密着性、硬度)及び化学性(耐化学薬品性)の
ために、その需要は高まる一方である。 更に近年、市場では塗料として危険性のないも
の、例えば引火性の低いもの、あるいは人体に対
する毒性のないものが要求されている。 その一つとして溶剤を使用しない、いわゆる無
溶剤系の塗料が開発されている。しかし耐食性、
耐湿性、物理性などの点で十分な性能を有するも
のは実質上得られていない。 これらの改良の一つとして、耐食性向上のため
に重金属系の防錆顔料を添加することも提示され
てはいるが、公害の観点からは好ましくない。 したがつて、従来から汎用されている有機溶剤
を多量に使用した塗料にほぼ匹敵するか、あるい
はそれ以上の性能を有した無公害性溶剤系エポキ
シ樹脂塗料はまだ得られていないといゝうる。 一方、ピロガロールなどの多価フエノール類、
フエノールカルボン酸類、クロム錯塩類、フタロ
シアニン類、ピリジン類及びこれらの誘導体等の
キレート結合性能を有する化合物を塗料に配合し
塗布後に素地の鉄面とキレート化反応を行わしめ
その塗膜性能を改良しようとする試みが古くから
行われている。 すなわち、古くアマニ油系樹脂あるいは乾性油
にタンニンを単に添加した溶剤型塗料が知られて
いた(英国特許第826564号及び同第826566号)。
その後R・N・Faulkner等によつて、植物油、
脂肪酸エステル、アルキド樹脂、植物油変性エポ
キシエステル樹脂、あるいは植物油変性ポリアミ
ドエポキシにカテコール、ピロガロール、没食子
酸あるいは没食子酸エステルを金属アルコキサイ
ドのような触媒を利用して、共有結合により導入
した溶剤系一液型塗料が開発された。それらは例
えば英国特許第1045118号、米国特許第3304276号
及び同第3321320号、ならびにOil and Colour
Chemists′ Association発行のJournal of the Oil
and Colour Chemists′ Association第50巻、第
524頁(1967)等に発表されている。 又、英国特許第1114400号には、スチレン−ア
ルルアルコール共重合体に没食子酸エステルを反
応させた組成物が発表されている。 更にエポキシ樹脂を用いたキレート形成能を有
する組成物も知られている。例えばエポキシ樹脂
中のエポキシ基の一部を一塩基性脂肪酸で変性し
残つたエポキシ基とキレート形成能を有する、2
以上の隣接するフエノール性水酸基を有し、かつ
1個の遊離のカルボキシル基を有する脂肪酸誘導
体とを反応させたキレート形成樹脂(特公昭48−
2439)、アミン価10以下のポリアミド樹脂とエポ
キシ樹脂の反応物の残存エポキシ基に没食子酸を
反応させて得られる。キレート形成能を有するエ
ポキシ−ポリアミド樹脂とリン酸系化合物から成
る組成物(特開昭48−17443)、エポキシ樹脂中の
エポキシ基の一部とサリチル酸没食子酸又はこれ
らのエステル化物とを反応させて得られる部分エ
ステル化物に、更にエポキシ樹脂、ビニル樹脂、
フツ素樹脂などを加えてなる有機溶剤で希釈した
1液型あるいは2液型(アミン系硬化剤使用)塗
料(特公昭49−4811、特開昭48−56227、特開昭
48−56228、特開昭49−122538、特開昭49−
122597)等が知られている。 しかしながら、これらはいずれも有機溶剤を使
用するものであり、安全性や無公害性の面で好ま
しいものではなかつた。しかも、これらはすべて
主剤であるエポキシ樹脂を変性したものからなつ
ている。つまりエポキシ樹脂中のエポキシ基のす
べて、もしくは一部と、キレート形成能を有する
化合物とを反応させた1液型もしくは2液型の組
成物であり、それ故エポキシ樹脂の特性が著しく
低下していることが判明している。 本発明は前記従来技術の欠点を改良したキレー
ト形成能を有する無溶剤系エポキシ樹脂組成物に
関するものである。 本発明の目的は、 (1) 低分子量のエポキシ樹脂を用いるにも拘ら
ず、高分子量のエポキシ樹脂塗膜の性能に優る
とも劣らない塗膜を得ること、 (2) 素地鉄面とキレート化反応をおこしうる被覆
用組成物をを提供すること、 (3) 耐食性、耐湿性のすぐれた塗膜を与える、被
覆用組成物を提供すること、 (4) 特に防錆顔料を加えなくとも、すぐれた防錆
性を有する塗膜を与える組成物を提供するこ
と、 (5) 溶剤を使用しないため、取扱いの安全性に優
れ、かつ無公害の組成物を提供すること、 等にある。その他塗膜の各種化学的あるいは物理
的性能の改良をも目的とするものであることは、
以下の説明から明瞭となろう。 即ち、本発明は (1) 一分子中に少なくとも二個以上のエポキシ基
を有する常温で液状の低分子量エポキシ樹脂
と、 (2) 一分子中に少なくとも二個以上の窒素原子及
びこれに結合した活性水素を有するアミン価
200以上のアミノ系硬化剤と、該硬化剤に対し
て5〜30重量パーセントの没食子酸、プロトカ
テキユ酸、またはこれらのアルキルエステル
(アルキル基の炭素数1〜12個)の一種もしく
は二種以上の混合物とを縮合反応させて得られ
た常温で液状の硬化剤組成物、 (3) 上記エポキシ樹脂に対し30重量パーセント以
下の一分子中に一個のエポキシ基を有するエポ
キシ化合物、 とからなるキレート形成能を有する無溶剤系エポ
キシ樹脂組成物に関する。 本発明に使用される「一分子中に少なくとも二
個以上のエポキシ基を有する常温で液状の低分子
量エポキシ樹脂」とは例えば次のようなものであ
る。 ビスフエノールF型エポキシ樹脂としては、例
えば一般に市販されているダウケミカル(株)製の商
品名XD−7818(平均分子量約330、以下表示は全
て同じ)、大日本インキ化学工業(株)製の商品名エ
ピクロン830(約330)など、ビスフエノールA型
エポキシ樹脂としては、シエル化学(株)製の商品名
エピコート808(380以下)、同815(約330)、同
819(約370)、同827(約370)、同828(約380)、
同834(約470)、チバガイギー(株)製の商品名アラ
ルダイトGY−250(約380)、同252(約370)、同
260(約380)、大日本インキ化学工業(株)製の商品
名エピクロン840(約370)、阪本薬品工業(株)製の
商品名SB−300、(380以下)、ダウケミカル(株)製
の商品名DER330(約370)、同331(約380)、同
332(約350)など、また、ビスフエノールA型エ
ポキシ樹脂の水添物、例えば共栄油脂(株)製の商品
名エポライト4000(約500)などがある。フエノ
ールノボラツク型エポキシ樹脂としては、例えば
ダウケミカル(株)製の商品名DEN431(約350)な
どがある。 ポリグリコール型エポキシ樹脂としては、例え
ばダウケミカル(株)製の商品名DER736(約380)
長瀬産業(株)製の商品名デナコールEX−810(約
220)、同EX−910(約240)、などがある。 グリシジルエステル型エポキシ樹脂としては、
大日本インキ化学工業(株)製の商品名エピクロン
200(約360)、同400(約380)などがある。 本発明における該エポキシ樹脂にはまた、一分
子中二個以上のエポキシ基を有する低粘度樹脂も
含まれる。たとえばアニリン変性エポキシ樹脂、
例えば日本化薬(株)製の商品名GAN(約250)、同
GOT(約250)、ポリオールのグリシジルエーテ
ル樹脂、例えば長瀬産業(株)製の商品名デナコール
EX−314(約290)、脂環式エポキシ樹脂、例えば
チツソ(株)製の商品名チツソノツクス221(約
250)、同206(約140)などである。 本発明のエポキシ樹脂は常温で液状のものであ
り、その平均分子量は約500以下のものである。 本発明組成物においては、組成物の粘度特性、
作業性、塗膜性能、塗膜状態を改良するために希
釈剤を添加量30重量パーセント以下の範囲内で加
える。該希釈剤は、一分子中にエポキシ基を一個
有するエポキシ化合物であり、例えば、アリルグ
リシジルエーテル、2−エチルヘキシルグリシジ
ルエーテル、メチルグリシジルエーテル、ブチル
グリシジルエーテル、フエニルグリシジルエーテ
ル、スチレンオキサイド、シクロヘキセンオキサ
イド、エピクロルヒドリン、あるいは前記一分子
中に2個以上のエポキシ基を有するエポキシ樹脂
を脂肪酸などで変性した1個のエポキシ基を有す
る化合物エポキシ化アルキルフエノールなどが用
