JPH0348229B2 - - Google Patents

Info

Publication number
JPH0348229B2
JPH0348229B2 JP60003206A JP320685A JPH0348229B2 JP H0348229 B2 JPH0348229 B2 JP H0348229B2 JP 60003206 A JP60003206 A JP 60003206A JP 320685 A JP320685 A JP 320685A JP H0348229 B2 JPH0348229 B2 JP H0348229B2
Authority
JP
Japan
Prior art keywords
water
weight
parts
anticorrosive
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60003206A
Other languages
Japanese (ja)
Other versions
JPS61162564A (en
Inventor
Tadashige Nomura
Hideo Tsunoda
Hiroshi Amako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP320685A priority Critical patent/JPS61162564A/en
Publication of JPS61162564A publication Critical patent/JPS61162564A/en
Publication of JPH0348229B2 publication Critical patent/JPH0348229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は防食塗料組成物に関し、曎に詳しくは
硫化氎玠、酞玠及び氎を含む腐食環境における鋌
材の腐食を抑制する被芆材を䞎える防食塗料組成
物に関する。 本発明の防食塗料組成物は硫化氎玠を取り扱う
又は硫化氎玠が䞍玔物ずしお混圚する化孊プラン
トもしくはタンク又は硫化氎玠が混圚しおいる倩
然ガス、石油などの茞送パむプラむン、ステヌシ
ペン関係などの鋌材の被芆に奜適に䜿甚するこず
ができる。 埓来の技術及び発明が解決しようずする問題 硫化氎玠H2Sは非垞に反応性に富み、特に
各皮金属ずは容易に硫化物を生成するこずは呚知
の通りである。特に鋌材においおはH2Sの特異な
反応性のため、䞀般の金属の腐食ずは異なり、鋌
材匷床を劣化させる、いわゆる硫化氎玠われが起
り、数倚くの事故䟋が報告されおいる。これらの
硫化氎玠われの原因などに぀いおは、西村、栗
栖、倪谷の「溶接孊䌚誌」32〔〕、478〜489
1963に総説されおいるが、基本的には硫化氎
玠われは氎玠脆性ず同じであり、硫化氎玠は鋌材
衚面に硫化物を圢成し、鋌材の氎玠吞収の促進剀
ずしお働いおいるだけである。又これら硫化物わ
れの防止方法ずしお陰極防食は効果がないこず及
び塗膜の脆化及び軟化を起すものもあり適圓なも
のを遞択すれば比范的有効である旚の蚘茉があ
る。埓぀お、硫化氎玠われを防止するための被芆
材は先ず鋌材衚面での硫化物の生成を制埡する胜
力をも぀こずが必芁である。かかる防食性胜はた
た硫化氎玠濃床が䜎く硫化氎玠われたで至らない
ような腐食環境における被芆材においおも同様に
必芁である。すなわち、硫化氎玠が氎及び酞玠ず
共に被芆を透過しお鋌材衚面で硫化物を生成する
ず、被膜材が鋌材ず接着しおいた結合を切断する
こずずなり、結果的には被芆材が鋌材衚面から剥
離し、防食機胜が倱なわれおしたうからである。
勿論適切な被芆材でも぀お硫化氎玠、酞玠及び氎
の䟵入を防止すれば問題はないが、どのような塗
膜でも最終的にはガスや氎が透過しお鋌材に到達
しおしたう。䞀般環境における埓来の䞀般の被芆
材は比范的氎あるいは酞玠が透過し難い材料、即
ちポリ゚チレン、゚ポキシ暹脂などのバむンダヌ
を䜿甚し、曎に氎が䟵入しおきた堎合はアノヌド
腐食反応を抑制するように䞻ずしお鉄よりもむオ
ン化傟向の倧きい金属類を配合しお被塗物である
金属ほずんど鉄であるがの溶解を防止する様
に蚭蚈されおきた。この代衚的な塗料ずしお塗膜
䞭に高濃床の亜鉛を含有する陰極防食甚のゞンク
リツチペむントがある。このゞンクリツチペむン
トをはじめ、䞀般に防食性又は耐薬品性にすぐれ
おおり、か぀倚くの実瞟を持぀゚ポキシ暹脂塗
料、塩化ビニル暹脂塗料、プノヌル暹脂塗料の
ような塗料でさえも腐食環境にH2Sが存圚するず
その防食性胜は著しく䜎枛され、H2Sが高濃床で
ある環境すなわち油井管又はH2Sを取り扱぀た
り、H2Sが䞍玔物ずしお存圚する化孊プラント、
タンクなどで硫化氎玠われの事故を起しおいる。
このような酞玠及び氎が起因する腐食の防止甚に
蚭蚈された、埓来の被芆材ではHSを含む腐食環
境䞋では腐食防止甚に有効であるず蚀えなか぀
た。 発明の構成 埓来公知の防食塗料組成物の䞀䟋ずしお、特開
昭55−165967号に蚘茉されいおるものであるが、
この塗料は基本的にはレゟヌル型プノヌル倉成
゚ポキシ暹脂を䞻たる暹脂成分ずしお含むもので
あり、䞀般に硬い塗膜ずなり本発明で目的ずする
性胜のうち、折り曲げ性被膜を埗るこずができな
い。又、䞀般に酞玠ず氎による腐食あるいはH2S
による腐食のいずれの腐食因子であ぀おも、これ
ら腐食因子が塗膜を透過し鋌材に到達した埌、は
じめお腐食が起る。この腐食因子の塗膜ぞの透過
は顔料ずバむンダヌの界面を通しお起る。埓぀
お、これらの腐食因子の塗膜透過を制埡させるた
めには顔料粒子衚面におけるバむンダヌずのむン
タヌラクシペンを匷くしなければならない。この
こずは、バむンダヌである暹脂の皮類によ぀お最
適な顔料が存圚するわけであり、埌で述べる本発
明の顔料をそのたた特開昭55−165967号公報に開
瀺の塗料に適甚しおも所望の効果を瀺すずは限ら
ず、実際には、むしろ防食性胜が悪くなる。この
こずはバむンダヌ暹脂ずしお特開昭55−165967号
公報の実斜䟋に基づき合成した暹脂を䜿甚した
以䞋の比范䟋に瀺す通りであり。この結果から
明らかなように、バむンダヌ暹脂ずしおレゟヌル
型プノヌル倉性゚ポキシ暹脂を䜿甚しおいるた
め曲げ性で十分な結果が埗られないず共に゜ルト
スプレヌ性、耐H2S性で期埅した効果が出おいな
い。この事実は本発明で遞択した顔料類が氎溶分
が小さく、溶解氎のPHが〜ずいう埮酞性を瀺
す性質がレゟヌル型プノヌル倉性゚ポキシ暹脂
ずのむンタヌラクシペンを匱くしおいるこずによ
るず考えられる。 問題点を解決するための手段及びその䜜甚 本発明に埓えば、 () (a)䞀分子圓り〜個のオキシラン環を持
぀ビスプノヌルず゚ピハロヒドリンずの付
加反応によ぀お埗られる゚ポキシ圓量が180〜
2500である゚ポキシ暹脂ず、(b)脂肪族ゞアミン
ずダむマヌ酞から成るポリアミドアミンずから
なり、゚ポキシ暹脂ずポリアミドアミンの比が
反応圓量で0.8〜1.4のベヒクル100重
量郚、 () カヌボンブラツク、酞化チタン、アルミニ
りム粉、酞化珪玠、酞化アルミニりム及び酞化
マグネシりムの矀から遞ばれた少なくずも䞀皮
の、硫化氎玠に察しお䞍掻性な充填剀50〜200
重量郚、 () 氎溶分が0.3以䞋で溶解氎のPHが6.0〜7.0
の防錆顔料〜40重量郚䞊びに () 有機溶剀 から成り、前蚘(a)及び(b)を含む成分を䜿甚時に混
合するようにした、実質䞊リン酞を含たない二液
型防食塗料組成物 が提䟛される。 本発明の防食塗料組成物においお䜿甚されるベ
ヒクルバむンダヌ成分は、䞀分子圓り〜
個のオシキラン環をも぀ビスプノヌルず゚ピ
ハロヒドリンずの付加反応によ぀お埗られる゚ポ
キシ圓量が180〜2500の゚ポキシ暹脂ず、脂肪族
ゞアミンずダむマヌ酞から成るポリアミドアミン
を0.8〜1.4の反応圓量比で反応させお成
る化合物である。かかる゚ポキシ暹脂は䞋蚘構造
匏で衚わされ、 この暹脂は通垞ビスプノヌルのゞグリシゞ
ル゚ヌテルず呌ばれおいるものである。構造匏的
には分子圓り個のオキシラン環を持぀おいる
が、䞀般的にはこのような構造の補品は存圚しお
いない。すなわち、゚ポキシ暹脂は䞊蚘構造匏で
あれば、平均分子量ぱポキシ圓量の倍でなけ
ればならないが、䞀般的に盞圓小さい倀を持぀お
いる。぀たり、末端はすべおオキシラン環ずな぀
おいるわけでなく䞀般にはα−ゞオヌル加氎分解
性塩玠などの官胜基が䞀郚存圚しおいる。このよ
うな意味で、䞊蚘のような線状の構造を持ち、本
来は䞊蚘構造をも぀ように蚭蚈されたものである
が、実際は分子圓り〜個のオキシラン環を
持ち゚ポキシ暹脂が本発明においお䜿甚するこず
ができるものである。具䜓的には「゚ピコヌト」
油化シ゚ル゚ポキシ(æ ª)、「゚ポトヌト」東郜化
成(æ ª)、「アラルダむト」チバカむギヌ、「゚ピ
クロン」倧日本むンキ化孊工業(æ ª)などの銘柄
で垂販されおいるもので、゚ポキシ圓量が180〜
2500、分子量が380〜3000の゚ポキシ暹脂の䜿甚
が適圓である。䟋えば油化シ゚ル゚ポキシ瀟補で
あれば゚ピコヌト828が、平均分子量380及
び゚ポキシ圓量184〜194であり、゚ピコヌト1001
が2.0、平均分子量900及び゚ポキシ圓量450
〜500であり、゚ピコヌト1004が3.7、平均分
子量1400及び゚ポキシ圓量900〜1000であり、゚
ピコヌト1007が8.8、平均分子量2900及び゚
ポキシ圓量1750〜2100である。 䞀方の脂肪族ゞアミン、䟋えばキシリレンゞア
