JPS61128472A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS61128472A
JPS61128472A JP59249587A JP24958784A JPS61128472A JP S61128472 A JPS61128472 A JP S61128472A JP 59249587 A JP59249587 A JP 59249587A JP 24958784 A JP24958784 A JP 24958784A JP S61128472 A JPS61128472 A JP S61128472A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
cell
size
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249587A
Other languages
Japanese (ja)
Inventor
Koji Shiina
孝次 椎名
Shigehisa Sugita
杉田 茂久
Haruichiro Sakaguchi
坂口 晴一郎
Kazuhito Koyama
一仁 小山
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59249587A priority Critical patent/JPS61128472A/en
Publication of JPS61128472A publication Critical patent/JPS61128472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent performance decrease caused by increase in cell size by arranging preheaters within fuel and air manifolds mounted outside the fuel cell main body and passing high temperature fluid generated in a system into the preheater. CONSTITUTION:A fuel cell is assembled in such a way that preheaters 12 into which high temperature fluid 13 generated in a system is passed are arranged in fuel and air manifolds 3, 5 mounted outside a fuel cell main body 1 and accommodated inside the pressure container covered with heat insulating material 11 through a thermal shield 7. Temperature of fuel and air is increased with the preheaters 12 and they are supplied for electrochemical reaction. Even when the size of a plate of fuel cell is increased, temperature decrease in a unit cell is prevented and e.m.f. of the cell can be maintained same as that of the small cell. Therefore, efficient power generation is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係り、積層電池外部に取り付けた燃
料、及び空気用マニホールド内へ予熱器を設置すること
により、燃料電池の大型化に伴なう平均温度の降下で生
ずる性能低下を防止することができる燃料電池に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel cell, and by installing a preheater inside the fuel and air manifold attached to the outside of the stacked cell, it is possible to improve the efficiency of the fuel cell as it becomes larger. The present invention relates to a fuel cell that can prevent performance deterioration caused by such a drop in average temperature.

〔発明の背景〕[Background of the invention]

従来は一般に燃料、及び空気用マニホールド内には熱交
換器など設置せず、主に積層燃料電池をおおう圧力容春
外部の断熱材による放熱防止が多かった。これによると
燃料電池のプレートサイズの大型化に伴い、プレート周
辺の温度降下によリユニットセルの平均温度下が下がり
、二九により電池の起電力Eは次式の関係よりダウンし
、性能の低下を生ずるため、電池サイズの大型化が困難
とされていた。
Conventionally, heat exchangers were generally not installed in the fuel and air manifolds, and heat radiation was mainly prevented by using insulation material outside the pressure spring that covered the stacked fuel cell. According to this, as the plate size of the fuel cell increases, the average temperature of the reunit cell decreases due to the temperature drop around the plate, and the electromotive force E of the battery decreases according to the following equation, resulting in a decrease in performance. It has been considered difficult to increase the size of the battery because of this problem.

E=f (T) 〔発明の目的〕 本発明の目的は、電池本体に供給する燃料、及び空気の
マニホールド内に予熱器を設置し1発電システム内の温
度レベルの高い加熱流体を流して燃料、あるいは空気を
予熱し、電池サイズの大型化によりプレート端での温度
降下を防止することにより、各ユニットセルの平均温度
を高めることができるため、起電力低下を防止でき、し
かも電池サイズの大型化を図れるので、各スタックの性
能向上が望める高効率な燃料電池を提供することにある
E=f (T) [Object of the Invention] The object of the present invention is to install a preheater in the fuel and air manifold to be supplied to the battery main body, and to supply the fuel by flowing a heated fluid with a high temperature level in the power generation system. Alternatively, the average temperature of each unit cell can be increased by preheating the air and preventing a temperature drop at the edge of the plate due to an increase in battery size, thereby preventing a drop in electromotive force. The object of the present invention is to provide a highly efficient fuel cell that can improve the performance of each stack.

〔発明の概要〕[Summary of the invention]

燃料電池発電システムにおいて大容量発電を達成するに
当たり、燃料電池プレートのサイズを大きくすることが
必要である。ところが、燃料電池のサイズを大きくする
と、セパレータ内での温度分布が大きくなり、サイズが
小さいものに比べて。
In order to achieve large-capacity power generation in a fuel cell power generation system, it is necessary to increase the size of the fuel cell plate. However, as the size of the fuel cell increases, the temperature distribution within the separator becomes larger compared to one with a smaller size.

