JPS61127922A - Automatic preload regulating method for rolling bearing and device thereof - Google Patents

Automatic preload regulating method for rolling bearing and device thereof

Info

Publication number
JPS61127922A
JPS61127922A JP59249997A JP24999784A JPS61127922A JP S61127922 A JPS61127922 A JP S61127922A JP 59249997 A JP59249997 A JP 59249997A JP 24999784 A JP24999784 A JP 24999784A JP S61127922 A JPS61127922 A JP S61127922A
Authority
JP
Japan
Prior art keywords
preload
bearing
rolling bearing
temperature
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59249997A
Other languages
Japanese (ja)
Other versions
JPH0554565B2 (en
Inventor
Yuichi Kawaguchi
川口 友一
Yasumichi Touno
東野 靖道
Koichi Shimizu
宏一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP59249997A priority Critical patent/JPS61127922A/en
Publication of JPS61127922A publication Critical patent/JPS61127922A/en
Publication of JPH0554565B2 publication Critical patent/JPH0554565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/262Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members with means to adjust the distance between the relatively slidable members
    • B23Q1/265Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members with means to adjust the distance between the relatively slidable members between rotating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/30Electric properties; Magnetic properties
    • F16C2202/36Piezo-electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Abstract

PURPOSE:To make proper preload securable as well as to make a bearing usable extending over a wide range, by giving such a function that varies the preload according to revolving speed in a rotary shaft or bearing temperature, to a preload member of a rolling bearing. CONSTITUTION:Outer rings 2b and 3b of a rolling bearing are locked to a bearing housing 7 fitly attached to a headstock 6 via a distance collar 5 formed with a piezo-element. Temperature in a bearing 3 is detected by a thermistor 9 embedded in the headstock and the bearing housing, while impressing voltage corresponding to this temperature detection signal is given to the piezo-element via a lead wire 8. Therefore, according to the bearing temperature, proper preload is given to the bearing so that the bearing is usable extending over a wide range.

Description

【発明の詳細な説明】 M東上の利用分野 本発明は工作機械の主軸例えば研削盤の内研軸。[Detailed description of the invention] Fields of use of M Tojo The present invention relates to a main shaft of a machine tool, such as an internal grinding shaft of a grinding machine.

マシニングセンタ、旋盤の主軸の軸受の予圧調整方法及
び装置に関する。
The present invention relates to a preload adjustment method and device for a bearing of a main shaft of a machining center or a lathe.

従来技術 工作機械はモータ、刃具及び付属部器の注口3向上に伴
い主軸が高速化されて生産性の増大及び仕上面精度が向
上している。しかしながら軸受の予圧量の設定がむづ炉
しく昼速時の軸受の発熱による焼付のトラブル或いは高
速タイプとして軸受を設計することによる低辷域での剛
性不足の間−が生じて、今まではこの問題を解決するた
め油圧若しくはばね圧を利用した予圧mW装置が採用さ
れていた。
In the conventional machine tools, the speed of the main spindle has been increased due to improvements in motors, cutting tools, and spouts 3 of attached parts, resulting in increased productivity and improved surface finish accuracy. However, it was difficult to set the amount of preload on the bearing, which caused problems such as seizure due to the heat generated by the bearing at daytime speeds, or lack of rigidity in the low-body range due to the design of the bearing as a high-speed type. To solve this problem, a preload mW device using hydraulic pressure or spring pressure has been adopted.

発明が解決しようとする問題点 しかし、この油圧による方法では油圧室のスペースの確
保、油もれに対するシール、自動制御等に難点がある。
Problems to be Solved by the Invention However, this method using hydraulic pressure has drawbacks such as securing space in the hydraulic chamber, sealing against oil leaks, and automatic control.

またばね圧による定圧予圧方法では制御が不ロエ能であ
った。
Furthermore, the constant pressure preloading method using spring pressure was incapable of control.

