JPS6112857A - Titanium and titanium alloy for propagating ultrasonic wave - Google Patents

Titanium and titanium alloy for propagating ultrasonic wave

Info

Publication number
JPS6112857A
JPS6112857A JP19159784A JP19159784A JPS6112857A JP S6112857 A JPS6112857 A JP S6112857A JP 19159784 A JP19159784 A JP 19159784A JP 19159784 A JP19159784 A JP 19159784A JP S6112857 A JPS6112857 A JP S6112857A
Authority
JP
Japan
Prior art keywords
titanium
phase
alloy
ultrasonic
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19159784A
Other languages
Japanese (ja)
Other versions
JPS6240423B2 (en
Inventor
Michio Hanaki
花木 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19159784A priority Critical patent/JPS6112857A/en
Publication of JPS6112857A publication Critical patent/JPS6112857A/en
Publication of JPS6240423B2 publication Critical patent/JPS6240423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PURPOSE:To obtain Ti or a Ti alloy for propagating ultrasonic waves having little ununiformity in the rate of propagation of ultrasonic waves and favorable mechanical characteristics by forming all of the alpha-phase in the metallic structure of Ti or a Ti alloy by the transformation of a beta-phase. CONSTITUTION:Ti or a Ti alloy is heated to >= about 1000 deg.C, preferably about 1050-1100 deg.C, and heat treatment is carried out so that the alpha- or alpha-beta-phase in the metallic structure of the material is transformed into a single beta-phase. The material is then cooled to form a single alpha-phase by the transformation of the beta- phase. Thus, Ti or a Ti alloy for propagating ultrasonic waves having little ununiformity in the ultrasonic characteristics is obtd. without deteriorating the mechanical properties.

Description

【発明の詳細な説明】 この発明は超音波溶接など超音波応用機器で超音波を伝
達するi体として用いられるチタンおよびチタン合金に
関する。従来からチタンおよびチタン合金は超音波応用
機器用材として超音波伝達効率が非常にすぐれていてし
かも大きい疲労強度を有し、更には比重が小さいので取
扱い易いということから用いられている。従来用いられ
ているチタンおよびチタン合金は安定なα+β組織を有
するものが比強度が高く構造用材料として有利であると
してα+β組織のものが用いちれていた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to titanium and titanium alloys used as i-bodies for transmitting ultrasonic waves in ultrasonic application equipment such as ultrasonic welding. Titanium and titanium alloys have conventionally been used as materials for ultrasonic application equipment because they have extremely high ultrasonic transmission efficiency, high fatigue strength, and are easy to handle due to their low specific gravity. Conventionally, titanium and titanium alloys having a stable α+β structure have a high specific strength and are advantageous as structural materials, so those with an α+β structure have been used.

このためチタンおよびチタン合金の熱処理方法はα+β
組織の安定したものを製造すべくその処理条件が選択さ
れていた。たとえばチタンおよびチタン合金から材料を
β変態温度以下の700〜750℃で加熱後、空冷又は
徐冷する焼鈍処理をする方法、あるいは材料を950℃
前後で加熱急冷後更に550℃で加熱空冷する溶体化時
効処理等の方法がとられている。
For this reason, the heat treatment method for titanium and titanium alloys is α+β.
The processing conditions were selected to produce a stable structure. For example, a method of annealing titanium and titanium alloy materials by heating them at 700 to 750°C below the β-transformation temperature and then air cooling or slow cooling, or annealing the material to 950°C.
Methods such as solution aging treatment, which involves heating and quenching before and after, and then heating and air-cooling at 550° C., are used.