ミンずダむマヌ酞から成るポリアミドアミンは、
䞀般的に 〔匏䞭、は
INDUSTRIAL APPLICATION FIELD The present invention relates to an anticorrosion coating composition, and more particularly to an anticorrosion coating composition that provides a coating that inhibits corrosion of steel in a corrosive environment containing hydrogen sulfide, oxygen, and water. The anticorrosive coating composition of the present invention is suitable for coating steel materials in chemical plants or tanks that handle hydrogen sulfide or in which hydrogen sulfide is mixed as an impurity, or in transportation pipelines and stations for natural gas, oil, etc., in which hydrogen sulfide is mixed. It can be suitably used. BACKGROUND ART AND PROBLEMS TO BE SOLVED BY THE INVENTION It is well known that hydrogen sulfide (H 2 S) is highly reactive and easily forms sulfides, especially with various metals. In particular, due to the unique reactivity of H 2 S in steel materials, so-called hydrogen sulfide corrosion occurs, which deteriorates the strength of steel materials, unlike corrosion of general metals, and many accidents have been reported. Regarding the causes of these hydrogen sulfide cracks, see Nishimura, Kurisu, and Otani, "Journal of the Welding Society," 32 [6], 478-489.
(1963), hydrogen sulfide is basically the same as hydrogen embrittlement, and hydrogen sulfide forms sulfides on the steel surface and only acts as a catalyst for hydrogen absorption by the steel. be. It is also stated that cathodic protection is ineffective as a method for preventing these sulfide cracks, and that some of them cause embrittlement and softening of the coating film, so it is relatively effective if an appropriate one is selected. Therefore, a coating material for preventing hydrogen sulfide cracking must first have the ability to control the formation of sulfides on the steel surface. Such anti-corrosion performance is also necessary for coating materials in corrosive environments where the concentration of hydrogen sulfide is low and hydrogen sulfide does not reach the surface. In other words, when hydrogen sulfide passes through the coating along with water and oxygen and generates sulfide on the steel surface, the bond between the coating material and the steel material is broken, and as a result, the coating material peels off from the steel surface. This is because the anti-corrosion function is lost.
Of course, there is no problem if a suitable coating material prevents hydrogen sulfide, oxygen, and water from entering, but gas and water will eventually permeate through any coating and reach the steel material. Conventional general coating materials in general environments use materials that are relatively difficult for water or oxygen to permeate, i.e., binders such as polyethylene and epoxy resin, and are mainly designed to suppress anode corrosion reactions when water penetrates. It has been designed to prevent the metal to be coated (mostly iron) from dissolving by incorporating metals that have a greater tendency to ionize than iron. A typical example of this type of paint is zinc-rich paint for cathodic protection, which contains a high concentration of zinc in the coating film. Even paints such as epoxy resin paints, vinyl chloride resin paints, and phenol resin paints, which generally have excellent corrosion resistance or chemical resistance and have a proven track record, including this zinc-rich paint, are susceptible to H 2 S in corrosive environments. The presence of H 2 S will significantly reduce its anticorrosion performance, and it will be used in environments with high concentrations of H 2 S, such as oil country tubular goods or chemical plants that handle H 2 S or where H 2 S is present as an impurity.
Accidents caused by hydrogen sulfide leaks have occurred in tanks, etc.
Conventional coating materials designed to prevent corrosion caused by oxygen and water cannot be said to be effective in preventing corrosion in a corrosive environment containing HS. Structure of the Invention An example of a conventionally known anticorrosive paint composition is one described in JP-A-55-165967.
