JPS61128942A - Skin impedance measuring circuit - Google Patents

Skin impedance measuring circuit

Info

Publication number
JPS61128942A
JPS61128942A JP59248546A JP24854684A JPS61128942A JP S61128942 A JPS61128942 A JP S61128942A JP 59248546 A JP59248546 A JP 59248546A JP 24854684 A JP24854684 A JP 24854684A JP S61128942 A JPS61128942 A JP S61128942A
Authority
JP
Japan
Prior art keywords
electrode
skin
current
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248546A
Other languages
Japanese (ja)
Inventor
吉田 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP59248546A priority Critical patent/JPS61128942A/en
Publication of JPS61128942A publication Critical patent/JPS61128942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finger-Pressure Massage (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、経穴(つぼ)探査用に用いられる皮膚イン
ピーダンス測定回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a skin impedance measuring circuit used for acupuncture point exploration.

(ロ)従来の技術 従来より、経穴の探査を行う一手法として、通電時の皮
膚抵抗(インピーダンス)を測定する電気抵抗法がある
。この電気抵抗法は、電解質を用いないで、金属で構成
される1対の電極、いわゆる乾燥電極を皮膚に接触させ
、直流電圧を印加するものであり、経穴では皮膚インピ
ーダンスが小となる、すなわち通電電流が大となるので
、皮膚インピーダンスを測定して経穴を探査している。
(B) Conventional Technology Conventionally, as a method for exploring acupuncture points, there is an electrical resistance method that measures the skin resistance (impedance) when electricity is applied. In this electrical resistance method, a pair of metal electrodes, so-called dry electrodes, are brought into contact with the skin without using an electrolyte, and a DC voltage is applied.The skin impedance is small at acupuncture points, that is, Since the current applied is large, acupuncture points are explored by measuring skin impedance.

この従来の皮膚インピーダンス測定では、1対の電極の
一方は例えば手で握り、皮膚に比較的大なる面積で接触
させ(この電極を不関電極という)、他方は、例えば針
状の比較的小なる面積で皮膚に接触、つまり点接触させ
(この電極を関電極という)、間電極に正、不関電極に
負の極性の直流電圧を印加するものであった。
In this conventional skin impedance measurement, one of the pair of electrodes is held, for example, in the hand and is brought into contact with the skin over a relatively large area (this electrode is called an indifferent electrode), and the other is a relatively small electrode in the shape of a needle, for example. The electrode was brought into contact with the skin over a certain area, that is, point-contacted (this electrode is called a relative electrode), and a DC voltage of positive polarity was applied to the interstitial electrode and negative polarity to the indifferent electrode.

(ハ)発明が解決しようとする問題点 上記したように、生体の皮膚上を関電極を移動させて、
皮膚インピーダンスの小なる点、すなわち通電電流の大
なる点を探査して、経穴を見出しているが、実際には、
経穴以外の点でも皮膚インピーダンスが小になるところ
があり、これが経穴の誤探査を生じさせる問題となって
いた。特に経穴は探査しにくいため、電極をゆっくり移
動させることが多くなるが、その分向一点に電圧を印加
することになり、それにより皮膚破壊が生じ、通電流が
大となる。
(c) Problems to be solved by the invention As mentioned above, by moving the interest electrode over the skin of a living body,
Acupuncture points are discovered by searching for points where skin impedance is small, that is, points where current is large, but in reality,
There are also points other than acupuncture points where the skin impedance is small, and this has caused a problem of erroneous detection of acupuncture points. In particular, acupuncture points are difficult to explore, so the electrode is often moved slowly, which means that a voltage is applied to one point in one direction, which causes skin breakdown and increases the amount of current applied.

この発明は、上記に鑑み、皮膚破壊が生じるのを極力少
なく、経穴を的確に探査し得る皮膚インピーダンス測定
回路を提供することを目的としている。
In view of the above, an object of the present invention is to provide a skin impedance measuring circuit that can accurately explore acupuncture points while minimizing skin breakdown.