いられる。 また分子中にエポキシ基を有しない希釈剤、例
えばフタル酸ジブチル、フタル酸ジオクチル、リ
ン酸トリクレジル、フルフリルアルコール、ベン
ジルアルコール、松根油などの化合物なども使用
可能である。 一般に市販されている分子中にエポキシ基を有
しない希釈剤には、大日本インキ化学工業(株)製の
商品名エピクロンWT−100、呉羽化学(株)製の商
品名EX−50、同EX−1500、三菱瓦斯化学(株)製の
商品名ニカノールLLなどがある。あるいはアク
リルのオリゴマーである東亜合成化学工業(株)製の
商品名アロニツクスM−5700、M−6100なども使
用できる。 本発明のエポキシ樹脂は必要に応じて、タルク
沈降性硫酸バリウム、炭酸カルシウムなどの体質
顔料、黄鉛、カーボンブラツク、酸化チタン、亜
鉛華、弁柄、リン片状酸化鉄、アルミニウム粉末
群青、フタロシアニンブルー、鉄黒などの着色顔
料、ガラスフアイバー、ガラスフレーク、雲母
粉、石英粉合成シリカ、アスベストなどの補強顔
料、その他増粘剤、だれ止め剤、防錆剤あるいは
無公害防錆顔料、消泡剤、湿潤剤、沈殿防止剤、
硬化促進剤、キレート化反応促進剤などを添加す
ることが出来る。 前記防錆剤あるいは無公害防錆顔料としては、
従来公知の亜硝酸ソーダ、リン酸、リン酸アンモ
ニウム、リン酸亜鉛、モリブデン酸亜鉛、メタホ
ウ酸バリウム、リン鉄などが挙げられる。 又、硬化促進剤としてはフエノール、クレゾー
ル、ノニルフエノール、ビスフエノールA、サリ
チル酸、レゾルシン、ヘキサメチレンテトラミ
ン、2・4・6−トリス(ジメチルアミノメチ
ル)フエノール、トリエチレンジアミンなどが挙
げられる。特に三級アミンを用いた場合、低温硬
化性に効果がある。 前記キレート化反応促進剤としては、塩化第一
鉄、塩化第二鉄、酢酸などの有機酸がある。 更に、本発明においては前記エポキシ樹脂に対
して好ましくは20重量パーセント以下の他の樹脂
を併用することが出来る。併用樹脂は、特にエポ
キシ樹脂中のエポキシ基や、後述する硬化剤中の
アミノ基などを反応する必要はないが、組成物の
塗布作業性、塗膜性能、塗膜の表面状態などの改
良のため添加併用する。例えばフエノール樹脂ア
ルキド樹脂、ポリエステル樹脂、ウレタン化油コ
ールタール、アスフアルトなどがあげられる。 以上述べたまたは適当に配合されたエポキシ樹
脂組成物を本発明の主剤とする。しかしながら本
発明において、前記の如き、各種顔料、添加物あ
るいはその他の樹脂を後述する硬化剤組成物とあ
らかじめ混合しておいてもよい。 一方、本発明に使用される「一分子中に少くと
も2個以上の窒素原子及びこれに結合した活性水
素を有するアミノ系硬化剤」とは、通常エポキシ
樹脂用の硬化剤として使用されている常温で液状
のアミンアダクト、ポリアミド、ポリアミン等の
アミノ系化合物である。 前記ポリアミド樹脂はダイマー酸(一般の工業
製品はモノマー酸約3%、ダイマー酸約85%、ト
リマー酸を約12%含有する)とエチレンジアミ
ン、ジエチレントリアミン、あるいはメタフエニ
レンジアミンなどのポリアミン類との縮合生成物
である。例えば、一般に市販されている三和化学
工業(株)製の商品名、サンマイド335、同340、同
351、富士化成工業(株)製の商品名トーマイド245−
HSなどがある。 又前記アミンアダクト樹脂とは、エチレンオキ
サイドがプロピレンオキサイド又は前記のエポキ
シ樹脂とエチレンジアミン、ジエチレントリアミ
ンあるいはメタフエニレンジアミンなどの脂肪族
や芳香族ポリアミン類などの付加生成物である。
例えば一般に市販されている大日本インキ社製、
商品名エポタフハードナー37−611、ラツカマイ
ドB−203、三洋化成(株)製の商品名リアクトCA−
101、タイホー工業(株)製の商品名トリテツクスH
−300、シエル化学(株)製の商品名エピキユアーDX
−103、同DX−124、三和化学工業(株)製の商品名
サンマイドX−11P、同X−3000等が挙げられ
る。 更にアミンアダクト樹脂としてはブチルグリシ
ジルエーテル、バーサテイツク酸のグリシジルエ
ーテル、バーサテイツク酸のグリシジルエステ
ル、あるいはビスフエノール型エポキシ樹脂等と
次式で示される複素環状ジアミンとの付加生成分
などもある。 一般に市販されているものとしては、味の素(株)
製商品名エポメートB−002、同C−002の如きも
のがある。これらの硬化剤は目的に応じて一種も
しくは二種以上の混合物として使用される。又、
前記ポリアミンには例えばジエチレントリアミ
ン、トリエチレントラミン、キシレンジアミン、
イソオロンジアミンなどがあるがフエノール変性
ポリアミンもこれに含まれる。該ポリアミンとし
ては、例えば一般に市販されている三和化学工業
(株)製の商品名サンマイドX−963、同TX−983、
チバガイギー(株)製の商品名アラルダイトHY−
837、同HY−943、富士化成工業(株)製の商品名フ
ジキユアーX−003、同X−003D、同5000、シエ
ル化学(株)製の商品名エピキユアーDX−121などが
ある。これらの硬化剤は目的に応じて一種もしく
は二種以上の混合物として使用される。 又、併用硬化剤としてケテイミンがあり、例え
ば一般に市販されているシエル化学(株)製商品名エ
ピキユアーH−3等がある。 前記硬化剤はエポキシ樹脂と橋かけ反応を行な
うため、一分子中に少なくとも二個以上の窒素原
子およびこれに結合した活性水素を有することが
必要である。 該硬化剤に関しては、特にその他の制限はない
低粘度の硬化剤を使用する関係上、アミン価とし
て200以上である。但し硬化剤のアミン価が極め
て大きくなると、主剤としてのエポキシ樹脂と混
合した後の可使時間が短かくなるという制約が生
じる。又、硬化剤の粘度も塗料性能、塗膜性能に
大きい影響を与える。一般に粘度の高い硬化剤を
用いるほど塗装作業性も悪くなり、可使時間も短
かくなるという傾向がある。それは少量の前記希
釈剤を加えることによつて改善することが可能で
ある。 本発明で云う「硬化剤組成物」とは、前記アミ
ノ系硬化剤と、、没食子酸、プロトカテキユ酸、
及びこれらのアルキルエステル(アルキル基の炭
素数1〜12個)の一種もしくは二種以上の混合物
とを縮合反応させて得られた、常温で液状の硬化
剤組成物である。前記アルキルエステルとしては
前記酸と炭素数1〜12のアルコールとのエステル
類があげられる。例えば没食子酸メチル、没食子
酸エチル、没食子酸プロピル、没食子酸イソアミ
ル、没食子酸ラウリル、プロトカテキユ酸エチ
ル、プロトカテキユ酸プロピル等があげられる。 本発明の組成物は鉄面に塗布した時これら没食
子酸、プロトカテキユ酸又はそれらのエステル中
に含まれるフエノール性水酸基により素地鉄面と
キレート化反応が可能になり極めて優れた塗膜性
能を付与することができるのである。 前記没食子酸、プロカテキユ酸又はそれらのエ
ステルはアミノ系硬化剤固型分に対し、5〜30重
量パーセント、好ましくは10〜25重量パーセント
の割合で用いられる。前記割合においてキレート
形成能を有する化合物が5重量パーセント以下に
なると、本発明の目的とする効果はあまり期待で
きない。一方、30重量パーセント以上になると必
要以上のキレートが形成され、得られた塗膜が硬
く、もろくなり、又耐湿性も低下するとともに不
経済でもあり好ましくない。 本発明における没食子酸、プロトカテキユ酸ま
たはこれらのエステル類と前記アミノ系硬化剤と
の反応は例えば次のような方法による。 すなわち、没食子酸、プロトカテキユ酸または
これらのエステル酸と前記アミノ系硬化剤を100
〜240℃までの任意の温度で、所定の縮合水ある
いはアルコールが得られるまで(通常2〜10時
間)、窒素ガス等の不活性ガスの存在下あるいは
減圧下で加熱撹拌する。 前記没食子酸又はプロトカテキユ酸のアルキル
エステル類との縮合反応の場合は、金属アルコラ
ートなどの触媒を添加してもよい。 かくして、没食子酸、プロトカテキユ酸、又は
これらのエステル類が共有結合により硬化剤中に
導入された硬化剤組成物が得られる。 前記の如き本発明の硬化剤組成物は、エポキシ
樹脂と架橋反応する、即ち硬化剤の役割を果すと
ともに、被塗物鉄面とキレート化反応もするとい
う性能を有する。即ち、被覆組成物として鉄面上
に塗布された時に、鉄面の素地調整及びさび発生
