JPS61128479A - High polymer electrode for secondary battery - Google Patents

High polymer electrode for secondary battery

Info

Publication number
JPS61128479A
JPS61128479A JP59250774A JP25077484A JPS61128479A JP S61128479 A JPS61128479 A JP S61128479A JP 59250774 A JP59250774 A JP 59250774A JP 25077484 A JP25077484 A JP 25077484A JP S61128479 A JPS61128479 A JP S61128479A
Authority
JP
Japan
Prior art keywords
electrode
polymer
weight
conductive
triphenylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59250774A
Other languages
Japanese (ja)
Inventor
Takeshi Miyamoto
丈司 宮本
Masazumi Ishikawa
正純 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59250774A priority Critical patent/JPS61128479A/en
Publication of JPS61128479A publication Critical patent/JPS61128479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity of a secondary battery and lengthen its life by sticking chemical compounds consisting of specific hipolymer substance and an additive made with conductive powder and fluorine resin powder to a conductive,grid-shaped supporter. CONSTITUTION:Compounds consisting of a polymer with 4,4',4''-triphenylamine structure or its derivative structure 55-95wt% and an additive 5-45wt% comprising conductive powder and fluorine resin are adhered to a conductive grid- shaped supporter. As a derivative of 4,4',4''-triphenylamine, 4,4'-(4''-substitution or non-substitution) triphenylamine, etc. are used. As conductive powder, substances not reactive to electrolyte or active material and stabilized electro- chemically such as platina are used. As fluorine resin, polytetrafluorethylene, etc. are used. Based on such arrangment, it is possible to increase the capacity of the secondary beattery and lengthen its life.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、二次電池用の高分子重合体を活物質とする
電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an electrode for secondary batteries that uses a high molecular weight polymer as an active material.

〔従来の技術〕[Conventional technology]

近年、有機電解質と高分子材料を活物質とした電極とを
備えた二次電極が開発されている。活物質とし七の高分
子材料として代表的なものとしては、ポリアセチレンが
知られている。このポリアセチレンを電極にした二次電
池としては、電気化学協会第50回大会講演要旨集wJ
53頁によると、プロピレンカーホネー) 1c I 
M/lO濃度でi、1ctoaを浴した電解液を用い、
30〜40回を高い電流効率で充放電を繰返し得たとの
報告がなされている。
In recent years, secondary electrodes have been developed that include an organic electrolyte and an electrode using a polymeric material as an active material. Polyacetylene is known as a typical example of a polymeric material used as an active material. As a secondary battery using this polyacetylene as an electrode, electrochemical society 50th conference abstracts wJ
According to page 53, propylene carhone) 1c I
Using an electrolyte bathed with i, 1 ctoa at a concentration of M/lO,
It has been reported that charging and discharging could be repeated 30 to 40 times with high current efficiency.

〔発明が解決しようとしている問題点〕かかるポリアセ
チレンを活物質とした二次電池用電極は、単位重量当シ
取シ出し得る電気量が必ずしも高くなく、シかも繰返し
寿命が短かいという問題点があった。
[Problems to be Solved by the Invention] Electrodes for secondary batteries using such polyacetylene as an active material have problems in that the amount of electricity that can be drawn out per unit weight is not necessarily high, and the cycle life may be short. there were.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、このような従来の問題点に着目してな畜れ
たもので、4,4.4−)リフェニルアミン構造又はそ
の誘導体構造を繰返し単位として有する重合体55〜9
5重量%、導電性粉末とフッ素樹脂とを含む添加剤5〜
45重量−からなる組成物を導電性格子様支持体に付着
した二次電池用電極とすることにより、上記問題点を解
決したことを目的としている。
This invention was developed by focusing on such conventional problems, and it is a polymer 55-9 having a 4,4,4-)liphenylamine structure or a derivative structure thereof as a repeating unit.
Additive 5 to 5% by weight, containing conductive powder and fluororesin
It is an object of the present invention to solve the above-mentioned problems by using a composition consisting of 45% by weight as an electrode for a secondary battery attached to a conductive grid-like support.