(ニ)問題点を解決するための手段及び4″P用この発
明の皮膚インピーダンス測定回路は、関電極の直流電圧
の負極側が印加されるようにしている。すなわち、相対
的に大なる面積で皮膚に接触する第1の電極と、この第
1の電極の面積よりも小なる微小面積で皮膚に点接触す
る第2の電極と、電流制限抵抗と、前記第1の電極、第
2の電極及び電流制限抵抗を連結し、皮膚に通電するた
めの通電回路と、この通電回路に、第1の電極が正側、
第2の電極が負側となる極性の電圧を与える直流電圧源
と、前記通電回路に流れる電流に応じた出力手段とから
構成されている。
(d) Means for Solving Problems and 4″P In the skin impedance measurement circuit of the present invention, the negative electrode side of the direct current voltage of the electrode is applied. a first electrode that contacts the skin, a second electrode that makes point contact with the skin in a micro area smaller than the area of the first electrode, a current limiting resistor, the first electrode, and the second electrode. and a current-limiting resistor, and a current-carrying circuit for energizing the skin; a first electrode is connected to the positive side of the current-carrying circuit;
It is comprised of a DC voltage source that provides a voltage with a polarity such that the second electrode is on the negative side, and an output means that corresponds to the current flowing through the current-carrying circuit.

この皮膚インピーダンス測定回路により皮膚に通電する
と、経穴以外の点では、通電を開始してから所定時間(
数秒)は、皮膚破壊電流が流れないが、所定時間が経過
すると、なだれ的に破壊電流が流れる。それゆえ、経穴
探査は、上記時間以内に次の通電点に移動しながら行わ
れることになる。
When electricity is applied to the skin using this skin impedance measurement circuit, it is possible to detect points other than acupuncture points for a predetermined period of time (
Although the skin breakdown current does not flow for several seconds, after a predetermined time period, the breakdown current flows like an avalanche. Therefore, the acupuncture point exploration is performed while moving to the next energized point within the above-mentioned time.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図は、この発明の1実施例を示す皮膚インピーダン
ス測定回路図である。同図において、直流電圧源1は、
直流電圧eの+側が不関電極(第1の電極)2に接続さ
れる一方、直流電圧eの一側が電流の上限を制限するた
めの保護抵抗Rp介して関電極(第2の電極)3に接続
されている。
FIG. 1 is a skin impedance measurement circuit diagram showing one embodiment of the present invention. In the figure, the DC voltage source 1 is
The + side of the DC voltage e is connected to the indifferent electrode (first electrode) 2, while one side of the DC voltage e is connected to the indifferent electrode (second electrode) 3 via a protective resistor Rp for limiting the upper limit of the current. It is connected to the.

また、保護抵抗Rpの両端は、この保護抵抗Rpを流れ
る電流に応じた電圧を導出するため、増幅器4に接続さ
れている。増幅器4は、その電圧を増幅して端子5より
出力し、端子5に接続されるメータ(図示せず)を振ら
せる。
Further, both ends of the protective resistor Rp are connected to an amplifier 4 in order to derive a voltage according to the current flowing through the protective resistor Rp. Amplifier 4 amplifies the voltage and outputs it from terminal 5, causing a meter (not shown) connected to terminal 5 to swing.

不関電極2は棒状に形成され、関電極3は針状に形成さ
れており、通電時において、不関電極2は被測定者の例
えば手に握られ、関電極3は先端を皮膚表面に接触させ
る。従って、不関電極2は比較的大なる面積で皮膚と接
触しており、関電極3は不関電極2よりもはるかに小な
る面積で皮膚と接触している。
The indifferent electrode 2 is formed in the shape of a rod, and the indifferent electrode 3 is formed in the shape of a needle. When energizing, the indifferent electrode 2 is held in the person's hand, for example, and the tip of the indifferent electrode 3 is placed on the skin surface. bring into contact. Therefore, the indifferent electrode 2 is in contact with the skin over a relatively large area, and the indifferent electrode 3 is in contact with the skin in a much smaller area than the indifferent electrode 2.