の程度によらず、前記硬化剤組成物により素地鉄
面とキレート化反応が可能になり、特に防錆顔料
等を添加しなくとも耐水性、耐湿性、耐塩水浸漬
性、耐塩水噴霧性などの塗膜性能を著しく改良す
るのである。 更に本発明においては、前記硬化剤組成物に対
して2〜30重量%のタンニン類を混合して、キレ
ート化形成能を増大させることが出来る。 本発明においては、エポキシ樹脂を主成分とす
る主剤と、硬化剤組成物は混合して用いられる。 前記混合比は(エポキシ樹脂中のエポキシ基と
エポキシ化合物中のエポキシ基の和)/(硬化剤
組成物中の窒素原子に結合した活性水素)が1/
2〜2/1の割合で混合することが好ましい。 使用時に混合された本発明の組成物は、長時間
放置すると反応し固体状となるため、混合後すみ
やかに塗布されることが望ましい。 本発明の組成物はハケ塗り、エアスプレー塗装
エアレス塗装、ロールコーター塗装などの一般的
な方法で、被塗物上に、常温乾燥あるいは加熱乾
燥によつて塗膜となる。 被塗物としては、軟鋼、硬鋼などの鉄鋼材料が
望ましく、脱脂面、化成処理面、錆面、湿潤面、
熔接部などに塗布することも出来る。 また亜鉛メツキ板、スズメツキ板やアルミニウ
ム板、鋼板などの非鉄材料およびシヨツププライ
マー(例えばウオツシユプライマー、ジンクリツ
チプライマーなど)や各種下塗り塗膜上に塗布す
ることも可能である。また該塗膜上に美装その他
の目的で通常の上塗り塗装を行つてもよい。 上塗り塗装としては、例えばビニル樹脂塗料、
塩化ゴム塗料、ウレタン樹脂塗料、シリコン樹脂
塗料、アクリル樹脂塗料、フツ素樹脂塗料、アル
キツド樹脂塗料、エポキシ樹脂系塗料などを挙げ
ることができるが、層間密着性、ブリード性など
を考慮して上塗り塗料を選定する必要がある。 本発明組成物は、更にその特徴を生かし、接着
剤、パテなどに利用することもできる。 かくして、本発明組成物によれば特に防錆顔料
を用いなくても、すぐれた性能を有する塗膜を形
成することが出来るのである。 従つて、火災等の危険性が極めて少く、無公害
性、省資源型塗料であり、かつ耐湿性、耐塩水浸
漬性、耐塩水噴霧性などの防食性能に著しく改善
された無溶剤系の樹脂組成物が得られるので、そ
の工業的意義は極めて大きいということが出来
る。 以下本発明の詳細を実施例により説明する。 「部」又は「%」は「重量部」又は「重量%」
をもつて示す。 実施例 1 アニリン変性エポキシ樹脂〔日本化薬(株)製、商
品名GOT、エポキシ当量115〜135、平均分子量
約250〕450部に、一分子中に一個のエポキシ基を
有するエポキシ化合物としてアリルグリシジルエ
ーテル50部、タルク200部、沈降性硫酸バリウム
350部を加え、ローラーで練合して主剤とした。 一方、ポリアミド樹脂〔三和化学工業(株)製、商
品名サンマイド335、アミン価450±20〕1000部、
没食子酸100部を140〜150℃の温度で所定の縮合
水が得られるまで不活性ガス存在下で反応せし
め、キレート形成能を有する硬化剤組成物を作製
した。 前記主剤と、キレート形成能を有する硬化剤組
成物を、100/45(重量比)の割合で混合して、
本発明のキレート形成能を有するエポキシ樹脂組
成物を得た。 該組成物を、耐水研磨紙(#80)で研磨した錆
鋼板(約16.×50×150mm:2種ケレン程度)上
に、膜厚100±15ミクロンになるように、エアレ
ススプレーを用いて塗装した。ついで7日間、恒
温室(20℃、75%RH)で自然乾燥して、性能試
験を行つた。 塗膜性試験結果は後述の実施例と合わせて表−
1にまとめて示した。 実施例 2 ビスフエノールF型エポキシ樹脂〔ダウケミカ
ル(株)製、商品名XD−7818、エポキシ当量165、平
均分子量約330〕450部に、一分子中に一個のエポ
キシ基を有するエポキシ化合物としてブチルグリ
シジルエーテル50部、タルク200部、沈降性硫酸
バリウム350部を加え、ローラーで練合して主剤
とした。 一方、ポリアミド樹脂〔富士化成(株)製、フジキ
ユアー245−HS、アミン価400±20〕1000部と没
食子酸150部から実施例1と同様の操作により、
キレート形成能を有する硬化剤組成物を得た。 前記主剤と、キレート形成能を有する硬化剤組
成物を、100/80(重量比)の割合で混合して、
本発明のキレート形成能を有するエポキシ樹脂組
成物を得た。 該組成物を用いて実施例1と同様にして得られ
た塗膜の性能試験結果を表−1に示した。 実施例 3 ビスフエノールA型エポキシ樹脂〔シエル化学
(株)製、商品名エピコート827、エポキシ当量185、
平均分子量約370〕150部と、ポリオールのグリシ
ジルエテル樹脂〔長瀬産業(株)製、商品名、デナコ
ールEX−314、エポキシ当量145、平均分子量約
290〕100部に、フエニルグリシジルエーテル〔エ
ポキシ当量150〕100部を加え、粘度調節したもの
にタルク200部、沈降性硫酸バリウム250部、ベン
ガラ100部を加えて、ローラーで練合して主剤と
した。 一方、アミンダクト樹脂〔大日本インキ化学工
業(株)製、商品名エポタフハードナー37−611、ア
ミン価340±10〕1000部と没食子酸200部から実施
例1と同様の操作によりキレート形成能を有する
硬化剤組成物を得た。 前記主剤と、キレート形成能を有する硬化剤組
物を、100/40(重量比)の割合で混合して、本
発明のキレート形成能を有するエポキシ樹脂組成
物を得た。 該組成物を用いて、実施例1と同様にして得ら
れた塗膜の試験結果を表−1に示した。 実施例 4 ビスフエノールF型エポキシ樹脂〔実施例2と
同一〕180部とポリグリコール型エポキシ樹脂
〔ダウケミカル(株)製、商品名DER736、エポキシ
当量175〜205、平均分子量約380〕20部と、脂環
式エポキシ樹脂〔チツソ(株)製、商品名、チツソノ
ツクス206、エポキシ当量74〜78、平均分子量約
140〕250部から成る樹脂成分に、一分子中に一個
のエポキシ基を有するエポキシ化合物としてフエ
ニルグリシジルエーテル50部、タルク150部、沈
降性硫酸バリウム200部、ベンガラ100部を加え、
ローラーで練合して主剤とした。 一方、アミンアダクト樹脂〔三和化学(株)製、商
品名、サンマイド×3000、アミン価500±30〕500
部とポリアミド樹脂〔実施例1と同一〕500部
に、没食子酸50部、プロトカテキユ酸100部を加
え、実施例1と同様の操作により、キレート形成
能を有する硬化剤組成物を得た。 前記主剤とキレート形成能を有する硬化剤組成
物を100/75(重量比)の割合で混合して、本発
明のキレート形成能を有するエポキシ樹脂組成物
を得た。 該組成物を用いて、実施例1と同様にして得ら
れた塗膜の性能試験結果を表−1に示した。 実施例 5 ビスフエノールF型エポキシ樹脂〔実施例2と
同一〕320部と、ノボラツク型エポキシ樹脂〔ダ
ウケミカル(株)製商品名、DEN−431、エポキシ当
量172〜179、平均分子量約350〕300部に、一分子
中にエポキシ基を一個有するエポキシ化合物とし
てアリルグリシジルエーテル50部とエポキシ基を
有しない希釈剤〔大日本インキ化学工業(株)製、商
品名、エピクロンWT100〕を100部加え、溶解お
よび粘度調節したものに、タルク180部、沈降性
硫酸バリウム250部、ベンガラ100部、リン酸亜鉛
20部を加え、ローラーで練合して主剤とした。 一方、フエノール変性ポリアミン〔三和化学(株)
製、商品名、サンマイド×963、アミン価570±
30〕1000部を没食子酸n−プロピル150部にナト
リウムエチラート2部を加え、実施例1と同様の
反応条件でキレート形成能を有する硬化剤組成物
を得た。 前記主剤とキレート形成能を有する硬化剤組成
物を、100/20(重量比)の割合で混合して、本
発明のキレート形成能を有するエポキシ樹脂組成
物を得た。 該組成物を用いて、実施例1と同様にして塗装
を行い乾燥して得られた塗膜の性能試験結果を表
−1に示した。 比較例 1 実施例1で作製した主剤を使用した。 硬化剤は、ポリアミド樹脂サンマイド335(実
施例1と同一)を没食子酸と反応させることなく
そのまま用いた。 主剤と硬化剤を100/41(重量比)の割合で混
合した。 該組成物を、実施例1と全く同様にして塗装を
行ない乾燥させた。得られた塗膜の性能試験結果