問題点を解決するための手段 回転軸1の回転数または予圧を必要とする軸受2.3の
温度の変化に対応して積極的に予圧部材50寸法変化を
起こさせて広範囲に予圧が適正圧に保たれるようにする
方法である。更に軸受2゜3と軸受の温度変化でl0i
l[極的且段階的に起る寸法変化で軸受2.乙の予圧を
広範囲にわたり適正圧とする予圧手段5とよりなるもの
である。更にまた軸受2,6と、予圧手段5と、軸受等
の温度変化または回転数の変化または回転数の指令によ
り予圧手段5に積極的な寸法変化を起させる入力を与え
る入力手段9とよりなるものである。
Means for solving the problem Actively causes dimensional changes in the preload member 50 in response to changes in the rotational speed of the rotating shaft 1 or the temperature of the bearings 2.3 that require preload, so that the preload can be adjusted to the appropriate level over a wide range. This is a method to ensure that the Furthermore, due to bearing 2゜3 and bearing temperature change, l0i
l[Bearing 2. It consists of a preload means 5 which maintains the preload of B at an appropriate pressure over a wide range. Furthermore, it consists of the bearings 2 and 6, the preload means 5, and the input means 9 for giving an input to cause the preload means 5 to actively change its dimensions in response to a change in the temperature of the bearings, a change in the rotational speed, or a rotational speed command. It is something.

実施例 以下本発明の実施例を図面にもとづき先づ第1実施例を
説明する。マシニングセンタ、旋盤、研削盤等の主軸1
を軸承丈る軸受2,3の内輪2a。
EXAMPLES Below, examples of the present invention will be described based on the drawings, first of all a first example. Main spindle 1 of machining centers, lathes, grinders, etc.
The inner rings 2a of the bearings 2 and 3 bear the bearings.

5&はディスタンスカラー4を介して主軸1に一定間隔
で固定されており、外輪2b、 5′bは電歪素子例え
ばピエゾ素子で形成されたディスタンスカラー5を介し
て主軸台乙に嵌着した軸受ハウジング7に固定されてい
て、ハウジングZ内を神器されたリード線8によってピ
エゾ素子に電圧が与えられ例えばサーミスタ9により検
出され図示されない制御装置に送られ、この温度または
1tilJ副装置の回転数指令または図示しない回転数
検出装置の実回転数にもとづき相応の電圧がリード塚8
に与えられる。また必要により回転数にもとづく制御の
場合は電圧供給にタイムラグを与える手段が付)朋され
る。ディスタンスカラー5のピエゾi子は印加電圧を高
くすることによって巾方向即ち軸方向の寸法が長くなる
ように製作されており、主軸1の使用回転数の範囲にわ
たって軸受2,6に所定の適正予圧が与えられるように
電圧が与えられる。
5& are fixed to the spindle 1 at regular intervals via distance collars 4, and outer rings 2b and 5'b are bearings fitted to the headstock 1 via distance collars 5 formed of electrostrictive elements such as piezo elements. A voltage is applied to the piezo element by a lead wire 8 fixed to the housing 7 and passed inside the housing Z, detected by a thermistor 9, for example, and sent to a control device (not shown). Or, based on the actual rotation speed of the rotation speed detection device (not shown), a corresponding voltage is detected at the lead mound 8.
given to. In addition, if necessary, in the case of control based on the rotational speed, a means for giving a time lag to the voltage supply is provided. The piezo element of the distance collar 5 is manufactured so that the dimension in the width direction, that is, the axial direction, becomes longer by increasing the applied voltage. A voltage is applied so that .