4.4.4−)リフェニルアミンの誘導体としては、4
.4’−(4’−置換または非置換)トリフェニルアミ
ン 等が用いられる。これらは、重合体が立体的に重合せず
、線状に重合しているため、若干電解質に溶けやすい欠
点かめる。したがって、架橋剤今加えて重合し、少くと
も一部分は立体的と重合させておくことが好ましい。
4.4.4-) As a derivative of liphenylamine, 4
.. 4'-(4'-substituted or unsubstituted) triphenylamine and the like are used. These polymers do not polymerize three-dimensionally but linearly, so they have the disadvantage of being slightly soluble in electrolytes. Therefore, it is preferred that the crosslinking agent be added now and polymerized, at least in part sterically and polymerized.

ここで、導電性格子様支持体とは、白金、チタン、タン
タル等の電解質および活物質とは化学反応を生ぜず、か
つ、Q 〜+ 1.5 V (vaAj/At(J)の
電位範囲で電気化学的にも安定な金属で構成されること
が好ましい。又、形状については、格子形、網状、ラス
メタル状、ハニカム状等の格子様形状が好ましく用いら
れる。
Here, the conductive lattice-like support is one that does not chemically react with electrolytes and active materials such as platinum, titanium, tantalum, etc., and has a potential range of Q ~ + 1.5 V (vaAj/At(J)). It is preferable to be made of a metal that is electrochemically stable. Also, as for the shape, a lattice-like shape such as a lattice shape, a net shape, a lath metal shape, a honeycomb shape, etc. is preferably used.

また、導電性粉末としては、電解質、活物質とは反応せ
ず、かつ電気化学的にも安定な材質、例えば、白金、ア
セチレンブラック、グラファイト。
The conductive powder may be a material that does not react with the electrolyte or active material and is electrochemically stable, such as platinum, acetylene black, or graphite.

金、タンタル等が好ましい。Gold, tantalum, etc. are preferred.

フッ素樹脂としては、ポリテトラフルオルエチレンある
いはこれと類似の化合構造を有するもの、例えばポリ三
7ツ化塩化エチレン、ポリ7ツ化ビニリデン、四フッ化
エチレンと六フッ化プロピレンとの共重合体などが好ま
しい。
Examples of fluororesins include polytetrafluoroethylene or those having a similar chemical structure, such as polytetrafluoroethylene, polytetrafluorochloride, polyvinylidene hexafluoride, and copolymers of tetrafluoroethylene and hexafluoropropylene. etc. are preferable.

本発明の電極において、導電性格子様支持体に付着する
組成物において、4 、4′、 4’−1Jフエニルア
ミン構造又はその誘導体構造を繰返し単位とじて有する
重合体(以下、本明細書ではトリフェニルアミン重合体
と称す)の割合を55〜95重量%としたのは、55重
量%未満では電極の単位重量当りの取り出し得るエネル
ギーが低くなるので好ましくない。又、95重量fbヲ
超えると、導電性粉末又はフッ素樹脂粉末の割合が低下
し、電極の内部抵抗が増大したシ、活物質が導電性格子
様支持体から脱落し易くなるので不適当である。
In the electrode of the present invention, a polymer having a 4,4', 4'-1J phenylamine structure or a derivative structure thereof as a repeating unit (hereinafter referred to as tritriamine) is used in the composition attached to the conductive lattice-like support. It is not preferable to set the proportion of the phenylamine polymer (referred to as phenylamine polymer) to 55 to 95% by weight because if it is less than 55% by weight, the energy that can be taken out per unit weight of the electrode will be low. Moreover, if the weight exceeds 95 fb, the proportion of the conductive powder or fluororesin powder decreases, the internal resistance of the electrode increases, and the active material tends to fall off from the conductive lattice-like support, so it is unsuitable. .