プレートの平均温度が降下する。その結果、起電力Eは
この平均温度に比例するため、起電力が低下し、性能の
低下をまぬがれない6本発明は、燃料電池サイズの大型
に伴ない、燃料及び空気用マニホールド内に予熱器を設
置し、システム内の温度レベルの高い加熱流体を流すこ
とにより、マニホールド内の平均温度を高め、燃料電池
プレートするようにしている。
The average temperature of the plate drops. As a result, the electromotive force E is proportional to this average temperature, so the electromotive force decreases and the performance inevitably deteriorates. By installing a heating fluid at a high temperature level within the system, the average temperature within the manifold is increased and the fuel cell plate is heated.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図により説明する。まず、本発
明の構造は円筒の圧力容器9内へ積層した燃料電池本体
1をたて型容器支持台1oの上に設置する。そしてこの
電池本体1の周囲には電池内部での電気化学反応に必要
な燃料2、及び空気を燃料用通路、及び空気用通路に均
一に流すために必要な燃料用マニホールド、及び空気用
マニホールドを設置している。
An embodiment of the present invention will be explained with reference to FIG. First, in the structure of the present invention, the fuel cell body 1 stacked inside a cylindrical pressure vessel 9 is installed on a vertical vessel support stand 1o. Around the battery body 1, there are provided a fuel manifold and an air manifold necessary for uniformly flowing the fuel 2 and air necessary for the electrochemical reaction inside the battery into the fuel passage and the air passage. It is installed.

但し、第1図においては、空気用マニホールドは省略し
ている。そこで、以下、燃料の流れを中心に説明するが
、その内容は空気の流れに置き換えても同様に考えられ
るものとする。この際、燃料供給用マニホールド3には
燃料供給管4を取り付け、また燃料排気用マニホールド
5には燃料排気管6を取り付けている。ここで、燃料供
給用7置する。そして、この熱源としては、システム内
の温度レベルの高い加熱流体131例えば改質器内の高
温ガス等を利用する。
However, in FIG. 1, the air manifold is omitted. Therefore, the following explanation will focus on the flow of fuel, but the content can be similarly considered even if replaced with the flow of air. At this time, a fuel supply pipe 4 is attached to the fuel supply manifold 3, and a fuel exhaust pipe 6 is attached to the fuel exhaust manifold 5. Here, 7 stations for fuel supply are installed. As this heat source, a heating fluid 131 with a high temperature level in the system, for example, high-temperature gas in a reformer, etc. is used.

また、電池本体1、各マニホールド3,5内の温度が高
いので、圧力容器9とマニホールド間には熱遮蔽体7を
設置し、放熱特にふく射熱損失を防止する。もちろん、
圧力容器1の外側は断熱材11でおおっている。
Furthermore, since the temperature inside the battery body 1 and each manifold 3, 5 is high, a heat shield 7 is installed between the pressure vessel 9 and the manifold to prevent heat radiation, especially radiation heat loss. of course,
The outside of the pressure vessel 1 is covered with a heat insulating material 11.

次に、本発明の動作について説明する。放電器から出た
燃料2は燃料供給管4を通り、燃料供給用マニホールド
3内に入り、ここで予熱器12により加熱され電池本体
1内に燃料用通路へ均等に流量配気される。空気も同様
の流れで電池本体1内へ入り、ここで電気化学反応によ
り、起電力Eを生じ、燃料2は燃料排気用マニホールド
5内に集まり、燃料排気管6から流出する。空気も同様
である。この際、第2図に示すように、一般に小型の電
池サイズA、例えば300X300m/mの電池の場合
、小型のユニットセル1aを考えると、セパレータ内に
温度分布を生じてもサイズが小さいことにより、その平
均温度下、はわりと高い値を示す、ところが、大型の電
池サイズ■、例えば1000 X 1000 m / 
mの電池の場合、大型のユニットセル1bを考えても、
小型の場合と同じ最高温度T、1.に対し同一の温度分
布を生じたとしてもその時の平均温度゛〒−0′はかな
り低下する。
Next, the operation of the present invention will be explained. The fuel 2 coming out of the discharger passes through a fuel supply pipe 4 and enters a fuel supply manifold 3, where it is heated by a preheater 12 and distributed in a uniform flow rate to fuel passages within the battery body 1. Air also enters the battery body 1 in a similar flow, where electrochemical reaction generates an electromotive force E, and the fuel 2 collects in the fuel exhaust manifold 5 and flows out from the fuel exhaust pipe 6. The same goes for air. At this time, as shown in Fig. 2, in the case of a generally small battery size A, for example, a battery of 300 x 300 m/m, considering the small unit cell 1a, even if temperature distribution occurs within the separator, the size is small. , shows a relatively high value under the average temperature. However, when the battery size is large, for example 1000 x 1000 m /
In the case of a battery of m, even considering the large unit cell 1b,
Same maximum temperature T as the small size, 1. Even if the same temperature distribution is produced, the average temperature at that time 〒〒-0' will be considerably lower.

そこで1本発明のように、大型の電池サイズとマニホー
ルド内の予熱器を加えた場合◎、電池本体の端面での温
度降下を防止することができ、その時の平均温度下、′
は〒、>T、’ となり、電池サイズの大型化による平
均温度の低下をまぬがれることができる。そして、最終
的に必要な起電力Eは E低下 の関係から、第3図に示すような電気特性を示す。
Therefore, when a large battery size and a preheater inside the manifold are added as in the present invention, it is possible to prevent the temperature drop at the end face of the battery body, and under the average temperature at that time,
becomes 〒,>T,', and it is possible to avoid a decrease in average temperature due to an increase in battery size. Then, the finally required electromotive force E exhibits electrical characteristics as shown in FIG. 3 due to the relationship of decrease in E.