This paint basically contains a resol-type phenol-modified epoxy resin as the main resin component, and generally forms a hard film, making it impossible to obtain a bendable film, which is one of the properties aimed at in the present invention. Also, corrosion due to oxygen and water or H 2 S
Corrosion occurs only after these corrosion factors penetrate the coating and reach the steel material. This penetration of corrosion factors into the coating occurs through the pigment-binder interface. Therefore, in order to control the permeation of these corrosion factors through the paint film, it is necessary to strengthen the interaction with the binder on the surface of the pigment particles. This means that there is an optimal pigment depending on the type of resin that is the binder, and even if the pigment of the present invention, which will be described later, is applied as it is to the paint disclosed in JP-A-55-165967, it will not be possible to obtain the desired pigment. In fact, the anticorrosion performance may actually worsen. This is as shown in Comparative Example 5 below, in which a resin synthesized based on Example 1 of JP-A-55-165967 was used as the binder resin. As is clear from these results, because a resol-type phenol-modified epoxy resin is used as the binder resin, sufficient results in bendability cannot be obtained, and the expected effects in salt spray resistance and H 2 S resistance are not achieved. do not have. This fact is due to the fact that the pigments selected in the present invention have a small water-soluble content, and the slightly acidic nature of the dissolved water with a pH of 6 to 7 weakens the interaction with the resol-type phenol-modified epoxy resin. Conceivable. Means for Solving the Problems and Their Effects According to the present invention: () (a) Epoxy equivalent obtained by addition reaction of bisphenol A having 1 to 2 oxirane rings per molecule and epihalohydrin; is 180~
100 parts by weight of a vehicle consisting of (b) a polyamide amine consisting of an aliphatic diamine and a dimer acid, in which the ratio of the epoxy resin to the polyamide amine is 0.8/1 to 1.4/1 in terms of reaction equivalent; At least one filler selected from the group of carbon black, titanium oxide, aluminum powder, silicon oxide, aluminum oxide and magnesium oxide and inert to hydrogen sulfide 50 to 200
Parts by weight, () The water soluble content is 0.3% or less and the pH of the dissolved water is 6.0 to 7.0.
A two-component anticorrosive paint composition substantially free of phosphoric acid, consisting of 3 to 40 parts by weight of an anticorrosive pigment of things are provided. The vehicle (binder component) used in the anticorrosive coating composition of the present invention contains 1 to 2
An epoxy resin with an epoxy equivalent of 180 to 2,500 obtained by the addition reaction of bisphenol A having 3 oxyquiran rings and epihalohydrin, and a polyamide amine consisting of an aliphatic diamine and a dimer acid in a ratio of 0.8/1 to 1.4/1. It is a compound formed by reacting at a reaction equivalent ratio. Such epoxy resin is represented by the following structural formula, This resin is commonly called diglycidyl ether of bisphenol A. Structurally, it has two oxirane rings per molecule, but products with this structure generally do not exist. That is, if the epoxy resin has the above structural formula, the average molecular weight must be twice the epoxy equivalent, but it generally has a considerably small value. In other words, not all of the terminal ends are oxirane rings, but some functional groups such as α-diol hydrolyzable chlorine are generally present. In this sense, it has a linear structure as shown above, and although it was originally designed to have the above structure, in reality it has 1 to 2 oxirane rings per molecule, making it difficult for epoxy resins to function properly. It can be used in the invention. Specifically, “Epicote”