炭素粉末とフッ素樹脂粉末とを含む添加剤は、組成物中
5〜45重量%重量包含が、特に好ましくは、炭素粉末
は組成物中で3〜40重量%となるように添加し、フッ
素樹脂は組成物中で2〜10重量%となるように添加剤
の組成を定めるのが好ましい。
The additive containing carbon powder and fluororesin powder is added in an amount of 5 to 45% by weight in the composition, and particularly preferably, the carbon powder is added in an amount of 3 to 40% by weight in the composition. It is preferable to determine the composition of the additive so that it accounts for 2 to 10% by weight in the composition.

導電性粉末の割合を組成物中で3重量−未満にすると、
電極として内部抵抗が大きくなると共に、活物質として
トリフェニルアミン重合体が充分く活用できない場合が
生じ、電極の単位重量当9の取り出し得るエネルギーが
低くなることがあり好ましくない。逆に組成物中で40
重量%ヲ超えると、トリフェニルアミン重合体の活用度
の増加は期待できず、導電粉末の割合が増す分電極の重
量が増すので好ましくない。
When the proportion of electrically conductive powder in the composition is less than 3% by weight,
This is not preferable because the internal resistance of the electrode increases, and the triphenylamine polymer may not be fully utilized as an active material, and the energy that can be taken out per unit weight of the electrode decreases. Conversely, in the composition 40
If it exceeds 1% by weight, no increase in the utilization of the triphenylamine polymer can be expected, and the weight of the electrode increases as the proportion of the conductive powder increases, which is not preferable.

フッ素樹脂粉末としては、一般に浴液に分散したディス
パージョンとして用いられるが、この場合には固形分(
フッ素樹脂粉末)の重量で計算する。2重量%未満では
活物質の結着性が悪るく、充放電の繰返しにより、電極
から活物質が脱落し、寿命が低下する。逆に10重量i
t超えると、活物質の結着性は上がるものの、フッ素樹
脂そのものが非導電性であるので、電極の内部抵抗の増
加およびトリフェニルアミン重合体の活用度の低下など
の悪影響が顕著になり好ましくない、〔実施例〕 次に、本発明を実施例について説明する。
Fluororesin powder is generally used as a dispersion in a bath liquid, but in this case, the solid content (
Calculated based on the weight of fluororesin powder). If it is less than 2% by weight, the binding properties of the active material are poor, and repeated charging and discharging causes the active material to fall off from the electrode, resulting in a shortened lifespan. Conversely, 10 weight i
If it exceeds t, although the binding property of the active material increases, since the fluororesin itself is non-conductive, negative effects such as an increase in the internal resistance of the electrode and a decrease in the degree of utilization of the triphenylamine polymer become noticeable, so it is preferable. [Example] Next, the present invention will be described with reference to an example.

実施例1 金属カリウム0.8 t (0,02グラム原子量)、
塩化マグネシウム0.95 t (0,O1モル)、テ
トラヒドロフラン501dt−100−容積のフラスコ
中窒素雰囲気下で攪拌しながら加熱還流して反応させた
。約1時間後、黒色の粉末を生じ、金属マグネシウムの
生成を確めた。
Example 1 0.8 t (0.02 gram atomic weight) of metallic potassium,
0.95 t (0.01 mol) of magnesium chloride and tetrahydrofuran were heated to reflux with stirring in a 501 dt-100 volume flask under a nitrogen atmosphere for reaction. After about 1 hour, black powder was produced, confirming the production of metallic magnesium.

次いで、この反応生成物に4 、4 、4− トIJブ
ロモトリフェニルアミン3.2 P (0,067モル
)を添加し、攪拌しながら加熱還流した。約1時間後、
金属マグネシウムが消費しつくされたことを確めた。
Next, 4,4,4-IJ bromotriphenylamine 3.2 P (0,067 mol) was added to the reaction product, and the mixture was heated to reflux with stirring. After about an hour,
It was confirmed that metallic magnesium was completely consumed.