これらの処理によって得られたチタンおよびチタン合金
は超音波伝達媒体として用いると同一材料から製造した
ものでも超音波の音波伝達にかな如のばらつきが生じる
。このため同一寸法に加工して超音波応用機器に組込ん
だ場合にこの音波の伝達のバラツキによシ超音波エネル
ギーの伝達に差が生じ超音波使用性能が安定しない問題
が生じた。
When titanium and titanium alloys obtained by these treatments are used as ultrasonic transmission media, there will be considerable variation in the transmission of ultrasonic waves even if they are made from the same material. For this reason, when processed into the same dimensions and incorporated into ultrasonic application equipment, variations in the transmission of this sound wave cause differences in the transmission of ultrasonic energy, resulting in a problem in which the ultrasonic usage performance is unstable.

この場合超音波応用機器で超音波伝達の媒体として用い
られるチタンおよびチタン合金での超音波エネルギーの
伝達能に影響を及ぼす伝達音波のバラツキは出来るだけ
小さい方、音波速度量で2%以下であることが望ましい
In this case, the variation in transmitted sound waves that affects the transmission ability of ultrasonic energy in titanium and titanium alloys used as a medium for ultrasound transmission in ultrasound application equipment is as small as possible, and is 2% or less in terms of sound wave velocity. This is desirable.

本発明者はチタンおよびチタン合金の超音波の伝達速度
のバラツキを小さくすることについて鋭意研究した結果
チタンおよびチタン合金中のα相がすべてβ相から変態
したα相であると超音波の伝達速度のバラツキが極めて
小さいことを知って本発明に至った。
As a result of intensive research into reducing the variation in the transmission speed of ultrasonic waves in titanium and titanium alloys, the present inventor found that the transmission speed of ultrasonic waves is that all the α phase in titanium and titanium alloys is α phase transformed from the β phase. The present invention was developed based on the knowledge that the variation is extremely small.

すなわち本発明はチタンおよびチタン合金中のα相がす
べてβ相から変態したα相であることを特徴とする超音
波伝達用チタンおよびチタン合金である。
That is, the present invention provides titanium and titanium alloys for ultrasonic transmission, characterized in that all the α phases in the titanium and titanium alloys are α phases transformed from β phases.

以下更に本発明について詳述する。The present invention will be further explained in detail below.

チタンおよびチタン合金の熱処理はこれらの構造材とし
ての使用上強度が高いことが望まれ前記の如く950℃
程度で加熱処理して最も良好な強度を示す材料を得てい
た。これをチタンおよびチタン合金を1000℃以上好
ましくは1050〜1100℃で加熱し材料の金属組織
をα又はα+βからβ単−相に変えるよう熱処理した後
、冷却することによシ、β相から変態したαのみの相を
得る。
Heat treatment of titanium and titanium alloys is performed at 950°C as mentioned above because it is desired that they have high strength when used as structural materials.
A material exhibiting the best strength was obtained by heat treatment at a moderate temperature. Titanium and titanium alloys are heat-treated at 1000°C or higher, preferably 1050-1100°C to change the metallographic structure of the material from α or α+β to β single-phase, and then cooled to transform from the β phase. Obtain the phase with only α.

この場合の熱処理温度は処理材が金属特性としてβ単一
相領域になシ得るものが選択されれば良く処理時間もそ
れに見合うものであれば良い。あまシ長時間高温域の熱
処理を行々うと。
In this case, the heat treatment temperature may be selected so that the metal property of the material to be treated can reach the β single phase region, and the treatment time may be selected as long as it is commensurate with the temperature. I am going to perform heat treatment in a high temperature range for a long time.

材料の機械的性質が悪化するためである。従って110
0℃以上の高温で熱処理をすることは好ましくない。
This is because the mechanical properties of the material deteriorate. Therefore 110
It is not preferable to perform heat treatment at a high temperature of 0° C. or higher.

これらの処理によってチタンおよびチタン合金の金属組
織のすべてのα相がβ相から変態したα相となったもの
は超音波特性のバラツキは殆んどなく、また材料の機械
的性質と使用目的に合うような良好な特性を有する。
As a result of these treatments, all of the α phase in the metal structure of titanium and titanium alloys has been transformed from β phase to α phase, and there is almost no variation in ultrasonic properties. It has good characteristics to match.