(Yuka Ciel Epoxy Co., Ltd.), "Epototh" (Toto Kasei Co., Ltd.), "Araldite" (Ciba Kaigyu Co., Ltd.), "Epicron" (Dainippon Ink & Chemicals Co., Ltd.), etc. are commercially available brands. So, the epoxy equivalent is 180 ~
2500, it is appropriate to use an epoxy resin with a molecular weight of 380 to 3000. For example, Epicoat 828 manufactured by Yuka Ciel Epoxy Co., Ltd. has n=0, average molecular weight 380, and epoxy equivalent weight 184 to 194, and Epicoat 1001
is n=2.0, average molecular weight 900 and epoxy equivalent weight 450
~500, Epicote 1004 has n=3.7, average molecular weight 1400 and epoxy equivalent weight 900-1000, and Epicote 1007 has n=8.8, average molecular weight 2900 and epoxy equivalent weight 1750-2100. On the other hand, aliphatic diamines, such as polyamide amines consisting of xylylene diamine and dimer acid,
Typically [In the formula, A is

【匏】 −CH2o− 〜12 である〕 で衚わされる。かかるポリアミドアミンの酞成分
であるダむマヌ酞は、倩然油脂䞭の䞍飜和脂肪酞
を加熱重合しお埗るこずができる。この環化熱重
合には、リノヌル酞が最も䞀般的に䜿甚されるが
基本的には䞍飜和二重結合をも぀おいる脂肪酞で
あれば任意のものを䜿甚するこずができ、具䜓的
には「バヌサダむム」ヘンケル日本(æ ª)が挙げ
られる。 他方の成分である脂肪族ゞアミンずしおは、䟋
えばキシリレンゞアミン、゚チレンゞアミン、ヘ
キサメチレンゞアミン、ビスアミノプロピル−テ
トラオキサスピロりンデカンなど骚栌は芳銙族、
アルキル基、あるいは耇玠環匏状などの各皮の構
造のものを䜿甚するこずができるが、アミンのタ
むプずしおは脂肪族ゞアミンが最適である。プ
ニレンゞアミン、ゞアミノゞプニルメタン、ゞ
アミノゞプニルスルフオンなどの芳銙族アミ
ン、あるいはメンタンゞアミンゞ゚チレントリア
ミン、トリ゚チレンテトラミンなどの分子䞭に
個以䞊のアミノ基を持぀化合物は、ポリアミドを
生成する時にゲル化し易いのであたり実甚的でな
い。このポリアミドアミンは前蚘脂肪族ゞアミン
モルずダむモヌ酞モルずを120℃〜180℃で加
熱瞮合するこずにより容易に埗るこずができる。
具䜓的には「バヌサミド」日本ヘンケル瀟補
が挙げられる。これらビスプノヌル系゚ポキ
シ暹脂ずダむマヌ酞を含むポリアミドアミンは被
膜圢成前は別々に準備され、䜿甚盎前に混合し、
被膜するず垞枩で化孊反応を起し、匷固な被膜を
圢成する。なお、被塗物の皮類や被膜化工皋によ
り、この硬化反応速床を調補する必芁がある時
は、この぀のバむンダヌ成分の郚を予め予備
瞮合をさせおポリアミドアミンの第玚アミンを
すべお第玚アミンに転換させお䜿甚するこずが
できる。これは䞀般的な゚ポキシ暹脂のアミン硬
化剀でのアミンアダクト硬化剀ずしおの䜿甚法で
ある。即ち、䞀般匏 で衚わされるような圢で準備をしおも良い。 いずれにしろ予め硬化物の䞀郚を予備瞮合した
ものであり被膜ずしおの硬化構造は本発明によ぀
お圢成されるものず同じである。バむンダヌ成分
の䞀方の゚ポキシ暹脂は、前蚘構造匏で瀺したよ
うに、線状構造で゚ポキシ圓量が180〜2500、奜
たしくは350〜1900である必芁がある。゚ポキシ
暹脂が180未満になるず前蚘した基本的構造匏で
瀺されるような化合物ができない。すなわち前蚘
匏においおで゚ポキシ圓量は180付近ずな
る。たた゚ポキシ圓量が2500を超えるず本来の目
的である垞枩での反応が起らないし、たた粘床が
高くなり過ぎお被膜化が困難である。 本発明の防食塗料組成物のベヒクル成分の他の
成分であるポリアミドアミンの原料であるダむマ
ヌ酞は、䞀般的な゚ポキシ暹脂アミン硬化物の硬
くお脆いずいう性質を打ち砎り、特にもう䞀぀の
原料であるゞアミンずの反応でも぀お、硬くお柔
軟性のある、いわゆる匟性䜓の劂き性質の硬化暹
脂を䞎える䜜甚をする。その具䜓的な性質が被膜
の曲げ性にすぐれた性胜を瀺しおいる。このバむ
ンダヌ成分の配合比は、゚ポキシ基の圓量数ポ
リアミドアミンの掻性氎玠の圓量数0.8〜
1.4、奜たしくは0.8〜1.2でなければ
ならない。この比が0.8未満では硬化物は軟
らかくなり過ぎるし、耐氎性などの防食性が悪く
なる。䞀方1.4を超えるず逆に硬く脆くなる
し、か぀耐氎性などの防食性を悪くする。 本発明の塗料組成物においお䜿甚される、硫化
氎玠に察しお䞍掻性な充填剀以䞋、単に充填剀
ずいうずしおは、カヌボンブラツク、酞化チタ
ン、アルミニりム粉、酞化ケむ玠、酞化アルミニ
りム及び酞化マグネシりムの矀から遞ばれた䞀皮
又はそれ以䞊の充填剀をあげるこずができる。た
た、防錆顔料ずしお氎可溶分が0.3以䞋、溶解
氎のPHが6.0〜7.0であるBa、Zu、Cr、Mo及びAl
の皮あるいは皮以䞊の酞化物を䞻䜓ずする化
合物を必須成分ずしお含有する。これらの充填剀
及び防錆顔料ずもに氎可溶分が小さくお0.3以䞋
であり、か぀本来の目的であるH2Sに察しお、比
范的安定であるこずが共通の性質である。ここで
氎溶分及び溶解氎のPHの枬定は氎溶分がJIS−
−5101 22、PHがJIS−−5101 24で行な぀た。
充填剀は着色ず被膜匷床補匷効果が目的であり、
䞀般の氎及び酞玠による腐食、あるいはこれに
H2Sが存圚する環境での腐食に察し、これを添加
するこずによる少なくずも悪化させるものであ぀
おはならないし、防食性胜を向䞊させるものでな
くおはならない。HunkeはJ.O.C.C.A.50å·»942頁
1967においお腐食因子ずしお氎をずりあげ、
被膜を透過するメカニズムを説明しおいるが、い
ずれの堎合もバむンダヌず充填剀顔料の界面に氎
が攻撃するこずにより透過が起぀おいる。本発明
もバむンダヌずこれら充填剀あるいは防錆顔料の
界面におけるむンタヌラクシペンが匷固であり、
か぀この界面に氎、酞玠あるいはH2Sが攻撃し難
く曎にこの界面に貯り難いものを遞択したもので
ある。特に氎に察しおは氎可溶分が小さいこず、
H2Sに察しおはHSずなるべく反応を起さないこ
ずがこの界面のむンタヌラクシペンを匱くしない
必須条件であるず考えた。氎可溶分が少ないこず
及びH2Sずの反応性が小さいこずが界面むンタヌ
ラクシペンを匱くしないこずの実蚌は行な぀おい
ないが、少なくずもこのような条件をも぀、充填
剀あるいは防錆顔料を䜿甚した被膜は、通垞の防
錆性テスト、即ち゜ルトスプレヌ性、耐氎性、耐
塩氎性などにすぐれた性胜を瀺すず共に、曎に
H2S飜和氎浞挬ちおいおも非垞にすぐれた性胜を
瀺すこずが確認できた。氎又はH2Sが顔料衚面を
攻撃し氎により顔料を溶かしたり、H2Sず反応を
起したりすれば、バむンダヌずの界面ぞ氎又は
H2Sが貯たりやすくなる。このこずは、鋌材面ぞ
到達する腐食因子である氎又はH2Sの䟛絊を助長
するこずになり、防食性胜を著しく悪くするこず
に぀ながる。即ち氎溶分が少なくか぀H2Sずの反
応性が小さい顔料、充填剀を甚いた塗膜は防食性
胜を維持するこずができる。䞀方、防錆顔料に぀
いおは、䞀般に防錆顔料は氎可溶分が高く鉄より
もむオン化傟向の倧きい金属塩であり、アノヌド
腐食反応を抑制する機胜が利甚されおいる。しか
しながら、氎、酞玠及びH2Sを含む腐食因子が混
圚する系においおは、氎に溶解し易いこずは金属
むオンを生成するこずであり、ここにH2Sが攻撃
するず盎ちにその金属の硫化物を圢成するこずに
なる。このこずはバむンダヌずこれら防錆顔料類
の界面むンタヌラクシペンを匱めるこずになり、
結果的にその被膜䞋の腐食反応が促進されるこず
ずなる。すなわち防錆顔料類にず぀おH2Sず反応
し難いこず曎に氎に溶解し難いこずが必芁な芁件
ずなる。曎にこれら顔料類がわずかに溶解した氎