を表−1に示した。 比較例 2 実施例2で作製した主剤を使用した。 硬化剤は、ポリアミド樹脂フジキユア−245−
HS(実施例2と同一)を、没食酸を反応させる
ことなくそのまま用いた。 前記主剤と、硬化剤を、100/68(重量比)の
割合で混合した。 該組成物を実施例1と同様にして塗装を行ない
乾燥させた。得られた塗膜の性能試験結果を表−
1に示した。 比較例 3 実施例3において作成した主剤を使用した。硬
化剤は、アミンアダクト樹脂エポタフハードナー
37−611(実施例3と同一)を変性させることな
くそのまま用いた。 前記主剤と、硬化剤を100/32(重量比)の割
合で混合した。 該組成物を実施例1と同様にして塗装を行ない
乾燥させた。得られた塗膜の性能試験結果を表−
1に示した。 比較例 4 実施例4において作製した主剤を使用した。一
方、硬化剤は実施例4で使用したアミンアダクト
樹脂サンマイド×3000を没食子酸とプロトカテキ
ユ酸で変性させることなく使用した。 このアミンアダクト樹脂500部と、比較例1で
用いた樹脂硬化剤500部を混合して、本比較例の
硬化剤とした。 前記主剤と、硬化剤を、100/64(重量比)の
割合で混合した。該組成物を実施例1と同様の方
法で塗膜を作成した。得られた塗膜の性能試験結
果を表−1に示した。 比較例 5 実施例5において、作成した主剤を使用した。
硬化剤はフエノール変性ポリアミン(実施例5と
同一)を、没食子酸n−プロピルで変性すること
なくそのまま用いた。 前記主剤と、硬化剤を、100/17(重量比)の
割合で混合した。 該組成物を実施例1と同様の方法で塗膜の作製
した。得られた塗膜の性能試験結果を表−1に示
した。
The present invention relates to a solvent-free epoxy resin composition having chelate-forming ability. Vehicles traditionally used for paints are
There are a wide variety of resins, including unsaturated fatty acids, alkyds, olefins, diethyls, acrylics, polyesters, epoxys, urethanes, and copolymers thereof. Among them, the demand for epoxy resins is increasing due to their excellent physical properties (adhesion, hardness) and chemical properties (chemical resistance). Furthermore, in recent years, there has been a demand in the market for paints that are non-hazardous, such as those that are low in flammability or non-toxic to the human body. As one of these, so-called solvent-free paints that do not use solvents have been developed. However, corrosion resistance,
Substantially no material with sufficient performance in terms of moisture resistance, physical properties, etc. has been obtained. As one of these improvements, it has been proposed to add heavy metal-based antirust pigments to improve corrosion resistance, but this is not preferred from the viewpoint of pollution. Therefore, it can be said that no pollution-free solvent-based epoxy resin paint has yet been obtained which has performance comparable to or better than conventional paints that use large amounts of organic solvents. On the other hand, polyphenols such as pyrogallol,
Compounds with chelate binding properties, such as phenolcarboxylic acids, chromium complex salts, phthalocyanines, pyridines, and their derivatives, are added to the paint to perform a chelation reaction with the iron surface of the substrate after application, thereby improving the performance of the paint film. Attempts have been made for a long time. That is, solvent-based paints in which tannins were simply added to linseed oil-based resin or drying oil were known for a long time (British Patent Nos. 826,564 and 826,566).
Later, by R.N. Faulkner et al., vegetable oil,
Solvent-based one-component type in which catechol, pyrogallol, gallic acid, or gallic acid ester is covalently introduced into fatty acid ester, alkyd resin, vegetable oil-modified epoxy ester resin, or vegetable oil-modified polyamide epoxy using a catalyst such as a metal alkoxide. paint was developed. These include, for example, UK Patent No. 1045118, US Patent Nos. 3304276 and 3321320, and Oil and Colour.
Journal of the Oil published by Chemists' Association
and Color Chemists′ Association Volume 50, No.
524 pages (1967), etc. Furthermore, British Patent No. 1114400 discloses a composition in which a styrene-allyl alcohol copolymer is reacted with a gallic acid ester. Furthermore, compositions having chelate-forming ability using epoxy resins are also known. For example, 2 which has the ability to form a chelate with the remaining epoxy group by modifying a part of the epoxy group in the epoxy resin with a monobasic fatty acid.