上記のように、不関電極2を手で握り、関電極3を皮膚
表面に接触させ、直流電圧源1をONすると、不関電極
2と関電極3間に電圧■が印可され、不関電極2から皮
膚を経て関電極3に電流が流れる。つまり、不関電極2
、関電極3及び保護抵抗R1)が連結される通電回路6
に、皮膚インピーダンスに応じた電流Iが流れる。皮膚
インピーダンスが大なる時は電流■が小さく、従って保
護抵抗Rpの両端に得られる電圧も小さく、また端子5
に導出される出力も小さい。逆に皮膚インピーダンスが
小なる時は電流Iが大きく、保護抵抗Rpの両端電圧、
端子5の導出出力も大となる。
As mentioned above, when the indifferent electrode 2 is held in the hand, the indifferent electrode 3 is brought into contact with the skin surface, and the DC voltage source 1 is turned on, the voltage ■ is applied between the indifferent electrode 2 and the indifferent electrode 3, and the indifferent electrode 3 is brought into contact with the skin surface. A current flows from the electrode 2 to the electrode 3 via the skin. In other words, the indifferent electrode 2
, the electrical electrode 3 and the protective resistor R1) are connected to the energizing circuit 6.
A current I according to the skin impedance flows through the skin. When the skin impedance is large, the current ■ is small, and therefore the voltage obtained across the protective resistor Rp is also small.
The output derived from this is also small. Conversely, when the skin impedance is small, the current I is large, and the voltage across the protective resistor Rp,
The output output from terminal 5 also becomes large.

この実施例回路により、経穴を探査する場合には、間電
極3を、皮膚表面の所々に移動させて、皮膚インピーダ
ンスの小なる点を求めればよい。
When using this embodiment circuit to explore acupuncture points, it is sufficient to move the interstitial electrode 3 to various locations on the skin surface to find points where the skin impedance is small.

この場合、皮膚の同一点で通電を維持すると、皮膚破壊
が生じ、皮膚インピーダンスが小となり、通常点でもあ
たかも経穴であると見誤ることになる。
In this case, if electricity is maintained at the same point on the skin, the skin will break down, the skin impedance will become small, and even a normal point will be mistaken for an acupuncture point.

そこで、この実施例回路で種々点の皮膚点における通電
時間t (秒)と、通電電流■ (μA)の関係を求め
たところ、第2図に示す特性が得られた。この特性図に
おいて、iは唇・はおであり、電流増加期間がほとんど
ない状態から、急に破壊に至る典型的な破壊特性である
。iiは手掌の場合であり、逆に電流増加期間があった
後に破壊に至る。iiiは足の9側であり、特性的には
上記iとiiの中間的な場合である。ivは前腕におい
て、セロテープで数十回角質層を剥離した後の破壊例で
ある。
Therefore, when the relationship between the current application time t (seconds) and the current application current (μA) at various points on the skin was determined using this example circuit, the characteristics shown in FIG. 2 were obtained. In this characteristic diagram, i represents the lip and the heart, which is a typical breakdown characteristic in which there is almost no current increase period and then the breakdown occurs suddenly. ii is the case of the palm; conversely, destruction occurs after a period of increasing current. iii is the 9th side of the foot, which is characteristically an intermediate case between the above i and ii. IV is an example of damage after the stratum corneum was peeled off several dozen times with cellophane tape on the forearm.

これらの特性を見る限り、場所によりかなりのバラツキ
があるが、いずれも通電を開始してから皮膚破壊に至る
までに、一定(数秒)以上の時間がある。従って、数秒
以内に通電点を移動していけば、皮膚破壊を生じさせる
ことなく、探査を続けることができる。
As far as these characteristics are concerned, there are considerable variations depending on the location, but in all cases there is a certain amount of time (several seconds) or more from the start of energization until the skin breaks down. Therefore, by moving the energizing point within a few seconds, exploration can be continued without causing skin damage.

一方第4図は従来回路、すなわち関電極を正極とする直
流電圧を印加した場合の通電時間t (秒)と通電電流
I (μA)の関係を求めたものであり、1siiは関
電極を針状としたもの、iii、ivは関電極をプレー
トとしたものである。これによると、通電開始時点より
電流増加が生じており、すでに皮膚破壊が進行している
ことを示している。
On the other hand, Figure 4 shows the relationship between the energization time t (seconds) and the energization current I (μA) in a conventional circuit, that is, when applying a DC voltage with the separator electrode as the positive electrode. Types iii and iv are those in which the related electrode is a plate. According to this, an increase in current occurs from the time when the current application is started, indicating that skin destruction has already progressed.