この電圧は主軸1の回転数の上昇にともなう温度上昇に
よる熱膨張の関係を実験において求めておき、またこの
ピエゾ素子でつくられたディスタンスカラー5の印7J
IJ電圧と寸法変化の関係を実験で求めておき、更に$
N蕾を要するときはピエゾ素子の温度による膨張と印加
電圧の双方を7JD味した寸法変化を求めた実験値によ
って決められ、軸受予圧が適正値となるように図示しな
い制−装置の回転数指令または主軸々受近傍に設けたサ
ーミスタ9の値にもとづいて印加電圧が制御される。第
2図のように主軸1の回転数の上昇に伴ないカラーを含
めた軸受郡全体が熱膨張し実質予圧が増大するためピエ
ゾ素子への印加電圧は順次下降させられカラー巾寸法を
細めていくものである。これにより高速回転時の予圧の
増大を防ぎ適正予圧に調整する。
This voltage is calculated by determining the relationship between thermal expansion due to temperature rise as the rotational speed of the main shaft 1 increases, and also by determining the mark 7J of the distance collar 5 made with this piezo element.
Experimentally find the relationship between IJ voltage and dimensional change, and then
When N buds are required, it is determined based on experimental values obtained by calculating the dimensional change considering both the expansion due to temperature of the piezo element and the applied voltage by 7 JD, and the rotation speed command of the control device (not shown) is determined so that the bearing preload is at an appropriate value. Alternatively, the applied voltage is controlled based on the value of a thermistor 9 provided near each main shaft bearing. As shown in Figure 2, as the rotational speed of the main shaft 1 increases, the entire bearing group including the collar expands thermally and the actual preload increases, so the voltage applied to the piezo element is gradually lowered and the collar width dimension is reduced. It's something that will happen. This prevents the preload from increasing during high speed rotation and adjusts it to an appropriate preload.

第2実施例は内研砥石軸に応用したものであって、枠体
11には外周に冷却水を通すH周溝12&を形成したス
テータ枠12が嵌着され、その内側にステータフィル1
6が巻装されている。ステータコイル16の中心にはロ
ータ14が位置してロータ軸の砥石軸15が枠体11の
蓋体16の前軸受17によって、また枠体11の中壁1
1&に軸方向の摺動可能に嵌装した軸受ハウジング18
の後軸受19によって回転のみ可能に軸承されている。
The second embodiment is applied to an internal grinding wheel shaft, and a stator frame 12 having an H circumferential groove 12& formed on the outer periphery for passing cooling water is fitted into the frame 11, and a stator filter 1 is fitted inside the frame 12.
6 is wrapped. The rotor 14 is located at the center of the stator coil 16, and the grindstone shaft 15 of the rotor shaft is supported by the front bearing 17 of the lid 16 of the frame 11, and by the inner wall 1 of the frame 11.
1 & a bearing housing 18 slidably fitted in the axial direction.
It is rotatably supported by a rear bearing 19.

この前軸受17は内輪17&を砥石軸15に固着され外
#417bは蓋体16に固層されて  。
In this front bearing 17, the inner ring 17 & is fixed to the grindstone shaft 15, and the outer ring 417b is fixed to the lid 16.

いる。また後軸受19は内輪19aが砥石@15に固着
され外y@19bは軸受ハウジング18に固着されてい
る。そして軸受ハウジング18の後端は7ランジ邪18
aが形成されており、この7ラング部18&と枠体11
の中壁11aの背面に固定状態におかれる冷却水循還筒
20との闇に印加電圧の変化によって軸方向の寸法変化
をする環状のピエゾ素子21が介装され、そのリード線
21及びステータコイル16のリード線22が枠体11
の後測蓋悴23に設はンこコネクタ24に接続されてい
て、外部人力装置zpらの人力を父ける。そして砥石軸
15の便用回転Ii@囲で■父子圧が所定の適正圧とな
るような撰子寸法及び印加電圧の大きざが決められてい
る。この場合回転数が上昇すると能力11声圧が尚くさ
れてピエゾ素子の寸法を延ばすようにンよされている。
There is. Further, the inner ring 19a of the rear bearing 19 is fixed to the grindstone @15, and the outer ring 19b is fixed to the bearing housing 18. And the rear end of the bearing housing 18 has 7 lunges 18
a is formed, and these 7 rungs 18 & and the frame 11
An annular piezo element 21 whose dimensions change in the axial direction according to changes in applied voltage is interposed between the cooling water circulation cylinder 20 fixed on the back of the inner wall 11a, and its lead wire 21 and stator The lead wire 22 of the coil 16 is connected to the frame 11
It is connected to a connector 24 installed on the rear measuring cover 23, and receives the human power of an external human power device zp. Then, in the convenient rotation Ii of the grinding wheel shaft 15, the size and the magnitude of the applied voltage are determined so that the parent-child pressure becomes a predetermined appropriate pressure. In this case, as the rotational speed increases, the capacity 11 pressure is further reduced to increase the size of the piezo element.