溶液のPHが〜の埮酞性であるのが奜たしい。
H2Sは氎に溶解するず埮酞性を瀺す。䞀方、被膜
䞭の防錆顔料類が氎に溶解し、PHがアルカリ性を
瀺すず埮酞性であるH2S氎をより倚く匕き寄せる
圹割を果すこずになり、防食性に察し䞍利であ
る。逆にPHが未満ずなるず鋌材の腐食は酞性領
域にお起るわけであり、PHが䜎くなるこずは、そ
れ自身でも぀お腐食を促進するわけで奜たしくな
い。このような条件を満足する奜たしい防錆顔料
ずしおは、䟋えばクロム酞バリりムBaCrO4、
ゞンククロメヌトZTO型ZnCrO4・4Zn
OH2、リンモリブデン酞アルミニりム
MoO3・P2O5・Al2O3、などを挙げるこずがで
きる。 これらの配合量は、重量基準でバむンダヌ成分
100重量郚に察し、充填剀ずしおは50〜200重量
郚、防錆顔料は〜40重量郚である。充填剀の量
が50重量郚未満では塗膜匷床的に実甚的でなく、
衝撃、曲げ性などが悪くなる。たた200重量郚を
超えるバむンダヌの量が充填剀の量より少なくな
り、バむンダヌが䞍足しお均䞀な被膜が圢成され
ず、ピンホヌルなどの欠陥を生じたり、物性的に
も䞍充分ずなるので奜たしくない。次に防錆顔料
が重量郚未満であるず防錆性が䞍充分であり、
40重量郚を超えるず氎可溶分を0.3以䞋に抑え
たずしおも、氎に溶解する防錆顔料の絶察量が倚
くなり、逆に防錆性が悪くなるので奜たしくな
い。 本発明に埓぀た防食塗料組成物は前蚘した必須
の構成成分のほかに、適圓なハゞキ防止剀、ダレ
止め剀、流展剀などの添加剀類を含有するこずが
できる。たた被膜化するための䜜業性を改良する
ために、溶剀類も必芁に応じお配合するこずがで
きる。 実斜䟋 以䞋実斜䟋に埓぀お本発明を曎に詳しく説明す
るが、本発明の範囲をこれらの実斜䟋に限定する
ものでないこずはいうたでもない。 䟋  ポリアミドアミンの合成 キナヌラヌ脱氎装眮及び撹拌機を備えた぀口
フラスコにバヌサダむム216ヘンケル日本瀟補
酞䟡195576蚈算倀ずしおモルに盞圓、
理論倀は560ず゚チレンゞアミン120モ
ルを装入し、埐々に加熱し乍ら撹拌した。枩床
160℃から玄時間かけお200℃たで昇枩させ、こ
の間反応によ぀お生成した氎をキナヌラヌ脱氎装
眮で脱氎し、理論量の氎36の脱氎が行なわれた
時点で暹脂の酞䟡を枬定し、酞䟡が以䞋である
こずを確認しお反応を終了した。 生成したポリアミドアミンのアミン掻性
氎玠圓量は107であ぀た。 䟋  ポリアミドアミンの合成 䟋ず同様の装眮でバヌサダむム216 576
モルずキシリレンゞアミン272モル
を撹拌しながら加熱し160℃から200℃に玄時間
かけ、昇枩し、垞に系倖ぞ反応氎を陀去し乍ら、
箄36の氎が系倖ぞ出たこずず酞䟡が以䞋であ
るこずを確認しお反応を終了させた。 埗られたポリアミドアミンのアミン掻性
氎玠圓量は141であ぀た。 䟋  塗料の調補配合成分 重量郹 䞻剀 ゚ピコヌト1001゚ポキシ圓量450油化シ゚
ル゚ポキシ瀟補 29.2 ゚ポトヌトYD−017゚ポキシ圓量2200東郜
化成瀟補 2.6 タルク 30.5 酞化チタン 25.9 ゞンククロメヌトZTO氎可溶分0.3以䞋、PH
6.8 11.0 デむスパロン4200−20流展剀共栄瀟補 0.8 100.0 硬化剀 ポリアミドアミン 7.1 ゚ポキシ基掻性氎玠 䞊蚘配合をキシレンブチルセロ゜ルブメチ
ルむ゜ブチルケトン−ブタノヌル5030
1010の混合溶剀120重量郚に溶解し、゚アレ
ス塗装によ぀お鋌板䞊に膜厚60〜80Όの被膜を塗
装した。鋌板は70×150×0.8mmのナシ地鋌板を
400のペヌパヌにお研磚したものを䜿甚した。
也燥条件は20℃×10日間50℃×24時間ずした。 也燥塗膜の密着、硬床、折り曲げ、゜ルトスプ
レヌ性及びメタノヌル氎浞挬をAPI−RP−5L−
に埓぀お詊隓を行な぀た。曎に30℃飜和H2Sæ°Ž
に500時間浞挬しお、密着詊隓を行ない耐H2S性
を調べた。結果は第衚に瀺した通りであ぀た。 䟋  塗料の調補配合成分 重量郹 䞻剀 ゚ピコヌト1001 38.3 ゚ポトヌトYD−017 3.4 クレヌ 39.8 カヌボンブラツク 3.4 クロム酞バリりム氎可溶分0.3、PH6.0 6.7 ゞンククロメヌトZTO 7.6 デむスパロン4200−20 0.8 100.0 硬化剀 ポリアミドアミン 9.8 ゚ポキシ基掻性氎玠0.8 䞊蚘配合に埓぀お塗料を調補し、䟋ず同様の
詊隓を行な぀た。 結果は第衚に瀺した通りであ぀た。 䟋  塗料の調補 䞻剀 ゚ピコヌト1001 33.5 ゚ピコヌト828゚ポキシ圓量190油化シ゚ル
゚ポキシ瀟補 3.0 タルク 35.0 アルミニりム片 14.9 ゞンククロメヌトZTO 12.7 デむスパロン4200−20 0.9 100.0 硬化剀 ポリアミドアミン 8.7 ゚ポキシ基掻性氎玠0.9 䞊蚘配合に埓぀お塗料を調補し、䟋ず同様の
詊隓を行な぀た。 結果は第衚に瀺した通りであ぀た。 比范䟋  䟋においお酞化チタンの替りに硫化氎玠ず反
応し易い酞化鉄赀を䜿甚し、同様の実隓を行な぀
た。 結果は第衚に瀺す通りであ぀た。 䟋  塗料の調補配合成分 重量郹 䞻剀 ゚ピコヌト1001 18.7 ゚ポトヌトYD−017 2.9 タルク 28.2 酞化チタン 27.3 ゞンククロメヌトZTO 10.2 デむスパロン4200−20 0.7 88.0 硬化剀 ポリアミドアミンず゚ピコヌト1001のア
ダクト品反応圓量比ポリアミドアミン
゚ピコヌト1001 22.0 ゚ポキシ基掻性氎玠1.2 䟋においお硬化剀ずしお垞法に埓぀お予め䞻
剀䞭の゚ポキシ14.9ずポリアミドアミン
7.1ずを予備反応させたアダクトを䜿甚した。
䜆し、バむンダヌ䞭の゚ポキシ基掻性氎玠
比は1.2ずした。 結果は第衚に瀺した通りであ぀た。 比范䟋  䟋においおゞンククロメヌトZTO型の替り
にゞンククロメヌト型ZnO・K2CrO4・
ZnCrO4PH6.8、氎可溶分を甚いた。 結果は第衚に瀺した通りであ぀た。 比范䟋 配合成分 重量郹 䞻剀 ゚ピコヌト1001 29.2 ゚ポトヌトYD−017 2.6 デむスパロン4200−20 0.8 32.6 硬化剀 ポリアミドアミン 7.1 䞊蚘組成の塗料を調補し、䟋ず同様のテスト
を行な぀た。 結果は第衚に瀺す通りであ぀た。 比范䟋  䟋においお硬化剀をキシリレンゞアミン2.3
に代えお実隓をした。 結果は第衚に瀺した通りであ぀た。 比范䟋  実斜䟋においお、䞻剀䞭の゚ポキシ暹脂成分
を特開昭55−165967の実斜䟋の通り瞮合した゚
ポキシ暹脂のレゟヌル型プノヌル暹脂予備瞮合
物に眮き倉えお、同様の実隓を行な぀た。 結果は第衚に瀺す通りであ぀た。 折り曲げ性ず、耐硫化氎玠性においお期埅した
性胜が埗られなか぀た。これは、防食顔料ずしお
䜿甚したゞンククロメヌトZTOずバむンダヌで
ある゚ポキシ暹脂のレゟヌル型プノヌル暹脂予
備瞮合物ずの界面が匱い結果であるず考える。
【formula】 −(CH 2 ) o − n=2 to 12]. Dimer acid, which is the acid component of such polyamide amine, can be obtained by heating and polymerizing unsaturated fatty acids in natural oils and fats. Linoleic acid is most commonly used in this cyclization thermal polymerization, but basically any fatty acid with unsaturated double bonds can be used. "Versa Dim" (Henkel Japan Ltd.) is an example. Examples of the aliphatic diamine that is the other component include xylylene diamine, ethylene diamine, hexamethylene diamine, bis-aminopropyl-tetraoxaspiroundecane, etc., which have an aromatic skeleton;
Although various structures such as alkyl groups or heterocyclic structures can be used, aliphatic diamines are most suitable as the type of amine. Aromatic amines such as phenylene diamine, diaminodiphenylmethane, diaminodiphenyl sulfone, or menthanediamine diethylenetriamine, triethylenetetramine, etc.