次いで、この反応物に触媒としてジクロロビス(2,2
−ビピリジン)ニッケル10ηを添加し、攪拌し、加熱
還流することにより重合反応が円滑に開始し、黄褐色の
重合体が沈殿した。重合反応全約2時間にわたり行い、
生成した沈殿物を塩酸酸性エタノール中に注ぎ、1時間
にわたシ攪拌した後濾過した。フィルター上においてエ
タノールで十分に洗浄した後、ソックスレー抽出器によ
シ熱エタノールで12時間にわたり抽出し、不純物を除
去し、乾燥後収量1.92の目的の重合体(ポリ(4,
4,4−トリフェニルアミン)を得た。
Next, dichlorobis(2,2
-Bipyridine) 10η of nickel was added, stirred, and heated under reflux to smoothly start the polymerization reaction, and a yellowish brown polymer was precipitated. The polymerization reaction was carried out for a total of about 2 hours,
The generated precipitate was poured into ethanol acidified with hydrochloric acid, stirred for 1 hour, and then filtered. After thoroughly washing the filter with ethanol, it was extracted with hot ethanol using a Soxhlet extractor for 12 hours to remove impurities, and after drying, the desired polymer (poly(4,
4,4-triphenylamine) was obtained.

かようにして得た重合体は黄色の粉末で、空気中で2チ
月間放置しても何んらの変化がみられず極めて安定であ
った。また、この重合体の熱重量分析を行った。その結
果、重合体は300℃まで減量することなく、極めて高
い熱安定性でちゃ、また窒素雰囲気中700℃の高温で
も約70%の残存重責を示していることがわかった。
The thus obtained polymer was a yellow powder and was extremely stable without any change even after being left in the air for 2 months. Additionally, thermogravimetric analysis of this polymer was conducted. As a result, it was found that the polymer had extremely high thermal stability without losing weight up to 300°C, and showed a residual weight of about 70% even at a high temperature of 700°C in a nitrogen atmosphere.

また、得られた重合体についての赤外スペクトル分析を
行い、測定した赤外吸収スペクトルから1270an−
1,L310crI&−1+ 14807:IFI−1
および1590cm−1にトリフェニルアミン構造に基
づく強いピークを有し、また8203−1付近にパラ置
換ベンゼンの吸収を有することがわかった。この事は、
重合体が規則正しい繰返し単位から構成され、下記の構
造を有することを証明するものでおる。
In addition, infrared spectrum analysis was performed on the obtained polymer, and the measured infrared absorption spectrum showed that 1270 an-
1, L310crI&-1+ 14807:IFI-1
It was found that it had a strong peak based on the triphenylamine structure at 1590 cm -1 and an absorption of para-substituted benzene near 8203-1. This thing is
This proves that the polymer is composed of regular repeating units and has the following structure.

また、重合体の元素分析を行いこの結果は次の通りでら
る: 重合体の元素分析値: 炭素 71.5チ、 水素  4.3チ窒素  4.4
係  ハロゲン 15.7%この分析値よ) C: H: N: Br=18 : 12.9 : 0
.95:0.59であり理論値Css Hat Nに近
い値であった。Hについての余分の0.9および役の0
.59は末端基の分と思われる。分子量については、こ
の重合体が通常の各課に浴けないため測定不能であった
。しかし、他の類似の物質の反応およびHおよびBr。
In addition, elemental analysis of the polymer was performed and the results were as follows: Elemental analysis values of the polymer: Carbon 71.5%, Hydrogen 4.3%, Nitrogen 4.4%.
(Halogen 15.7% This analysis value) C: H: N: Br=18: 12.9: 0
.. 95:0.59, which was close to the theoretical value Css Hat N. Extra 0.9 and 0 for H
.. 59 seems to be the terminal group. The molecular weight could not be determined because this polymer could not be subjected to normal tests. However, reactions of other similar substances and H and Br.

数から判断してトリフェニルアミンが10〜15重合し
ているものと思われる。
Judging from the number, it seems that 10 to 15 triphenylamines have been polymerized.