即ち砥石軸が回転によって軸受温度が上昇すると6却水
で冷やされているステータ枠12.冷却水循2J!1*
20よりも砥石軸15の方が延びるのでピエゾ素子21
の印加′電圧を次第に高めてピエゾ素子21の変暦を大
きくシ、必要な軸受予圧を与えていくものである。なお
ピエゾ素子は環状となしたが棒状のものを軸と平行にし
て円周上等角度位置に配置することも1田である。
That is, when the bearing temperature rises due to the rotation of the grindstone shaft, the stator frame 12, which is cooled by cooling water 6. Cooling water circulation 2J! 1*
Since the grinding wheel shaft 15 extends longer than the piezo element 21
By gradually increasing the voltage applied to the piezo element 21, the rotation of the piezo element 21 is increased, and the necessary bearing preload is applied. Although the piezo elements are annular, it is also possible to arrange rod-shaped elements parallel to the axis at equal angular positions on the circumference.

第6実施例は同じ内研砥石軸に対し環状のピエゾ素子に
替えて俸状のピエゾ素子を用いたもので、特に糸なる部
分を説明する。砥石軸61の後軸受62の外#M52a
を嵌着する軸受ハウジング63の壁面の中心の裏側と枠
不64との1mlに印加電圧変化で軸方向寸法が変化す
る棒状のピエゾ素子の予圧部材65が介在されており、
砥石軸の使用範囲にわたって軸受に適正予圧が与えられ
るようになされている。
In the sixth embodiment, a circular piezo element is used instead of an annular piezo element for the same inner grinding wheel shaft, and the thread part will be explained in particular. Outer #M52a of rear bearing 62 of grindstone shaft 61
A preload member 65, which is a rod-shaped piezo element whose axial dimension changes with changes in applied voltage, is interposed between the back side of the center of the wall of the bearing housing 63 into which the bearing housing 63 is fitted, and the frame 64.
Appropriate preload is applied to the bearing over the range of use of the grindstone shaft.

即ち砥石軸の回転数が高い値でM Pi回転されている
と砥石軸が延びるため軸受予圧が減少傾向となる。この
ためピエゾ4子の予圧部材65の印、IJ″、Ji、’
j圧を下げ素子寸法が短くなるように変形させ、+、:
+?定の適正予圧を保つものである。
That is, when the grindstone shaft is rotated by M Pi at a high rotational speed, the grindstone shaft is extended, so that the bearing preload tends to decrease. Therefore, the marks on the preload member 65 of the four piezo elements, IJ'', Ji,'
j Lower the pressure and deform the element to shorten it, +,:
+? This is to maintain a constant and appropriate preload.

次に′4歪素子に替えて形状記憶合金を用いた第4実り
欧例を旋盤等の主軸に用いた場合を説明する。
Next, a case will be described in which a fourth embodiment using a shape memory alloy instead of the '4 strain element is used for the main shaft of a lathe or the like.

第1実施例のディスタンスカラー5のピエゾ4子を形状
記憶合金51に変更したもので、変更しない部分の説明
は省略する。形状記憶合金は反態扁区に達したとき記憶
しておいた形状となり軸方向の巾寸法が匣かに減少する
形のもので、変態温度が異なる数種の形状記は合金51
を順次mlみ合わせることによって第6図のように4&
上昇と−もにディスタンスカラー5の厚みを減少させて
いくものである。尚この形状記憶合金は変態温度におい
て直径が大きくなり巾寸法を減少する形のものはディス
タンスカラー5の外周に備かに隙間を設けておくことが
必要である。また円周方向にうねりをもたせて変態温度
でうねり量を僅かに変化させる形とすることも可能であ
る。
The four piezo elements of the distance collar 5 of the first embodiment are changed to a shape memory alloy 51, and a description of the parts that are not changed will be omitted. Shape memory alloys take on the memorized shape when they reach the reversal zone, and the width in the axial direction decreases dramatically.
By sequentially combining ml of 4&
As the height increases, the thickness of the distance collar 5 decreases. If the shape memory alloy has a shape that increases in diameter and decreases in width at the transformation temperature, it is necessary to provide a gap around the outer periphery of the distance collar 5. It is also possible to provide waviness in the circumferential direction so that the amount of waviness changes slightly depending on the transformation temperature.