Compounds having more than one amino group are not very practical because they tend to gel when producing polyamide. This polyamide amine can be easily obtained by heating and condensing 2 moles of the aliphatic diamine and 1 mole of dimoic acid at 120°C to 180°C.
Specifically, “Versamide” (manufactured by Henkel Japan)
can be mentioned. These bisphenol A-based epoxy resin and polyamide amine containing dimer acid are prepared separately before film formation, and mixed immediately before use.
Once coated, a chemical reaction occurs at room temperature, forming a strong film. If it is necessary to adjust the curing reaction rate depending on the type of object to be coated or the coating process, a portion of these two binder components may be precondensed in advance to remove all of the primary amine of the polyamide amine. It can be converted into a secondary amine and used. This is a common use of epoxy resins as amine adduct hardeners with amine hardeners. That is, the general formula You may prepare in the form shown below. In any case, a part of the cured product is precondensed in advance, and the cured structure as a film is the same as that formed by the present invention. The epoxy resin, one of the binder components, needs to have a linear structure and an epoxy equivalent of 180 to 2,500, preferably 350 to 1,900, as shown in the above structural formula. If the epoxy resin is less than 180, a compound as shown by the basic structural formula described above cannot be produced. That is, in the above formula, when n=0, the epoxy equivalent is around 180. Furthermore, if the epoxy equivalent exceeds 2,500, the intended reaction at room temperature will not occur, and the viscosity will become too high, making it difficult to form a film. Dimer acid, which is a raw material for polyamide amine, which is another component of the vehicle component of the anticorrosive coating composition of the present invention, overcomes the hard and brittle properties of general epoxy resin amine cured products, and is especially another raw material. When reacted with diamine, it acts to give a cured resin that is hard and flexible, and has the properties of a so-called elastomer. Its specific properties indicate excellent performance in terms of bendability of the film. The blending ratio of this binder component is the number of equivalents of epoxy group/the number of equivalents of active hydrogen of polyamide amine = 0.8/1 ~
It should be 1.4/1, preferably 0.8/1 to 1.2/1. If this ratio is less than 0.8/1, the cured product will be too soft and its anticorrosion properties such as water resistance will deteriorate. On the other hand, if it exceeds 1.4/1, it becomes hard and brittle, and also deteriorates corrosion resistance such as water resistance. Fillers that are inert to hydrogen sulfide (hereinafter simply referred to as fillers) used in the coating composition of the present invention include carbon black, titanium oxide, aluminum powder, silicon oxide, aluminum oxide, and magnesium oxide. One or more fillers selected from the group may be mentioned. In addition, we use Ba, Zu, Cr, Mo, and Al as anti-corrosion pigments with a water-soluble content of 0.3% or less and a pH of 6.0 to 7.0 in the dissolved water.
Contains as an essential component a compound mainly composed of one or more oxides. These fillers and rust-preventing pigments have a common property that they have a small water-soluble content of 0.3 or less, and are relatively stable against H 2 S, which is the original purpose. Here, when measuring the PH of the water-soluble content and dissolved water, the water-soluble content is JIS-K.
-5101 22, PH performed JIS-K-5101 24.
The purpose of the filler is to color the film and strengthen the film.
Corrosion caused by general water and oxygen, or
Addition of H 2 S must not at least worsen corrosion in an environment where it is present, and must improve anti-corrosion performance. Hunke discusses water as a corrosion factor in JOCCA, Vol. 50, p. 942 (1967),
The mechanism of permeation through the film is explained, but in all cases, permeation occurs due to water attacking the interface between the binder and filler pigment. In the present invention, the interaction at the interface between the binder and these fillers or antirust pigments is strong,
In addition, a material was selected that is difficult for water, oxygen, or H 2 S to attack and accumulate at this interface. In particular, the water-soluble content is small,
We considered that the essential condition for not weakening the interaction at this interface is to cause as little reaction as possible to HS with respect to H 2 S. Although it has not been demonstrated that low water-soluble content and low reactivity with H 2 S do not weaken interfacial interactions, at least fillers or rust-preventive pigments that meet these conditions The coating using the .
It was confirmed that even after immersion in H 2 S saturated water, it exhibited very excellent performance. If water or H 2 S attacks the pigment surface and dissolves the pigment, or if it reacts with H 2 S, water or H 2 S will enter the interface with the binder.
H 2 S will accumulate more easily. This facilitates the supply of water or H 2 S, which is a corrosion factor, to the surface of the steel material, leading to a significant deterioration in anticorrosion performance. In other words, a coating film using pigments and fillers with low water-soluble content and low reactivity with H 2 S can maintain anticorrosion performance. On the other hand, anticorrosive pigments are generally metal salts with a high water-soluble content and a greater tendency to ionize than iron, and are used for their ability to suppress anode corrosion reactions. However, in a system where corrosive factors including water, oxygen, and H2S coexist, being easily soluble in water produces metal ions, and when attacked by H2S , the sulfide of that metal is immediately released. will be formed. This weakens the interfacial interaction between the binder and these anti-rust pigments,
As a result, the corrosion reaction under the coating is accelerated. In other words, the necessary requirements for anticorrosive pigments are that they are difficult to react with H 2 S and are also difficult to dissolve in water. Furthermore, it is preferable that the pH of the aqueous solution in which these pigments are slightly dissolved is slightly acidic, with a pH of 6 to 7.
H 2 S exhibits slight acidity when dissolved in water. On the other hand, if the anticorrosive pigments in the coating dissolve in water and exhibit an alkaline pH, they will serve to attract more H 2 S water, which is slightly acidic, which is disadvantageous for anticorrosion properties. On the other hand, if the pH is less than 6, corrosion of steel will occur in an acidic region, and a low pH will itself promote corrosion, which is undesirable. Preferred antirust pigments that satisfy these conditions include, for example, barium chromate (BaCrO 4 ),
Zinc chromate ZTO type (ZnCrO 4・4Zn
(OH) 2 ), aluminum phosphomolybdate (MoO 3 .P 2 O 5 .Al 2 O 3 ), and the like. These amounts are based on the weight of the binder component.