これにより得られる超音波機器用チタン材の選別ならび
に作業性能差異による問題は全く解消された。
As a result, problems caused by differences in the sorting and work performance of titanium materials for ultrasonic equipment have been completely eliminated.

実施例 第1表に示す組成を有するTi−6A1−47の直径2
6M、長さ1000關の丸棒を1050℃で5分間電気
炉で加熱した後電気炉から取少出し空冷した。この材料
を用いて直径26關、長さ100藺の試験片を5本作っ
た。夫々の試験片について音波の伝達速度を測定し且つ
金属組織を観察した結果を第2表に示す。表2に示すご
とく上記のととく熱処理したものは、β相から変態した
α相の棒状の組織となっている。
Example Diameter 2 of Ti-6A1-47 having the composition shown in Table 1
A round bar with a length of 6M and a length of 1000 mm was heated in an electric furnace at 1050°C for 5 minutes, and then a small amount was taken out of the electric furnace and cooled in the air. Using this material, five test pieces with a diameter of 26 mm and a length of 100 mm were made. Table 2 shows the results of measuring the propagation speed of sound waves and observing the metal structure of each test piece. As shown in Table 2, those subjected to the above-described special heat treatment have a rod-shaped structure of α phase transformed from β phase.

第1表 なお音波の伝達速度は超音波厚さ計を用いて測定した。Table 1 Note that the propagation speed of sound waves was measured using an ultrasonic thickness gauge.

第2表に見られるように音波の伝達速度は。As seen in Table 2, the speed of transmission of sound waves is.

最大値6168m7’池、最小値6133mAであり。The maximum value is 6168m7' and the minimum value is 6133mA.

そのバラツキは約[15%ときわめて小さいものである
。また金属組成はすべてβ相から変態したα相であった
。更に本発明の材料について金属特性の評価結果を第3
表に示す。
The variation is extremely small, about 15%. Moreover, the metal compositions were all α phase transformed from β phase. Furthermore, the results of the evaluation of the metal properties of the material of the present invention are shown in the third section.
Shown in the table.

明細書の浄摺(内容に変更なし) 第2表 第3表 本発明のチタンおよびチタン合金は第3表に見られるよ
うに従来のチタンおよびチタン合金と遜色がない特性を
有している。
Revision of specification (no change in content) Table 2 Table 3 As seen in Table 3, the titanium and titanium alloys of the present invention have properties comparable to those of conventional titanium and titanium alloys.

比較例1 実施例1で用いたと同じTi−6Al−4Vの直径26
龍、長さ100Mの丸棒を720℃で2時間電気炉で加
熱した抜取シ出し空冷した。これから長さ100Hの試
験片を4本件シ音波の伝達速度を測定した。その結果お
よび金属組織の写真を第4表に示す。第4表に示すごと
く、β相から変態したものでないα相が散在しており、
その組織は小さな球状のもの針状のものが見られ。
Comparative Example 1 Same Ti-6Al-4V as used in Example 1, diameter 26
A round bar with a length of 100M was heated in an electric furnace at 720°C for 2 hours, then taken out and cooled in the air. From this, four test pieces each having a length of 100H were used to measure the propagation speed of sound waves. Table 4 shows the results and photographs of the metal structure. As shown in Table 4, there are scattered α phases that are not transformed from the β phase,
The tissue has small spherical and needle-like structures.

本法例の写真表2に示した棒状のβ相から変態したα相
のみの組織と異なる。
It is different from the structure of only the α phase transformed from the rod-shaped β phase shown in Photo Table 2 of this method example.

伝達速度は最大最小間においては6008〜6258 
m / seeと大きくバラツキその差異は約4チと大
きく使用時の問題発生はさけられないものである。
The transmission speed is 6008 to 6258 between maximum and minimum.
There is a large variation in m/see, and the difference is about 4 cm, which makes problems during use unavoidable.