かかるトリフェニルアミン重合体と、導電性粉末として
の電気化学工業製アセチレンブラックと、結着剤である
フッ素樹脂粉末としての三井フロロケミカル製テフロン
デイスパージョントt、第を表記載の重量比で混合し、
襦潰機または三本ロールによ)混線して粘土状の高分子
電極材料組成物を得た。
The triphenylamine polymer, acetylene black manufactured by Denki Kagaku Kogyo as a conductive powder, and Teflon Dispersion T manufactured by Mitsui Fluorochemicals as a fluororesin powder as a binder, were mixed in the weight ratio shown in the table. death,
A clay-like polymer electrode material composition was obtained by cross-mixing (using a crusher or three rolls).

次にこの高分子電極材料組成物をプレスし、シート状に
成形した後、白金の金網を両面からはさみ込み、ロール
プレスにより圧着するとともに厚みを1謂に調整し、そ
の後200℃で1〜2時間真空乾燥させて1.L%+X
、、l OmX I O寓翼の大きさの電極を得た。
Next, this polymer electrode material composition was pressed and formed into a sheet shape, and platinum wire gauze was sandwiched between both sides, and the thickness was adjusted to 1 to 2. Vacuum dry for 1. L%+X
,,l OmX IO An electrode with the size of a wing was obtained.

第1図は本実施例の電極の1モル過塩素酸リチクムープ
ロピレンカーポネート溶液中でのサイクリックポルタモ
グラムでbる。1回目の酸化側の掃引時K特に大きな電
流が流れるが、その後電位掃引金繰り返すと、サイクリ
ックポルタモグラムの形にはほとんど変化がみられず安
定にCLQ4″″ イオンのドーピング脱ドーピング反
応が繰り返される。
FIG. 1 shows a cyclic portammogram of the electrode of this example in a 1 molar lyticum perchlorate propylene carbonate solution. During the first sweep on the oxidation side, a particularly large current flows, but when the potential sweep is repeated thereafter, there is almost no change in the shape of the cyclic portamogram, and the doping and dedoping reactions of CLQ4'' ions occur stably. Repeated.

したがって、本実施例の電極は二次電池としての電極と
して機能し得ると共に、寿命としても200回であり、
前記ポリアセチレンよシも長寿命であることがわかる。
Therefore, the electrode of this example can function as an electrode for a secondary battery, and has a lifespan of 200 times.
It can be seen that the above-mentioned polyacetylene also has a long life.

次ニ、M様す操作K ヨリ、40 mX I OimX
 O,6鶴の電極を作成した。この電極(、IJチウム
電極にポリプロピレン不織布製パレータを介して並列し
、1モル過塩素酸リチウムプロピレンカーボネート浴液
を用いた。
Next, M-like operation K, 40 mX I OimX
O, 6 crane electrodes were created. This electrode was connected in parallel to the IJ lithium electrode via a polypropylene nonwoven fabric parator, and a 1 mol lithium perchlorate propylene carbonate bath solution was used.

第3図にこの電池のlOmA定電流定電流充放待時を示
す。充電の終止電圧’(i−4,1V 、放電の終止電
圧を3.2vとした。充電後の開路電圧は約4v放電電
気量は23 mAhでめった。また、充電後、開路状態
で3日放置した後放電しても放電電気量の減少はほとん
どみられず、この自己放電性の点で、本発明のPTPA
電極はポリアセチレンなどに比較して非常にすぐれてい
友。
FIG. 3 shows the 1OmA constant current constant current charging/waiting state of this battery. The final voltage of charging was set to '(i-4, 1V), and the final voltage of discharging was set to 3.2V.The open circuit voltage after charging was approximately 4V, and the amount of electricity discharged was 23mAh. Even if the PTPA of the present invention is left to stand and then discharged, there is almost no decrease in the amount of discharged electricity.
The electrode is a very good friend compared to polyacetylene etc.