With respect to 100 parts by weight, the amount of the filler is 50 to 200 parts by weight, and the amount of the antirust pigment is 3 to 40 parts by weight. If the amount of filler is less than 50 parts by weight, it is not practical in terms of film strength.
Impact and bending properties deteriorate. In addition, the amount of binder exceeding 200 parts by weight is less than the amount of filler, which is not desirable because the binder is insufficient and a uniform film cannot be formed, causing defects such as pinholes, and the physical properties are insufficient. do not have. Next, if the amount of the rust preventive pigment is less than 3 parts by weight, the rust preventive property will be insufficient;
If it exceeds 40 parts by weight, even if the water-soluble content is suppressed to 0.3% or less, the absolute amount of the rust-preventing pigment dissolved in water will increase, and the rust-preventing property will deteriorate, which is not preferable. In addition to the above-mentioned essential components, the anticorrosive coating composition according to the present invention may contain appropriate additives such as anti-cissing agents, anti-sagging agents, and spreading agents. Further, in order to improve the workability for forming a film, solvents may be added as necessary. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the scope of the present invention is not limited to these Examples. Example 1 Synthesis of polyamide amine () 576 g of Versadime #216 (manufactured by Henkel Japan, acid value 195) (equivalent to 1 mole as a calculated value) was placed in a three-necked flask equipped with a Kueller dehydrator and a stirrer.
560 g (theoretical value) and 120 g (2 moles) of ethylenediamine were charged, and the mixture was gradually heated and stirred. temperature
The temperature was raised from 160°C to 200°C over about 4 hours, and the water generated by the reaction was dehydrated using a Cuellar dehydrator. When the theoretical amount of water, 36g, had been dehydrated, the acid value of the resin was measured. After confirming that the acid value was 3 or less, the reaction was terminated. The amine active hydrogen equivalent of the produced polyamide amine () was 107. Example 2 Synthesis of polyamide amine () 576g of Versadime #216 using the same equipment as Example 1
(1 mol) and xylylenediamine 272g (2 mol)
While stirring, the temperature was increased from 160℃ to 200℃ for about 3 hours, while constantly removing reaction water from the system.
The reaction was terminated after confirming that approximately 36 g of water had come out of the system and that the acid value was 3 or less. The amine active hydrogen equivalent of the obtained polyamide amine () was 141. Example 3 Preparation of paint Parts by weight of components (main agent) Epicoat #1001 (epoxy equivalent: 450) (manufactured by Yuka Ciel Epoxy Co., Ltd.) 29.2 Epotote YD-017 (epoxy equivalent: 2200) (manufactured by Toto Kasei Co., Ltd.) 2.6 Talc 30.5 Titanium oxide 25.9 Zinc chromate ZTO (water soluble content 0.3% or less, PH
6.8 11.0 Disparon 4200-20 (Filction agent) (manufactured by Kyoeisha) 0.8 100.0 (Curing agent) Polyamide amine () 7.1 (Epoxy group/active hydrogen = 1:1) The above formulation was mixed with xylene/butyl cellosolve/methyl isobutyl ketone/n- Butanol (50/30/
10/10) was dissolved in 120 parts by weight of a mixed solvent, and a film with a thickness of 60 to 80 ÎŒm was coated on a steel plate by airless coating. The steel plate used was a 70 x 150 x 0.8 mm blank steel plate polished with #400 paper.
The drying conditions were 20°C x 10 days + 50°C x 24 hours. API-RP-5L- improves dry coating adhesion, hardness, bending, salt spray properties, and methanol water immersion.
The test was conducted according to 2. Furthermore, it was immersed in saturated H 2 S water at 30° C. for 500 hours to perform an adhesion test to examine its H 2 S resistance. The results were as shown in Table 1. Example 4 Parts by weight of paint preparation ingredients (main agent) Epicote #1001 38.3 Epotote YD-017 3.4 Clay 39.8 Carbon Black 3.4 Barium chromate (water soluble content > 0.3%, PH6.0) 6.7 Zinc Chromate ZTO 7.6 Disparon 4200- 20 0.8 100.0 (Curing agent) Polyamide amine () 9.8 (Epoxy group/active hydrogen = 0.8/1) A coating material was prepared according to the above formulation, and the same tests as in Example 3 were conducted. The results were as shown in Table 1. Example 5 Preparation of paint (main ingredient) Epikoat #1001 33.5 Epikoat #828 (epoxy equivalent 190) (manufactured by Yuka Ciel Epoxy Co., Ltd.) 3.0 Talc 35.0 Aluminum piece 14.9 Zinc chromate ZTO 12.7 Disparon 4200-20 0.9 100.0 (Curing agent) Polyamide amine ( ) 8.7 (Epoxy group/active hydrogen = 0.9/1) A coating material was prepared according to the above formulation, and the same test as in Example 3 was conducted. The results were as shown in Table 1. Comparative Example 1 The same experiment as in Example 3 was conducted using iron oxide red, which easily reacts with hydrogen sulfide, instead of titanium oxide. The results were as shown in Table 1. Example 6 Preparation of paint Parts by weight of components (main agent) Epicoat #1001 18.7 Epototh YD-017 2.9 Talc 28.2 Titanium oxide 27.3 Zinc chromate ZTO 10.2 Disparon 4200-20 0.7 88.0 (Curing agent) Adduct of polyamidoamine () and Epicoat #1001 Product (reaction equivalent ratio polyamide amine ()/
Epicoat 1001 = 2/1) 22.0 (Epoxy group/active hydrogen = 1.2/1) In Example 3, 14.9 g of epoxy in the base resin and polyamide amine () were added in advance as a curing agent according to a conventional method.
An adduct preliminarily reacted with 7.1g of the above was used.