A chelate-forming resin made by reacting a fatty acid derivative having the above-mentioned adjacent phenolic hydroxyl groups and one free carboxyl group (Japanese Patent Publication No. 1973-
2439), is obtained by reacting gallic acid with the residual epoxy group of a reaction product of a polyamide resin with an amine value of 10 or less and an epoxy resin. A composition consisting of an epoxy-polyamide resin having chelate-forming ability and a phosphoric acid compound (Japanese Patent Application Laid-Open No. 17443/1989), which is prepared by reacting a part of the epoxy groups in the epoxy resin with salicylic acid, gallic acid, or esterified products thereof. In addition, epoxy resin, vinyl resin,
One-component or two-component (using amine curing agent) paints diluted with organic solvents containing fluororesins, etc.
48-56228, JP-A-49-122538, JP-A-49-
122597) etc. are known. However, all of these methods use organic solvents, which are not desirable in terms of safety and non-polluting properties. Moreover, all of these are made from modified epoxy resins, which are the main ingredient. In other words, it is a one-component or two-component composition in which all or part of the epoxy groups in the epoxy resin are reacted with a compound that has chelate-forming ability, and therefore the properties of the epoxy resin are significantly reduced. It is known that there are. The present invention relates to a solvent-free epoxy resin composition having chelate-forming ability that overcomes the drawbacks of the prior art. The objects of the present invention are (1) to obtain a coating film that is as good or better than a high molecular weight epoxy resin coating despite the use of a low molecular weight epoxy resin; (2) to provide a coating film that is as good or superior to a high molecular weight epoxy resin coating; To provide a coating composition capable of causing a reaction; (3) To provide a coating composition that provides a coating film with excellent corrosion resistance and moisture resistance; (5) To provide a composition that provides a coating film with excellent rust prevention properties; (5) To provide a composition that is safe to handle and non-polluting because no solvent is used. In addition, the purpose is to improve various chemical or physical properties of the coating film.
It will become clear from the explanation below. That is, the present invention provides (1) a low molecular weight epoxy resin that is liquid at room temperature and has at least two or more epoxy groups in one molecule, and (2) a low molecular weight epoxy resin that has at least two or more nitrogen atoms in one molecule and is bonded thereto. Amine value with active hydrogen
200 or more amino-based curing agent, and one or more of gallic acid, protocatechuic acid, or an alkyl ester thereof (alkyl group having 1 to 12 carbon atoms) in an amount of 5 to 30% by weight based on the curing agent. a curing agent composition that is liquid at room temperature obtained by condensation reaction with a mixture; (3) an epoxy compound having one epoxy group in one molecule of 30% by weight or less based on the epoxy resin; The present invention relates to a solvent-free epoxy resin composition having the following properties. The "low molecular weight epoxy resin that is liquid at room temperature and has at least two or more epoxy groups in one molecule" used in the present invention is, for example, as follows. Examples of bisphenol F-type epoxy resins include commercially available product name XD-7818 manufactured by Dow Chemical Co., Ltd. (average molecular weight approximately 330, hereinafter all indications are the same), and product name XD-7818 manufactured by Dainippon Ink and Chemicals Co., Ltd. Bisphenol A epoxy resins such as the product name Epicron 830 (approximately 330) include the product names Epicort 808 (380 or less), Epikron 815 (approximately 330), and Epikron 815 (approximately 330) manufactured by Ciel Chemical Co., Ltd.
819 (approx. 370), 827 (approx. 370), 828 (approx. 380),
Araldite 834 (approx. 470), Ciba Geigy Co., Ltd. product name Araldite GY-250 (approx. 380), Araldite 252 (approx. 370),
260 (approx. 380), trade name Epicron 840 (approx. 370) manufactured by Dainippon Ink and Chemicals Co., Ltd., product name SB-300 (380 or less) manufactured by Sakamoto Pharmaceutical Co., Ltd., manufactured by Dow Chemical Co., Ltd. Product names DER330 (about 370), DER331 (about 380), DER330 (about 370), DER331 (about 380),
332 (approximately 350), and hydrogenated products of bisphenol A type epoxy resin, such as Epolite 4000 (trade name, approximately 500) manufactured by Kyoei Yushi Co., Ltd. Examples of the phenol novolak type epoxy resin include DEN431 (approximately 350) manufactured by Dow Chemical Co., Ltd. As a polyglycol type epoxy resin, for example, the product name DER736 (approximately 380) manufactured by Dow Chemical Co., Ltd.
Product name Denacol EX-810 manufactured by Nagase Sangyo Co., Ltd. (approx.
220), EX-910 (approximately 240), etc. As a glycidyl ester type epoxy resin,
Product name Epicron manufactured by Dainippon Ink & Chemicals Co., Ltd.
There are 200 (approx. 360) and 400 (approx. 380). The epoxy resin in the present invention also includes a low-viscosity resin having two or more epoxy groups in one molecule. For example, aniline modified epoxy resin,
For example, the product name GAN (approximately 250) manufactured by Nippon Kayaku Co., Ltd.
GOT (approximately 250), glycidyl ether resin of polyol, for example, the trade name Denacol manufactured by Nagase Sangyo Co., Ltd.
EX-314 (approximately 290), alicyclic epoxy resin, such as Chitsonox 221 (trade name, manufactured by Chitso Corporation) (approximately
250), 206 (approximately 140), etc. The epoxy resin of the present invention is liquid at room temperature and has an average molecular weight of about 500 or less. In the composition of the present invention, the viscosity characteristics of the composition,
A diluent is added in an amount of 30% by weight or less to improve workability, coating performance, and coating condition. The diluent is an epoxy compound having one epoxy group in one molecule, such as allyl glycidyl ether, 2-ethylhexyl glycidyl ether, methyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, styrene oxide, cyclohexene oxide, Epichlorohydrin or epoxidized alkylphenol, a compound having one epoxy group obtained by modifying the epoxy resin having two or more epoxy groups in one molecule with a fatty acid or the like, is used. Diluents that do not have an epoxy group in their molecules, such as compounds such as dibutyl phthalate, dioctyl phthalate, tricresyl phosphate, furfuryl alcohol, benzyl alcohol, and pine oil, can also be used. Generally commercially available diluents that do not have epoxy groups in their molecules include Epiclon WT-100 (trade name) manufactured by Dainippon Ink and Chemicals Co., Ltd., EX-50 (trade name) manufactured by Kureha Chemical Co., Ltd.; -1500, manufactured by Mitsubishi Gas Chemical Co., Ltd. under the trade name Nicanol LL, etc. Alternatively, acrylic oligomers such as Aronix M-5700 and M-6100 manufactured by Toagosei Kagaku Kogyo Co., Ltd. can also be used. The epoxy resin of the present invention may optionally contain extender pigments such as talc-precipitated barium sulfate and calcium carbonate, yellow lead, carbon black, titanium oxide, zinc white, red oxide, flaky iron oxide, aluminum powder ultramarine, and phthalocyanine. Coloring pigments such as blue and iron black, glass fibers, glass flakes, mica powder, quartz powder synthetic silica, reinforcing pigments such as asbestos, other thickeners, anti-sagging agents, rust preventive agents or non-polluting rust preventive pigments, antifoaming. agent, wetting agent, suspending agent,
A curing accelerator, a chelation reaction accelerator, etc. can be added. As the rust preventive agent or non-polluting rust preventive pigment,
Examples include conventionally known sodium nitrite, phosphoric acid, ammonium phosphate, zinc phosphate, zinc molybdate, barium metaborate, iron phosphate, and the like. Examples of the curing accelerator include phenol, cresol, nonylphenol, bisphenol A, salicylic acid, resorcinol, hexamethylenetetramine, 2,4,6-tris(dimethylaminomethyl)phenol, and triethylenediamine. Particularly when a tertiary amine is used, it is effective in low temperature curing properties. Examples of the chelation reaction promoter include ferrous chloride, ferric chloride, and organic acids such as acetic acid. Furthermore, in the present invention, other resins can be used in combination with the epoxy resin, preferably at a weight of 20% or less. It is not necessary to react the epoxy groups in the epoxy resin or the amino groups in the curing agent (described later) with the resin used in combination, but it is possible to improve the coating workability of the composition, the coating performance, the surface condition of the coating, etc. Therefore, it is used in combination with addition. Examples include phenolic resin alkyd resin, polyester resin, urethanized oil coal tar, and asphalt. The epoxy resin composition described above or appropriately blended is the main ingredient of the present invention. However, in the present invention, various pigments, additives, or other resins as described above may be mixed in advance with the curing agent composition described below. On the other hand, the "amino curing agent having at least two nitrogen atoms and an active hydrogen bonded to them in one molecule" used in the present invention is a curing agent that is usually used as a curing agent for epoxy resins. These are amino compounds such as amine adducts, polyamides, and polyamines that are liquid at room temperature. The polyamide resin is a condensation of dimer acid (general industrial products contain about 3% monomer acid, about 85% dimer acid, and about 12% trimer acid) and polyamines such as ethylenediamine, diethylenetriamine, or metaphenylenediamine. It is a product. For example, the generally commercially available product names of Sanwa Chemical Industry Co., Ltd. are Sanmide 335, Sanmide 340, and Sanmide 340.