効果 以上詳述したように本斃明はil!llI支の予圧を与
える部材に′彪歪素子或いは形状記1惹合金を用い主軸
回転数または軸受温度の上昇に伴い形状を変更していく
ようになしたので、低速回転時と高速回転時において軸
受の予圧を所定の適正j直に保持することができ、低速
、高速いづれの場合にも細受論性を高くすることができ
て鳩稍度の仕上面を得ることができる。また烏連回伝域
での温度上昇を抑制し発熱による熱膨張に趨向するトラ
ブルを未然に防止できる。更に広範な変速域で使用が可
能となる効果を有する。
As explained in detail above, Motoaki is il! By using a 'Biao strain element or a shape-described alloy for the member that applies preload to the III support, the shape changes as the spindle rotational speed or bearing temperature increases, so that the The preload of the bearing can be maintained at a predetermined appropriate level, and the fineness of the bearing can be improved at both low and high speeds, and a smooth finished surface can be obtained. Furthermore, it is possible to suppress the temperature rise in the heat transfer region and prevent troubles that tend to occur due to thermal expansion due to heat generation. It also has the effect of allowing use in a wider range of speed changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は旋盤主軸々受の縦断1[Ij図、第2図はピエ
ゾ素子に与える4圧と回転数の関係1、第6図は内研砥
石軸の稜帥1面図、第4図は内研砥石用の他の実鳳列の
喰閘囲図、第5::」はζξ7キ主噛の他の笑弛例の縦
断曲回、第6図はlc状記憶合金の温度変化に対してデ
ィスタンスカラーの■tみの変化を示す図である。 1・・・主軸  2.6,17,19.32・・・軸受
5.5・・・ディスタンスカラー 9・・・サーミスタ
7.18.35・・・軸受/Xウジング15.31・・
・内研砥石i!4121,65・・・ピエゾ素子特許出
顔人
Figure 1 is a vertical cross section of the lathe main shaft support, Figure 2 is the relationship between the four pressures applied to the piezo element and the rotational speed, Figure 6 is a top view of the ridge of the inner grinding wheel shaft, Figure 4 Figure 5 shows the vertical curve of another example of ζξ7-ki main gear, and Figure 6 shows the temperature change of LC-shaped memory alloy. In contrast, it is a diagram showing a change in distance color ■t. 1... Main shaft 2.6, 17, 19.32... Bearing 5.5... Distance collar 9... Thermistor 7.18.35... Bearing/X-Using 15.31...
・Uchiken whetstone i! 4121,65...Piezo element patent appearance person

Claims (5)