実施例2.3 実施例1とは、トリフェニルアミン重合体と導電性粉末
とフッ素樹脂粉末との割合を次表に示すように変えた以
外は同一にして電極を作成した。
Example 2.3 An electrode was prepared in the same manner as in Example 1 except that the proportions of triphenylamine polymer, conductive powder, and fluororesin powder were changed as shown in the following table.

その放電試験結果を第2図に示すっ 表 単位 重量膚 比較例1,2 実施例1とは、トリフェニルアミン重合体と導電性粉末
とフッ素樹脂粉末との割合を前記の表に示すように変え
た以外は同一にして電極を作成した。
The discharge test results are shown in FIG. The electrodes were made in the same way except for the changes.

その放電試験結果を第2図に示す。The discharge test results are shown in Figure 2.

比較例3 実施例1で作成したトリフェニルアミン重合体を赤外分
光光度計用の錠剤成形機により 8 tOV−Hの圧力
にて圧縮成形したものを切9出し、一方の面に導電性接
着剤(商品名「エレクトロダック」米国マチソン社製)
を用いて白金網を付け、電極特性測定用の試験片を製作
し溶媒としてプロピレンカーボネートおよび支持電解質
として過塩素酸リチウムを用いて1そル/lの電解質浴
液eO白白金網網対極とじAf/AにL電極を参照電極
として上記測定用電極のサイクリックボルタモダラムを
窒素雰囲気中で測定した。電位の掃引速度はl mv4
にした。この結果10回程度の掃引で集電体として用い
た白金網と本重合物の界面がはくりし、安定して測定が
困難であるという結果が得られた。
Comparative Example 3 The triphenylamine polymer prepared in Example 1 was compression molded using a tablet molding machine for infrared spectrophotometers at a pressure of 8 tOV-H, cut into pieces, and conductive adhesive was attached to one side. agent (trade name: “Electrodac” manufactured by Mattison Company, USA)
Using propylene carbonate as a solvent and lithium perchlorate as a supporting electrolyte, an electrolyte bath solution of 1 solu/l was attached to a platinum wire mesh using a platinum wire mesh to prepare a test piece for measuring electrode characteristics. The cyclic voltamma of the measurement electrode was measured in a nitrogen atmosphere using the L electrode as a reference electrode. The potential sweep speed is l mv4
I made it. As a result, after about 10 sweeps, the interface between the platinum mesh used as a current collector and the present polymer peeled off, making it difficult to perform stable measurements.

したがって、この比較例の電極は、二次電池の電極とし
ては寿命が短かいことがわかった。
Therefore, it was found that the electrode of this comparative example had a short lifespan as an electrode for a secondary battery.

〔効果〕 以上説明したように、本発明は、4.4′、4−トリフ
ェニルアミン構造を繰返し単位として有する重合体55
〜95重量%、導電性粉末2〜40重量%およびフッ素
樹脂粉末3〜5重量%よりなる組成物を導電性格子様支
持体に付着したこと全特徴とする二次電池用高分子電極
としたため、長寿命の電極が得られるという効果が得ら
れる。又、トリフェニルアミン重合体は、単位重量当り
取シ出し得る電気量が理論的には798%であり、従来
のポリアセチレンの理論値の445 Q/fの約1.8
倍である。したがって、同じ容量の二次電池としては軽
量となる効果金有している。
[Effect] As explained above, the present invention provides a polymer 55 having a 4,4',4-triphenylamine structure as a repeating unit.
-95% by weight of conductive powder, 2-40% by weight of conductive powder, and 3-5% by weight of fluororesin powder is attached to a conductive grid-like support. , the effect of obtaining a long-life electrode can be obtained. Furthermore, the amount of electricity that can be extracted per unit weight of triphenylamine polymer is theoretically 798%, which is about 1.8% of the theoretical value of 445 Q/f of conventional polyacetylene.
It's double. Therefore, it has the advantage of being lightweight for a secondary battery of the same capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例、1の電極のサイクリックボルタグラ
ムを示す図、第2図は、実施例および比較例の放電特性
図、第3図は実施例1の充放電特性図である。
FIG. 1 is a diagram showing a cyclic voltamgram of the electrode of Example 1, FIG. 2 is a discharge characteristic diagram of Example and Comparative Example, and FIG. 3 is a charge/discharge characteristic diagram of Example 1.