351, product name Tomide 245− manufactured by Fuji Kasei Kogyo Co., Ltd.
There are HS etc. The amine adduct resin is an addition product of ethylene oxide and propylene oxide or the above-mentioned epoxy resin and aliphatic or aromatic polyamines such as ethylene diamine, diethylene triamine or metaphenylene diamine.
For example, commonly available products manufactured by Dainippon Ink Co., Ltd.
Product name: Epotough Hardener 37-611, Lacucamide B-203, Product name: React CA- manufactured by Sanyo Chemical Co., Ltd.
101, trade name Tritex H manufactured by Taiho Kogyo Co., Ltd.
−300, trade name Epicure DX manufactured by Ciel Chemical Co., Ltd.
-103, DX-124, Sanmide X-11P and X-3000 manufactured by Sanwa Chemical Industry Co., Ltd., and the like. Furthermore, amine adduct resins include butyl glycidyl ether, glycidyl ether of versatile acid, glycidyl ester of versatile acid, and addition products of bisphenol type epoxy resins and heterocyclic diamines represented by the following formula. Generally available commercially, Ajinomoto Co., Inc.
There are products such as Epomate B-002 and Epomate C-002. These curing agents may be used singly or as a mixture of two or more depending on the purpose. or,
The polyamines include, for example, diethylenetriamine, triethylenetriamine, xylene diamine,
This includes isoolone diamine, but also phenol-modified polyamine. As the polyamine, for example, Sanwa Kagaku Kogyo, which is generally commercially available,
Product name Sanmide X-963, TX-983 manufactured by Co., Ltd.
Product name: Araldite HY− manufactured by Ciba Geigy Co., Ltd.
837, HY-943, Fujikure X-003, X-003D, and 5000 manufactured by Fuji Kasei Co., Ltd., and Epicure DX-121 manufactured by Ciel Chemical Co., Ltd. These curing agents may be used singly or as a mixture of two or more depending on the purpose. In addition, keteimine is used as a curing agent, and for example, there is a commercially available product such as Epicure H-3 manufactured by Ciel Kagaku Co., Ltd. Since the curing agent performs a crosslinking reaction with the epoxy resin, it is necessary to have at least two or more nitrogen atoms and an active hydrogen bonded to the nitrogen atoms in one molecule. Regarding the curing agent, since a low viscosity curing agent is used without any other limitations, the amine value is 200 or more. However, if the amine value of the curing agent becomes extremely high, there will be a restriction that the pot life after mixing with the epoxy resin as the main ingredient will be shortened. Furthermore, the viscosity of the curing agent also has a large effect on the performance of the paint and the performance of the coating film. Generally, there is a tendency that the higher the viscosity of the curing agent used, the worse the coating workability and the shorter the pot life. It can be improved by adding small amounts of said diluent. The "curing agent composition" as used in the present invention refers to the amino curing agent, gallic acid, protocatekylic acid,
It is a curing agent composition that is liquid at room temperature and is obtained by condensation reaction with one or a mixture of two or more of these alkyl esters (alkyl group having 1 to 12 carbon atoms). Examples of the alkyl esters include esters of the acids and alcohols having 1 to 12 carbon atoms. Examples include methyl gallate, ethyl gallate, propyl gallate, isoamyl gallate, lauryl gallate, ethyl protocatekyate, propyl protocatekyate, and the like. When the composition of the present invention is applied to a steel surface, the phenolic hydroxyl groups contained in gallic acid, protocatechuic acid, or their esters enable a chelation reaction with the base steel surface, giving extremely excellent coating performance. It is possible. The gallic acid, procatechuic acid, or their esters are used in an amount of 5 to 30 weight percent, preferably 10 to 25 weight percent, based on the solid content of the amino curing agent. If the amount of the compound having chelate-forming ability in the above ratio is less than 5% by weight, the desired effects of the present invention cannot be expected to be very good. On the other hand, if the amount exceeds 30% by weight, more chelate than necessary is formed, resulting in a hard and brittle coating film, which also reduces moisture resistance and is uneconomical, which is undesirable. In the present invention, the reaction between gallic acid, protocatechuic acid, or their esters and the amino curing agent is carried out, for example, by the following method. That is, gallic acid, protocatechuic acid, or their ester acids and the amino curing agent were mixed together at 100%
The mixture is heated and stirred at any temperature up to 240° C. in the presence of an inert gas such as nitrogen gas or under reduced pressure until the desired condensed water or alcohol is obtained (usually 2 to 10 hours). In the case of the condensation reaction of gallic acid or protocatechuic acid with alkyl esters, a catalyst such as a metal alcoholate may be added. Thus, a curing agent composition is obtained in which gallic acid, protocatechuic acid, or their esters are covalently incorporated into the curing agent. The curing agent composition of the present invention as described above has the ability to perform a crosslinking reaction with the epoxy resin, that is, to play the role of a curing agent, and also to perform a chelation reaction with the iron surface of the object to be coated. That is, when applied as a coating composition onto a steel surface, the curing agent composition enables a chelation reaction with the steel surface, regardless of the condition of the steel surface and the degree of rust generation, and is particularly effective in preventing rust. Even without adding pigments or the like, coating film performance such as water resistance, humidity resistance, salt water immersion resistance, salt water spray resistance, etc. is significantly improved. Furthermore, in the present invention, 2 to 30% by weight of tannins may be mixed with the curing agent composition to increase the chelate formation ability. In the present invention, a main component mainly composed of an epoxy resin and a curing agent composition are used in combination. The mixing ratio is (sum of epoxy groups in the epoxy resin and epoxy groups in the epoxy compound)/(active hydrogen bonded to nitrogen atoms in the curing agent composition) 1/
It is preferable to mix at a ratio of 2 to 2/1. Since the composition of the present invention mixed at the time of use reacts and becomes solid if left for a long time, it is desirable to apply the composition immediately after mixing. The composition of the present invention forms a coating film on the object to be coated by drying at room temperature or heating by common methods such as brush coating, air spray coating, airless coating, and roll coater coating. The object to be coated is preferably a steel material such as mild steel or hard steel, such as degreased surfaces, chemical conversion treated surfaces, rusted surfaces, wet surfaces,
It can also be applied to welded parts. It is also possible to coat on nonferrous materials such as galvanized plates, tin plated plates, aluminum plates, and steel plates, as well as on shot primers (for example, wash primers, zinc-rich primers, etc.) and various undercoat coatings. Further, a conventional top coat may be applied on the coating film for aesthetic purposes or other purposes. As the top coat, for example, vinyl resin paint,