【特許請求の範囲】[Claims] (1)回転軸を支承するころがり軸受に予圧を与えてお
く必要がある場合に、該回転軸の回転数または軸受等の
温度の変化に対応して積極的に予圧部材の寸法を変化さ
せて予圧が広範囲に適正圧となるようにしたころがり軸
受用自動予圧調整方法。
(1) When it is necessary to apply preload to a rolling bearing that supports a rotating shaft, the dimensions of the preload member can be actively changed in response to changes in the rotational speed of the rotating shaft or the temperature of the bearing, etc. Automatic preload adjustment method for rolling bearings that maintains the appropriate preload over a wide range.
(2)回転軸を支承するころがり軸受と、該軸受等の温
度変化によって積極的且段階的に寸法変化を起こさせそ
の変化で前記軸受の外輪または内輪を介して予圧が広範
囲に適正圧にされる予圧手段とよりなるころがり軸受用
自動予圧調整装置。
(2) The rolling bearing that supports the rotating shaft actively and step-by-step changes in dimensions due to temperature changes in the bearing, etc., and the preload is adjusted to the appropriate pressure over a wide range through the outer ring or inner ring of the bearing. Automatic preload adjustment device for rolling bearings consisting of preload means.
(3)予圧手段は変態温度を順次異にする形状記憶合金
の複数個を組合わせ配列したものである特許請求の範囲
第2項記載のころがり軸受用自動予圧調整装置。
(3) The automatic preload adjustment device for a rolling bearing according to claim 2, wherein the preload means is a combination and arrangement of a plurality of shape memory alloys having different transformation temperatures.
(4)回転軸を支承するころがり軸受と、該軸受の外輪
または内輪に作用して予圧を与える予圧手段と、前記軸
受等の温度変化を検出または前記回転軸の回転数の変化
を検出または回転数の指令により前記予圧手段に積極的
に連続的な寸法変化を起こさせる入力を与え予圧を広範
囲にわたり適正圧とする入力手段とよりなるころがり軸
受用自動予圧調整装置。
(4) A rolling bearing that supports a rotating shaft, a preload means that acts on an outer ring or an inner ring of the bearing to apply a preload, and detects a change in temperature of the bearing, etc. or detects a change in the rotational speed of the rotating shaft, or rotates the bearing. An automatic preload adjustment device for a rolling bearing, comprising an input means for applying an input that causes the preload means to actively cause continuous dimensional changes in accordance with a number of commands, and adjusting the preload to an appropriate pressure over a wide range.
(5)予圧手段は電歪素子である特許請求の範囲第4項
記載のころがり軸受用自動予圧調整装置。
(5) The automatic preload adjustment device for a rolling bearing according to claim 4, wherein the preload means is an electrostrictive element.
JP59249997A 1984-11-27 1984-11-27 Automatic preload regulating method for rolling bearing and device thereof Granted JPS61127922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249997A JPS61127922A (en) 1984-11-27 1984-11-27 Automatic preload regulating method for rolling bearing and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249997A JPS61127922A (en) 1984-11-27 1984-11-27 Automatic preload regulating method for rolling bearing and device thereof

Publications (2)

Publication Number Publication Date
JPS61127922A true JPS61127922A (en) 1986-06-16
JPH0554565B2 JPH0554565B2 (en) 1993-08-12

Family

ID=17201304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249997A Granted JPS61127922A (en) 1984-11-27 1984-11-27 Automatic preload regulating method for rolling bearing and device thereof

Country Status (1)