Claims (1)

【特許請求の範囲】[Claims] (1)4、4′、4″−トリフェニルアミン構造又はそ
の誘導体構造を繰返し単位として有する重合体55〜9
5重量%と、導電性粉末およびフッ素樹脂粉末とを含む
添加剤5〜45重量%とからなる組成物を導電性格子様
支持体に付着したことを特徴とする二次電池用高分子電
極。
(1) Polymers 55 to 9 having a 4,4',4''-triphenylamine structure or its derivative structure as a repeating unit
1. A polymer electrode for a secondary battery, characterized in that a composition consisting of 5% by weight and 5 to 45% by weight of an additive containing a conductive powder and a fluororesin powder is adhered to a conductive grid-like support.
JP59250774A 1984-11-28 1984-11-28 High polymer electrode for secondary battery Pending JPS61128479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59250774A JPS61128479A (en) 1984-11-28 1984-11-28 High polymer electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59250774A JPS61128479A (en) 1984-11-28 1984-11-28 High polymer electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPS61128479A true JPS61128479A (en) 1986-06-16

Family

ID=17212839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59250774A Pending JPS61128479A (en) 1984-11-28 1984-11-28 High polymer electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPS61128479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206170A (en) * 1985-03-09 1986-09-12 Maruzen Sekiyu Kagaku Kk Secondary battery and its electrode
JPS63168974A (en) * 1987-01-06 1988-07-12 Agency Of Ind Science & Technol High polymer cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206170A (en) * 1985-03-09 1986-09-12 Maruzen Sekiyu Kagaku Kk Secondary battery and its electrode
JPH043066B2 (en) * 1985-03-09 1992-01-21
JPS63168974A (en) * 1987-01-06 1988-07-12 Agency Of Ind Science & Technol High polymer cell

Similar Documents

Publication Publication Date Title
JP6114821B2 (en) Storage device electrode binder
Yang et al. Synthesis and characterization of alkaline polyvinyl alcohol and poly (epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells
CN111943208B (en) Method for preparing titanium carbide (MXene) flexible electrode based on high-temperature carbonization of polymer and application of method
JP5413710B2 (en) Electrode active material, method for producing the same, and battery using the same
EP1393394A2 (en) Conductive polyamine-based electrolyte
CA2138766A1 (en) Material for generating electric energy
TW200825121A (en) Polymer electrolyte, production process thereof and electrochemical device
JP3565777B2 (en) Polymer battery
JP2005209576A (en) Copolymer compound and electrochemical cell using it
Baochen et al. Large-scale polyaniline batteries
JPS61128479A (en) High polymer electrode for secondary battery
Xie et al. Electropolymerization reaction-driven 2, 6-naphthalenediamine monomers to a multilayered sheet structure for ultralong cycling aqueous zinc-ion batteries
Das et al. Conducting polymers as binder additives for cathodes in Li ion battery
JP2009163918A (en) Composite of copolymer and carbon material and its manufacturing method
Yao et al. Improving the cycle-life of naphthoquinone-based active materials by their polymerization for rechargeable organic batteries
CN110305313A (en) A kind of purpurine functional poly aryl oxide electrode active material and preparation method thereof
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPH043066B2 (en)
JPH09289038A (en) Polymer solid electrolyte and battery using it
CN109449398A (en) A kind of preparation method and applications of lithium ion battery conductive agent nitrogen-doped graphene
CN116742116B (en) Gel electrolyte, preparation method thereof and lithium ion battery
JPS63264878A (en) Aluminum-conductive polymer secondary battery using cold molten salt electrolyte
JPS62226568A (en) Secondary battery
JPH01264182A (en) Battery
JP2003234248A (en) Electrode material, its manufacturing method and electrochemical storage device using the same