また上記実施例回路の場合、すなわち関電極を負極性と
する場合と、従来回路の場合、すなわち関電極を正極性
とする場合について、それぞれ関電極と不関電極より皮
膚に直流電圧を印加し、印加電圧と皮膚破壊が生じる時
間との関係を統計的に求めた特性曲線を第3図に示して
いる。同図においてaは従来の特性曲線、bは実施例回
路の特性曲線である。
Furthermore, in the case of the above-mentioned example circuit, that is, the case where the related electrode is of negative polarity, and the case of the conventional circuit, that is, that is, the case that the related electrode is made of positive polarity, a DC voltage is applied to the skin from the related electrode and the indifferent electrode, respectively. FIG. 3 shows a characteristic curve obtained statistically from the relationship between the applied voltage and the time at which skin breakdown occurs. In the figure, a is a conventional characteristic curve, and b is a characteristic curve of the embodiment circuit.

これらの特性曲線は、保護抵抗Rpを100KΩ、前腕
にて冬期に破壊実験を行い、電圧を7.5.10.15
.25.35.45Vの6段階で各電圧ごとに10回の
測定を行い、その各測定毎の破壊時刻1.と電圧を求め
、その各電圧毎の破壊時刻t1の平均値をプロットした
ものである。これらの特性曲線より明らかなように、印
加電圧が同値であれば、本実施例回路の方が従来回路に
比し、長時間を経ないと皮膚が破壊されない。
These characteristic curves were obtained by conducting a destructive test on the forearm in winter with a protective resistance Rp of 100KΩ, and a voltage of 7.5.10.15.
.. 25. Measurements were made 10 times for each voltage at 6 levels of 35.45V, and the breakdown time for each measurement was 1. The voltages are determined and the average value of the breakdown time t1 for each voltage is plotted. As is clear from these characteristic curves, if the applied voltage is the same value, the skin of the circuit of this embodiment does not break down for a longer period of time than the conventional circuit.

特性曲線すによると、例えば印加電圧が25Vであれば
、通電時間を4秒以内とすると破壊がほとんど起こらな
い状態で測定を行うことができる。
According to the characteristic curve, for example, if the applied voltage is 25 V and the current application time is 4 seconds or less, measurements can be made with almost no destruction.

上記実施例回路において、印加電圧Vが10〜30Vの
範囲内に定めるとすれば、通電時間1(秒)程度でほと
んど破壊が起きずに、十分に実用的である。
In the circuit of the above embodiment, if the applied voltage V is set within the range of 10 to 30 V, the circuit is sufficiently practical, with almost no destruction occurring after a current application time of about 1 (second).

なお、上記実施例において、関電極は針状電極を用いて
おり、また不関電極は棒状電極を用いているが、これら
は他の適宜の形状のものを用いてもよい。
In the above embodiments, needle-shaped electrodes are used as the related electrodes, and rod-shaped electrodes are used as the indifferent electrodes, but these may have other appropriate shapes.