However, (epoxy group/active hydrogen) in the binder
The ratio was set to 1.2/1. The results were as shown in Table 1. Comparative Example 2 In Example 3, zinc chromate type C (ZnO・K 2 CrO 4・
ZnCrO 4 ) (PH6.8, water soluble content 8%) was used. The results were as shown in Table 1. Comparative Example 3 Parts by Weight of Ingredients (Main Agent) Epicoat #1001 29.2 Epotote YD-017 2.6 Disparon 4200-20 0.8 32.6 (Curing Agent) Polyamide Amine () 7.1 A paint with the above composition was prepared and the same test as in Example 3 was conducted. Summer. The results were as shown in Table 1. Comparative Example 4 In Example 3, the curing agent was xylylene diamine 2.3
The experiment was conducted in place of g. The results were as shown in Table 1. Comparative Example 5 A similar experiment was carried out in Example 6 by replacing the epoxy resin component in the main resin with a resol-type phenolic resin precondensate of the epoxy resin condensed as in Example 1 of JP-A-55-165967. Ta. The results were as shown in Table 1. The expected performance in terms of bendability and hydrogen sulfide resistance could not be obtained. This is thought to be the result of a weak interface between the zinc chromate ZTO used as the anticorrosion pigment and the resol type phenolic resin precondensate of the epoxy resin that is the binder.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  () (a)䞀分子圓り〜個のオキシラン環
を持぀ビスプノヌルず゚ピハロヒドリンず
の付加反応によ぀お埗られる゚ポキシ圓量が
180〜2500である゚ポキシ暹脂ず、(b)脂肪族ゞ
アミンずダむマヌ酞から成るポリアミドアミン
ずからなり、゚ポキシ暹脂ずポリアミドアミン
の比が反応圓量で0.8〜1.4のベヒクル
100重量郚、 () カヌボンブラツク、酞化チタン、アルミニ
りム粉、酞化珪玠、酞化アルミニりム及び酞化
マグネシりムの矀から遞ばれた少なくずも䞀皮
の、硫化氎玠に察しお䞍掻性な充填剀50〜200
重量郚、 () 氎溶分が0.3以䞋で溶解氎のPHが6.0〜7.0
の防錆顔料〜40重量郚䞊びに () 有機溶剀 から成り、前蚘(a)及び(b)を含む成分を䜿甚時に混
合するようにした実質䞊リン酞を含たない二液型
防食甚塗料組成物。  防錆顔料がBa、Zn、Cr、Mo及びAIの矀か
ら遞ばれた少なくずも䞀皮の金属の酞化物である
特蚱請求の範囲第項蚘茉の防食塗料組成物。  防錆顔料がクロム酞バリりム、ゞンククロメ
ヌトZTO型及びリンモリブデン酞アルミニりム
の矀から遞ばれた少なくずも䞀皮である特蚱請求
の範囲第項蚘茉の防食塗料組成物。  脂肪族ゞアミンがキシリレンゞアミンである
特蚱請求の範囲第項蚘茉の防食塗料組成物。
[Claims] 1 () (a) The epoxy equivalent obtained by the addition reaction of bisphenol A having 1 to 2 oxirane rings per molecule and epihalohydrin is
180 to 2500, and (b) a polyamide amine consisting of an aliphatic diamine and a dimer acid, the vehicle having a reaction equivalent ratio of epoxy resin to polyamide amine of 0.8/1 to 1.4/1.
100 parts by weight, () 50 to 200 parts by weight of at least one filler selected from the group of carbon black, titanium oxide, aluminum powder, silicon oxide, aluminum oxide, and magnesium oxide and inert to hydrogen sulfide.
Parts by weight, () The water soluble content is 0.3% or less and the pH of the dissolved water is 6.0 to 7.0.
A two-component anticorrosive paint composition substantially free of phosphoric acid, consisting of 3 to 40 parts by weight of a rust preventive pigment of thing. 2. The anticorrosive paint composition according to claim 1, wherein the anticorrosive pigment is an oxide of at least one metal selected from the group of Ba, Zn, Cr, Mo, and AI. 3. The anticorrosive paint composition according to claim 1, wherein the anticorrosive pigment is at least one selected from the group of barium chromate, zinc chromate ZTO type, and aluminum phosphomolybdate. 4. The anticorrosive coating composition according to claim 1, wherein the aliphatic diamine is xylylene diamine.
JP320685A 1985-01-14 1985-01-14 Corrosionproof coating composition Granted JPS61162564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP320685A JPS61162564A (en) 1985-01-14 1985-01-14 Corrosionproof coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP320685A JPS61162564A (en) 1985-01-14 1985-01-14 Corrosionproof coating composition

Publications (2)

Publication Number Publication Date
JPS61162564A JPS61162564A (en) 1986-07-23
JPH0348229B2 true JPH0348229B2 (en) 1991-07-23

Family

ID=11550963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP320685A Granted JPS61162564A (en) 1985-01-14 1985-01-14 Corrosionproof coating composition

Country Status (1)

Country Link
JP (1) JPS61162564A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102765B2 (en) * 1990-03-26 1994-12-14 新日鐵化孊株匏䌚瀟 Solvent-free coating composition
US5962629A (en) * 1995-11-16 1999-10-05 Shell Oil Company Amine-terminated polyamide in oil-in-water emulsion
JPH09165494A (en) * 1995-11-16 1997-06-24 Yuka Shell Epoxy Kk Curable epoxy resin composition and its use
US6136944A (en) * 1998-09-21 2000-10-24 Shell Oil Company Adhesive of epoxy resin, amine-terminated polyamide and polyamine
US6395845B1 (en) 1998-12-15 2002-05-28 Resolution Performance Products Llc Waterproofing membrane from epoxy resin and amine-terminated polyamide
JP3847540B2 (en) * 2000-09-05 2006-11-22 ニッテツ八幡゚ンゞニアリング株匏䌚瀟 Pollution-free rust-proof coating composition
KR100841607B1 (en) 2007-04-22 2008-07-04 한토산업 (죌) Paint composition for waterproof and anticorrosion of waterworks-metal pipe
CA2908050C (en) * 2013-04-10 2021-01-12 Valspar Sourcing, Inc. Sour gas resistant coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947887A (en) * 1972-09-14 1974-05-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947887A (en) * 1972-09-14 1974-05-09

Also Published As

Publication number Publication date
JPS61162564A (en) 1986-07-23

Similar Documents

Publication Publication Date Title
US7345101B2 (en) Aqueous composition of reaction product of epoxy and phosphorus materials with curing agent
US7476444B2 (en) Layer of reaction product of epoxy and phosphorus materials and curing agent on substrate
JP2006257142A (en) Two-part curable aqueous coating composition and base material
JPH036191B2 (en)
CN116034125B (en) Epoxy resin curing agent, epoxy resin composition and use of amine composition
JPH0348229B2 (en)
WO2021261071A1 (en) Water-based anticorrosive coating composition
JP2013072073A (en) Amine-based curing agent, epoxy resin composition containing amine-based curing agent, and cured product of the same
JP6019257B1 (en) Substrate conditioner composition, method of coating steel using the composition, and painted steel
JP2000026769A (en) Thick anticorrosion coating material
JP4476382B2 (en) Paint base agent and coating composition for heavy anticorrosion
JPS6250368A (en) Corrosion-resistant paint composition
JPH0749553B2 (en) Anticorrosion paint composition
JPH09227658A (en) Curing agent for water-based epoxy resin
JPH0920878A (en) Solventless-type coating composition
JPS6112928B2 (en)
JP3847540B2 (en) Pollution-free rust-proof coating composition
KR101079392B1 (en) Anticorrosive coating solution for zinc coated steel sheet and the zinc coated steel sheet therefrom
PL192813B1 (en) Method of treating metallic substrates using polyethers of mannich compound derivatives
JPH08134185A (en) Water-based curing agent for epoxy resin
JP3627301B2 (en) Epoxy resin composition and method for producing epoxy resin
JPH04290692A (en) Coated inner surface steel pipe for resisting sour
KR800001195B1 (en) Epoxy resin composition cored by reaction product of phenol carboxylic acids with polyamino compounds
EP3864094A1 (en) Two-pack epoxy paints with improved corrosion protection
JPS6150512B2 (en)