なおこの金属材料の特性評価結果は第3表に示した。The characteristics evaluation results of this metal material are shown in Table 3.

(以下余白) 明細書の浄1)’(内容に変更なし) 第4表 昭和60年2月25日(Margin below) Details of the specification 1)’ (no change in content) Table 4 February 25, 1985

Claims (1)

【特許請求の範囲】[Claims] 金属組織中のα相がすべてβ相から変態したα相である
超音波伝達用チタンおよびチタン合金
Titanium and titanium alloys for ultrasonic transmission in which the α phase in the metal structure is all α phase transformed from the β phase
JP19159784A 1984-09-14 1984-09-14 Titanium and titanium alloy for propagating ultrasonic wave Granted JPS6112857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19159784A JPS6112857A (en) 1984-09-14 1984-09-14 Titanium and titanium alloy for propagating ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19159784A JPS6112857A (en) 1984-09-14 1984-09-14 Titanium and titanium alloy for propagating ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS6112857A true JPS6112857A (en) 1986-01-21
JPS6240423B2 JPS6240423B2 (en) 1987-08-28

Family

ID=16277283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19159784A Granted JPS6112857A (en) 1984-09-14 1984-09-14 Titanium and titanium alloy for propagating ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS6112857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534964A (en) * 2010-04-30 2013-09-09 ケステック イノベーションズ エルエルシー Titanium alloy
CN104264086A (en) * 2014-09-24 2015-01-07 清华大学深圳研究生院 Method for promoting phase change strengthening and toughening of two-phase titanium alloy strip by using pulse current and strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534964A (en) * 2010-04-30 2013-09-09 ケステック イノベーションズ エルエルシー Titanium alloy
CN104264086A (en) * 2014-09-24 2015-01-07 清华大学深圳研究生院 Method for promoting phase change strengthening and toughening of two-phase titanium alloy strip by using pulse current and strip

Also Published As

Publication number Publication date
JPS6240423B2 (en) 1987-08-28

Similar Documents

Publication Publication Date Title
US4179314A (en) Treatment of beryllium-copper alloy and articles made therefrom
Hirabayashi et al. An experimental study on the ordered alloy Ni2Cr
Beeston et al. The stacking-fault energy of some nickel-cobalt alloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPS6112857A (en) Titanium and titanium alloy for propagating ultrasonic wave
Ferreira et al. The effect of stress and subgrain size on the creep behavior of high purity aluminum
EP0268241A3 (en) Heat treated alloy
Kubota et al. Characterisation of precipitation hardening response and as-quenched microstructures in Al-Mg (-Ag) alloys
Kelly et al. The temperature dependence of the flow stress of an age-hardened alloy
JPH0315323B2 (en)
JPS5597453A (en) Alloy with high strength and low thermal expansion
JPS5547371A (en) Manufacture of high strength aluminum alloy having excellent mechanical property in direction of wall thickness
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
US2898252A (en) Method of heat-treating uranium-silicon alloys
JPS59145767A (en) Heat treatment of metallic zirconium material and zirconium alloy material
JPS62177161A (en) Heat treatment of alpha-beta titanium alloy for isothermal working
Nishino et al. Strain Age Hardening in the Range 150∼ 350° C of Carbon Steel
JPS58213849A (en) Shape memory and vibration damping alloy
JPS58164772A (en) Method for working zirconium alloy
Brückner et al. Microstructure and texture development during the phase transformation in an Fe‐Ni‐Co‐Ti shape memory alloy
Bouchard et al. Twinning in shock loaded Fe-Al alloys
Botaki Ultrasonic Testing of the Quality of Heat Treatment Applied to Aluminum Alloy AK 6
Pettersen et al. Recrystallization of an AlMgSi Alloy Deformed in Hot Torsion
Lenning et al. Flat rolled beta titanium alloys for airframe application
Rüdinger et al. Relationship between primary alpha content, tensile properties and high cycle fatigue behaviour of Ti-6 Al-4 V