Examples include chlorinated rubber paints, urethane resin paints, silicone resin paints, acrylic resin paints, fluorine resin paints, alkyd resin paints, epoxy resin paints, etc.; It is necessary to select The composition of the present invention can also be utilized for adhesives, putty, etc. by making the most of its characteristics. Thus, according to the composition of the present invention, it is possible to form a coating film with excellent performance even without the use of any particular rust-preventing pigment. Therefore, it is a solvent-free resin that has extremely low risk of fire, etc., is non-polluting, resource-saving paint, and has significantly improved corrosion resistance such as moisture resistance, salt water immersion resistance, and salt water spray resistance. Since a composition can be obtained, it can be said that its industrial significance is extremely large. The details of the present invention will be explained below with reference to Examples. "Part" or "%" means "part by weight" or "% by weight"
It is shown with. Example 1 Allylglycidyl as an epoxy compound having one epoxy group in one molecule was added to 450 parts of aniline-modified epoxy resin [manufactured by Nippon Kayaku Co., Ltd., trade name GOT, epoxy equivalent weight 115 to 135, average molecular weight about 250]. 50 parts of ether, 200 parts of talc, precipitated barium sulfate
350 parts were added and kneaded with a roller to form a main ingredient. On the other hand, 1000 parts of polyamide resin [manufactured by Sanwa Kagaku Kogyo Co., Ltd., trade name Sanmide 335, amine value 450 ± 20],
A curing agent composition having chelate-forming ability was prepared by reacting 100 parts of gallic acid in the presence of an inert gas at a temperature of 140 to 150°C until a predetermined amount of condensed water was obtained. Mixing the main agent and a curing agent composition having chelate-forming ability in a ratio of 100/45 (weight ratio),
An epoxy resin composition having chelate-forming ability of the present invention was obtained. The composition was applied to a rusted steel plate (approximately 16. x 50 x 150 mm: grade 2 scratching) polished with waterproof abrasive paper (#80) using an airless sprayer to a film thickness of 100 ± 15 microns. Painted. Then, it was air-dried in a constant temperature room (20°C, 75% RH) for 7 days, and a performance test was conducted. The coating film property test results are shown in the table along with the examples below.
They are summarized in 1. Example 2 Butyl as an epoxy compound having one epoxy group in one molecule was added to 450 parts of bisphenol F type epoxy resin [manufactured by Dow Chemical Co., trade name: XD-7818, epoxy equivalent weight 165, average molecular weight about 330]. 50 parts of glycidyl ether, 200 parts of talc, and 350 parts of precipitated barium sulfate were added and kneaded with a roller to form a main ingredient. On the other hand, using 1000 parts of polyamide resin [manufactured by Fuji Kasei Co., Ltd., Fujikyure 245-HS, amine value 400±20] and 150 parts of gallic acid, the same procedure as in Example 1 was carried out.
A curing agent composition having chelate-forming ability was obtained. Mixing the main agent and a curing agent composition having chelate-forming ability in a ratio of 100/80 (weight ratio),
An epoxy resin composition having chelate-forming ability of the present invention was obtained. Table 1 shows the performance test results of a coating film obtained using the composition in the same manner as in Example 1. Example 3 Bisphenol A type epoxy resin [Ciel Chemical Co., Ltd.
Manufactured by Co., Ltd., trade name: Epicote 827, epoxy equivalent: 185,
Average molecular weight: approx. 370] 150 parts, polyol glycidyl ether resin (manufactured by Nagase Sangyo Co., Ltd., trade name, Denacol EX-314, epoxy equivalent: 145, average molecular weight: approx.
Add 100 parts of phenyl glycidyl ether [epoxy equivalent 150] to 100 parts of 290], adjust the viscosity, add 200 parts of talc, 250 parts of precipitated barium sulfate, and 100 parts of red iron sulfate, and knead with a roller to form the main ingredient. And so. On the other hand, chelate formation ability was obtained by using 1000 parts of amine duct resin [manufactured by Dainippon Ink and Chemicals Co., Ltd., trade name Epotough Hardener 37-611, amine value 340±10] and 200 parts of gallic acid in the same manner as in Example 1. A curing agent composition was obtained. The base resin and the curing agent combination having chelate-forming ability were mixed in a ratio of 100/40 (weight ratio) to obtain an epoxy resin composition having chelate-forming ability of the present invention. Table 1 shows the test results of a coating film obtained using the composition in the same manner as in Example 1. Example 4 180 parts of bisphenol F type epoxy resin [same as Example 2], 20 parts of polyglycol type epoxy resin [manufactured by Dow Chemical Co., trade name DER736, epoxy equivalent weight 175 to 205, average molecular weight about 380] , alicyclic epoxy resin [manufactured by Chitsuso Co., Ltd., trade name, Chitsusonox 206, epoxy equivalent weight 74-78, average molecular weight approx.
140] Add 50 parts of phenyl glycidyl ether as an epoxy compound having one epoxy group in one molecule, 150 parts of talc, 200 parts of precipitated barium sulfate, and 100 parts of red iron to a resin component consisting of 250 parts,
The mixture was kneaded with a roller to form the main ingredient. On the other hand, amine adduct resin [manufactured by Sanwa Kagaku Co., Ltd., trade name, Sanmide x 3000, amine value 500 ± 30] 500
50 parts of gallic acid and 100 parts of protocatechuic acid were added to 500 parts of polyamide resin [same as in Example 1], and the same procedure as in Example 1 was performed to obtain a curing agent composition having chelate-forming ability. The base resin and a curing agent composition having chelate-forming ability were mixed in a ratio of 100/75 (weight ratio) to obtain an epoxy resin composition having chelate-forming ability of the present invention. Table 1 shows the performance test results of a coating film obtained using the composition in the same manner as in Example 1. Example 5 320 parts of bisphenol F type epoxy resin [same as Example 2] and novolak type epoxy resin [Dow Chemical Co., Ltd. trade name, DEN-431, epoxy equivalent weight 172 to 179, average molecular weight about 350] 300 50 parts of allyl glycidyl ether as an epoxy compound having one epoxy group in one molecule and 100 parts of a diluent without an epoxy group [manufactured by Dainippon Ink & Chemicals Co., Ltd., trade name, Epiclon WT100] were added to Dissolved and adjusted viscosity, 180 parts of talc, 250 parts of precipitated barium sulfate, 100 parts of red iron phosphate, zinc phosphate.
20 parts were added and kneaded with a roller to form a main ingredient. On the other hand, phenol-modified polyamine [Sanwa Kagaku Co., Ltd.]
Manufactured by, product name, Sunmide x 963, amine value 570±
30] 1000 parts of n-propyl gallate was added to 150 parts of n-propyl gallate and 2 parts of sodium ethylate, and under the same reaction conditions as in Example 1, a curing agent composition having chelate-forming ability was obtained. The base resin and the curing agent composition having chelate-forming ability were mixed in a ratio of 100/20 (weight ratio) to obtain the epoxy resin composition having chelate-forming ability of the present invention. Table 1 shows the performance test results of the coating film obtained by coating and drying the composition in the same manner as in Example 1. Comparative Example 1 The base material prepared in Example 1 was used. As a curing agent, polyamide resin Sanmide 335 (same as in Example 1) was used as it was without reacting it with gallic acid. The base resin and curing agent were mixed at a ratio of 100/41 (weight ratio). The composition was coated and dried in exactly the same manner as in Example 1. The performance test results of the obtained coating film are shown in Table-1. Comparative Example 2 The base material prepared in Example 2 was used. The curing agent is polyamide resin Fujikure-245-
HS (same as in Example 2) was used as is without reacting with gallic acid. The base material and curing agent were mixed at a ratio of 100/68 (weight ratio). The composition was coated and dried in the same manner as in Example 1. The performance test results of the obtained coating film are shown below.