(へ)発明の効果 この発明の皮膚インピーダンス測定回路によれば、関電
極(第2の電極)に直流電圧の負極側を印加するので、
通電開始時の所定時間(数秒)は、皮膚破壊を生じさせ
ることが少なく、従って例えば経穴探査を行う場合には
、経穴以外の点を経穴と誤判断することが軽減され、精
度の良い経穴探査を行うことができる。
(f) Effects of the Invention According to the skin impedance measuring circuit of the present invention, since the negative electrode side of the DC voltage is applied to the related electrode (second electrode),
The predetermined time (several seconds) at the start of energization is unlikely to cause skin breakdown, and therefore, for example, when performing acupuncture point exploration, it is possible to reduce the possibility of erroneously determining points other than acupuncture points as acupuncture points, allowing for highly accurate acupuncture point exploration. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の1実施例を示す皮膚インピーダン
ス測定回路の回路図、第2図は、同回路を用いて測定し
た通電時間と通電電流の関係を示す特性図、第3図は、
同実施例回路と従来回路における印加電圧と破壊時間と
の関係を示す特性図、第4図は、従来回路の通電時間と
通電電流の関係を示す特性図である。 1:直流電圧源、 2:不関電極、 32関電極・    4:増幅器、 6:通電回路、  Rp:保護抵抗。 第1図 第2図
Fig. 1 is a circuit diagram of a skin impedance measuring circuit showing one embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the energization time and the energization current measured using the same circuit, and Fig. 3 is a
FIG. 4 is a characteristic diagram showing the relationship between the applied voltage and the breakdown time in the same embodiment circuit and the conventional circuit. FIG. 4 is a characteristic diagram showing the relationship between the conduction time and the conduction current in the conventional circuit. 1: DC voltage source, 2: Indifferent electrode, 32-way electrode, 4: Amplifier, 6: Current-carrying circuit, Rp: Protection resistor. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)相対的に大なる面積で皮膚に接触する第1の電極
と、この第1の電極の面積よりも小なる微小面積で皮膚
に点接触する第2の電極と、電流制限抵抗と、前記第1
の電極、第2の電極及び電流制限抵抗を連結し、皮膚に
通電するための通電回路と、この通電回路に、前記第1
の電極が正側、前記第2の電極が負側となる極性の電圧
を与える直流電圧源と、前記通電回路に流れる電流に応
じた出力を導出する出力手段とからなる皮膚インピーダ
ンス測定回路。
(1) a first electrode that contacts the skin over a relatively large area, a second electrode that makes point contact with the skin over a small area smaller than the area of the first electrode, and a current limiting resistor; Said first
an energizing circuit for energizing the skin by connecting the electrode, the second electrode, and the current limiting resistor;
A skin impedance measuring circuit comprising: a DC voltage source that provides a voltage with a polarity such that the second electrode is on the positive side and the second electrode is on the negative side; and an output means that derives an output according to the current flowing through the current-carrying circuit.
JP59248546A 1984-11-24 1984-11-24 Skin impedance measuring circuit Pending JPS61128942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248546A JPS61128942A (en) 1984-11-24 1984-11-24 Skin impedance measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248546A JPS61128942A (en) 1984-11-24 1984-11-24 Skin impedance measuring circuit

Publications (1)

Publication Number Publication Date
JPS61128942A true JPS61128942A (en) 1986-06-17

Family

ID=17179787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248546A Pending JPS61128942A (en) 1984-11-24 1984-11-24 Skin impedance measuring circuit

Country Status (1)

Country Link
JP (1) JPS61128942A (en)

Similar Documents

Publication Publication Date Title
Oh et al. Effect of current, ionic strength and temperature on the electrical properties of skin
DE3675900D1 (en) DETECTION OF TEST STRIPS.
GB1432233A (en) Catheter probe
May et al. A tantalum-on-sapphire microelectrode array
EP0620420B1 (en) Method and device for measuring the flow of an electrolytic fluid
EP0107491A3 (en) Electrochemical method of testing for surface-characteristics, and testing apparatus for use in the method
JPH06308078A (en) Ion-sensing type field-effect transistor chip
JP3234094B2 (en) Measuring device for skin impedance
JPS61128942A (en) Skin impedance measuring circuit
Geddes et al. The rectification properties of an electrode-electrolyte interface operated at high sinusoidal current density
Raynauld et al. The silver-silver chloride electrode: a possible generator of offset voltages and currents
Miller Silver‐silver chloride electrodermal electrodes
JPH0480529B2 (en)
Fishman et al. Asymmetry currents and admittance in squid axons
RU2179311C1 (en) Process of identification of metal or alloy and device for its implementation
RU2100018C1 (en) Method to estimate functional state of biologically active point
Blaxter et al. Measurements of dendritic conductance changes to GABA in granule cells of the rat dentate gyrus
JPH0827307B2 (en) Printed wiring board test equipment
RU1623394C (en) Method of measuring temperature of contact interaction when cutting
SU799756A1 (en) Method of measuring electric resistance at biologically active points of skin
SU696548A1 (en) Method of determining electrochemical resistor resistance
JPS60103954A (en) Root canal length measurng apparatus
JPH051824Y2 (en)
RU96112068A (en) METHOD OF MEASURING ELECTRIC SKIN RESISTANCE
SU739330A1 (en) Method of measuring surface area of electrically conducting object