これより、電池サイズの大型化に伴ない、各マニホール
ド内に予熱器12を設置すれば、起電力の一一基−ルド
間に熱遮蔽体12を設置して外部へのふく射による放熱
損失を防止している。
As the battery size increases, if a preheater 12 is installed in each manifold, a heat shield 12 can be installed between the electromotive force unit and the lead to reduce heat radiation loss due to radiation to the outside. It is prevented.

〔発明の効果〕〔Effect of the invention〕

以上の発明から明らかなように、本発明によれば、電池
サイズを大型にした場合、燃料、及び空気用マニホール
ド内に予熱器を設置すれば、ユニットセル内の平均温度
の降下を防止でき、起電力が小型の場合と同様の起電力
が得られ、大容量の燃料電池発電システムを達成できる
As is clear from the above invention, according to the present invention, when the battery size is increased, by installing a preheater in the fuel and air manifolds, a drop in the average temperature within the unit cell can be prevented. An electromotive force similar to that obtained when the electromotive force is small can be obtained, and a large-capacity fuel cell power generation system can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図は燃料電
池サイズと電池的温度分布との関係図。 第3図は燃料電池サイズと起電力との関係図である。 1・・・電池本体、2・・・燃料、4・・・燃料供給管
、5・・・燃料排気用マニホールド、6・・・燃料排気
管、7・・・第 1 図 /l 某2c21 (CL) 71t3  口 を仇話度 J
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between fuel cell size and cell temperature distribution. FIG. 3 is a diagram showing the relationship between fuel cell size and electromotive force. DESCRIPTION OF SYMBOLS 1... Battery body, 2... Fuel, 4... Fuel supply pipe, 5... Fuel exhaust manifold, 6... Fuel exhaust pipe, 7... Figure 1/l Certain 2c21 ( CL) 71t3 Mouth as revenge J

Claims (1)

【特許請求の範囲】[Claims] 1、積層された燃料電池本体の外部へ設置された燃料供
給用、及び排気用マニホールド内と空気供給用、及び排
気用マニホールド内へ予熱器を取り付けたことを特徴と
する燃料電池。
1. A fuel cell characterized in that a preheater is installed inside the fuel supply and exhaust manifolds installed outside the stacked fuel cell main body and inside the air supply and exhaust manifolds.
JP59249587A 1984-11-28 1984-11-28 Fuel cell Pending JPS61128472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249587A JPS61128472A (en) 1984-11-28 1984-11-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249587A JPS61128472A (en) 1984-11-28 1984-11-28 Fuel cell

Publications (1)

Publication Number Publication Date
JPS61128472A true JPS61128472A (en) 1986-06-16

Family

ID=17195230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249587A Pending JPS61128472A (en) 1984-11-28 1984-11-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPS61128472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603695B2 (en) * 2007-06-22 2013-12-10 GM Global Technology Operations LLC Fuel cell assembly manifold heater for improved water removal and freeze start

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603695B2 (en) * 2007-06-22 2013-12-10 GM Global Technology Operations LLC Fuel cell assembly manifold heater for improved water removal and freeze start

Similar Documents

Publication Publication Date Title
US7393605B2 (en) Fuel cell end unit with integrated heat exchanger
US5763114A (en) Integrated reformer/CPN SOFC stack module design
US7659022B2 (en) Integrated solid oxide fuel cell and fuel processor
US5366819A (en) Thermally integrated reformer for solid oxide fuel cells
US20070196704A1 (en) Intergrated solid oxide fuel cell and fuel processor
JP5109252B2 (en) Fuel cell
WO2008021718A2 (en) Integrated solid oxide fuel cell and fuel processor
JP6177881B2 (en) Fuel cell
WO1995010126A1 (en) Integrated reformer/cpn sofc stack module design
WO2007066619A1 (en) Fuel cell
JP3868253B2 (en) Fuel cell heat exchange structure
JP2005078859A (en) Fuel cell system
JP5285253B2 (en) Fuel cell module
JPH01320773A (en) Electric power generating system
JP2006502072A (en) Fuel reformer
JP3611065B2 (en) Integrated fuel cell power generator
JPS61128472A (en) Fuel cell
JP2003123806A (en) Heat exchange structure of fuel cell
JP2008251493A (en) Fuel cell module
JP3349273B2 (en) Solid oxide fuel cell module
US7100376B2 (en) Fuel cell in combined heat and electric power system
JP3377646B2 (en) Solid oxide fuel cell module
JPH06103994A (en) Fuel cell power generating system
JP2865025B2 (en) Molten carbonate fuel cell
KR20230160747A (en) Manifold for solid oxide fuel cell and solid oxide electrolysis cell and fuel cell stack including the same