Shown in 1. Comparative Example 3 The base material prepared in Example 3 was used. The hardening agent is amine adduct resin Epotough hardener.
37-611 (same as Example 3) was used as is without modification. The base material and curing agent were mixed at a ratio of 100/32 (weight ratio). The composition was coated and dried in the same manner as in Example 1. The performance test results of the obtained coating film are shown below.
Shown in 1. Comparative Example 4 The base material prepared in Example 4 was used. On the other hand, as a curing agent, the amine adduct resin Sanmide x3000 used in Example 4 was used without being modified with gallic acid and protocatechuic acid. 500 parts of this amine adduct resin and 500 parts of the resin curing agent used in Comparative Example 1 were mixed to prepare a curing agent for this comparative example. The base material and curing agent were mixed at a ratio of 100/64 (weight ratio). A coating film was prepared using the composition in the same manner as in Example 1. The performance test results of the obtained coating film are shown in Table-1. Comparative Example 5 The base material prepared in Example 5 was used.
As a curing agent, a phenol-modified polyamine (same as in Example 5) was used as it was without being modified with n-propyl gallate. The base material and curing agent were mixed at a ratio of 100/17 (weight ratio). A coating film was prepared using the composition in the same manner as in Example 1. The performance test results of the obtained coating film are shown in Table-1.

【表】【table】

【表】 試験結果表より、明らかに本発明組成物から得
られた塗膜は耐塩水噴霧性、耐湿性、耐水性及び
耐塩水浸漬性において格段にすぐれた性能を有す
ることがわかる。
[Table] From the test results table, it is clearly seen that the coating film obtained from the composition of the present invention has extremely excellent performance in salt water spray resistance, moisture resistance, water resistance, and salt water immersion resistance.

Claims (1)

【特許請求の範囲】 1 (a) 一分子中に少なくとも二個以上のエポキ
シ基を有する常温で液状の低分子量エポキシ樹
脂、 (b) (イ)一分子中に少なくとも二個以上の窒素原子
およびこれに結合した活性水素を有するアミン
価200以上のアミノ系硬化剤と、(ロ)該硬化剤に
対して5〜30重量パーセントの没食子酸、プロ
トカテキユ酸、またはこれらのアルキルエステ
ル(但し、該アルキル基の炭素数は1〜12個)
の一種もしくは二種以上の混合物とを縮合反応
させて得られた常温で液状の硬化剤組成物、 (c) 上記エポキシ樹脂に対し30重量パーセント以
下の一分子中に一個のエポキシ基を有するエポ
キシ化合物、 とからなるキレート形成能を有する無溶剤型エポ
キシ樹脂組成物。
[Scope of Claims] 1. (a) A low molecular weight epoxy resin that is liquid at room temperature and has at least two or more epoxy groups in one molecule, (b) (a) At least two or more nitrogen atoms in one molecule, and an amino-based curing agent having an amine value of 200 or more and having an active hydrogen bonded thereto; The number of carbon atoms in the group is 1 to 12)
(c) An epoxy resin having one epoxy group in one molecule of 30% by weight or less based on the above epoxy resin; A solvent-free epoxy resin composition having chelate-forming ability consisting of a compound.
JP5502576A 1976-05-14 1976-05-14 Solventiless epoxy resin composition having chelate formability Granted JPS53102400A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5502576A JPS53102400A (en) 1976-05-14 1976-05-14 Solventiless epoxy resin composition having chelate formability
US05/795,125 US4177174A (en) 1976-05-14 1977-05-09 Epoxy resin composition cured by reaction product of phenol carboxylic acids with polyamino compounds
DE2721779A DE2721779C3 (en) 1976-05-14 1977-05-13 Epoxy resin mixture
GB20198/77A GB1534256A (en) 1976-05-14 1977-05-13 Epoxy resin composition
NLAANVRAGE7705324,A NL168857C (en) 1976-05-14 1977-05-13 PROCESS FOR PREPARING A COATING MIXTURE
MY3/80A MY8000003A (en) 1976-05-14 1980-12-30 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502576A JPS53102400A (en) 1976-05-14 1976-05-14 Solventiless epoxy resin composition having chelate formability

Publications (2)

Publication Number Publication Date
JPS53102400A JPS53102400A (en) 1978-09-06
JPS6112928B2 true JPS6112928B2 (en) 1986-04-10

Family

ID=12987114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502576A Granted JPS53102400A (en) 1976-05-14 1976-05-14 Solventiless epoxy resin composition having chelate formability

Country Status (1)

Country Link
JP (1) JPS53102400A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026860A (en) * 1983-08-29 1991-06-25 Minnesota Mining And Manufacturing Company Bidentate chelating monomers and polymers
US4593056A (en) * 1985-06-21 1986-06-03 Union Carbide Corporation Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators
US7456932B2 (en) 2003-07-25 2008-11-25 Asml Netherlands B.V. Filter window, lithographic projection apparatus, filter window manufacturing method, device manufacturing method and device manufactured thereby
JP5590544B2 (en) * 2009-10-02 2014-09-17 中部電力株式会社 Epoxy resin composite material and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382261A (en) * 1962-02-28 1968-05-07 Minnesota Mining & Mfg Phenolic polyamino-amides capable of curing epoxy resins
JPS50151222A (en) * 1974-05-28 1975-12-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382261A (en) * 1962-02-28 1968-05-07 Minnesota Mining & Mfg Phenolic polyamino-amides capable of curing epoxy resins
JPS50151222A (en) * 1974-05-28 1975-12-04

Also Published As

Publication number Publication date
JPS53102400A (en) 1978-09-06

Similar Documents

Publication Publication Date Title
EP0119769B1 (en) Heat-curable resin coating composition
KR101120797B1 (en) Epoxy resins comprising a cycloaliphatic diamine curing agent
US4177174A (en) Epoxy resin composition cured by reaction product of phenol carboxylic acids with polyamino compounds
US4316003A (en) Epoxy resin curing agents
JPWO2007046301A1 (en) Anti-corrosive pigment-containing polyfunctional epoxy resin coating composition, coating film thereof, substrate coated with coating film, and anticorrosion method
EP0136842A2 (en) Low temperature curing coating composition
CA1205231A (en) Process for applying a coating to a substrate and a liquid aqueous composition to be used therein
JP3787208B2 (en) Paint base agent and coating composition for heavy anticorrosion
WO2021261071A1 (en) Water-based anticorrosive coating composition
NO143667B (en) APPLICATION OF A MAJOR EPOXYD RESIN DISPERSION AS CORROSION PROTECTION PAINTING
JPH036191B2 (en)
JPS6112928B2 (en)
JPH0320375A (en) Coating composition for iron pipe
JPH0348229B2 (en)
JP2640972B2 (en) Rust prevention paint composition
JPH0920878A (en) Solventless-type coating composition
KR800001221B1 (en) Epoxy resin composition cured by reaction products of phenol carboxylic acids with polyamino compounds
KR800001195B1 (en) Epoxy resin composition cored by reaction product of phenol carboxylic acids with polyamino compounds
JPS59123574A (en) Corrosion preventive coating method
JP4445064B2 (en) Heavy anticorrosion micro solvent type epoxy resin coating composition
JPH01172466A (en) Anticorrosive paint composition
JP2004231853A (en) Coating composition
JPS592309B2 (en) Chelate-binding one-component coating composition
JPS592310B2 (en) Chelate binding coating composition
JPS5913269B2 (en) Coating film formation method with chelate layer