Country Link
JP (1) JPS61127922A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643119U (en) * 1987-06-24 1989-01-10
JPH01158818U (en) * 1988-04-22 1989-11-02
EP0370395A2 (en) * 1988-11-21 1990-05-30 Hughes Aircraft Company Method of controlling the path of balls in an oscillating bearing
EP0377145A2 (en) * 1988-03-14 1990-07-11 Institut Für Produktionstechnik Karlsruhe Gmbh Axial pretension-adjusting device for roller bearings and spindle nuts
JPH03249420A (en) * 1990-02-27 1991-11-07 Hino Motors Ltd Support structure of through shaft and adjusting method of pre-load for taper bearing
JPH07174140A (en) * 1993-12-21 1995-07-11 Nec Corp Face-to-face combined angular ball bearing
EP0964172A1 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method for modifying the preload of a rotary member and rotary member
EP0964173A1 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method for modifying the preload between a shaft bearing and a rotary member and shaft bearing
EP0964174A2 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method of detuning the natural frequency of a rotary member as well as tunable member
DE19854277C1 (en) * 1998-11-25 2000-05-04 Fraunhofer Ges Forschung Roller bearing with variable raceway incorporates piezo actor to vary raceway geometry
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
WO2006015048A1 (en) * 2004-07-27 2006-02-09 The Timken Company Adaptive bearing system containing a piezoelectric actuator for controlling setting
DE102005027082A1 (en) * 2005-06-11 2006-12-14 Daimlerchrysler Ag Bearing device for e.g. differential gear in motor vehicle, has fastening device with intermediate unit, which enables change of axial pre-stressing of roller bearings through load-sensitive change of its thickness measurement
DE102008052261A1 (en) * 2008-10-18 2010-04-22 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger for internal combustion engine, particularly motor vehicle, has shaft, which rotates compressor and turbine wheel
JP2012147666A (en) * 2012-03-02 2012-08-02 Nsk Ltd Shaft direction micromotion mechanism with rolling mechanism and positioning device using the same
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126924A (en) * 1993-10-29 1995-05-16 Murata Mach Ltd Spinning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827843A (en) * 1971-08-09 1973-04-12
JPS57107422A (en) * 1980-12-25 1982-07-03 Mitsubishi Heavy Ind Ltd Bearing pressurization load adjusting apparatus
JPS5882640A (en) * 1981-10-29 1983-05-18 カ−ネイ・アンド・トレツカ−・コ−ポレ−シヨン Rotary support apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827843A (en) * 1971-08-09 1973-04-12
JPS57107422A (en) * 1980-12-25 1982-07-03 Mitsubishi Heavy Ind Ltd Bearing pressurization load adjusting apparatus
JPS5882640A (en) * 1981-10-29 1983-05-18 カ−ネイ・アンド・トレツカ−・コ−ポレ−シヨン Rotary support apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643119U (en) * 1987-06-24 1989-01-10
EP0377145A2 (en) * 1988-03-14 1990-07-11 Institut Für Produktionstechnik Karlsruhe Gmbh Axial pretension-adjusting device for roller bearings and spindle nuts
EP0377145A3 (en) * 1988-03-14 1992-01-02 Institut Für Produktionstechnik Karlsruhe Gmbh Axial pretension-adjusting device for roller bearings and spindle nuts
JPH01158818U (en) * 1988-04-22 1989-11-02
JPH0533772Y2 (en) * 1988-04-22 1993-08-27
EP0370395A2 (en) * 1988-11-21 1990-05-30 Hughes Aircraft Company Method of controlling the path of balls in an oscillating bearing
JPH03249420A (en) * 1990-02-27 1991-11-07 Hino Motors Ltd Support structure of through shaft and adjusting method of pre-load for taper bearing
JPH07174140A (en) * 1993-12-21 1995-07-11 Nec Corp Face-to-face combined angular ball bearing
EP0964174A3 (en) * 1998-06-13 1999-12-22 DaimlerChrysler AG Method of detuning the natural frequency of a rotary member as well as tunable member
US6283636B1 (en) 1998-06-13 2001-09-04 Daimlerchrysler Ag Method for changing the clamping conditions of a rotatable part as well as a rotatable part
EP0964174A2 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method of detuning the natural frequency of a rotary member as well as tunable member
DE19826174A1 (en) * 1998-06-13 1999-12-16 Daimler Chrysler Ag Process for changing the clamping conditions of a turned part and turned part
DE19826172A1 (en) * 1998-06-13 1999-12-16 Daimler Chrysler Ag Process for changing the clamping conditions between a shaft bearing and a turned part and shaft bearing
DE19826176A1 (en) * 1998-06-13 1999-12-16 Daimler Chrysler Ag Detuning natural frequency of rotary part bearing with its rotation axis coaxial with that of bearing
EP0964172A1 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method for modifying the preload of a rotary member and rotary member
DE19826176C2 (en) * 1998-06-13 2002-03-14 Daimler Chrysler Ag Procedure for detuning the natural frequency of a wave
US6190052B1 (en) 1998-06-13 2001-02-20 Daimlerchrysler Ag Method for changing the clamping conditions between a shaft bearing and a rotatable part as well as a shaft bearing
EP0964173A1 (en) * 1998-06-13 1999-12-15 DaimlerChrysler AG Method for modifying the preload between a shaft bearing and a rotary member and shaft bearing
US6283637B1 (en) 1998-06-13 2001-09-04 Daimlerchrysler Ag Method for detuning the natural frequency of a rotatable part as well as a tunable rotatable part
DE19826172C2 (en) * 1998-06-13 2001-09-27 Daimler Chrysler Ag Process for changing the clamping conditions between a shaft bearing and a turned part and shaft bearing
DE19826174C2 (en) * 1998-06-13 2002-02-21 Daimler Chrysler Ag Procedure for changing the clamping conditions of a shaft
DE19854277C1 (en) * 1998-11-25 2000-05-04 Fraunhofer Ges Forschung Roller bearing with variable raceway incorporates piezo actor to vary raceway geometry
WO2005003579A1 (en) * 2003-06-26 2005-01-13 Honeywell International Inc. Piezodynamic preload adjustment system
WO2006015048A1 (en) * 2004-07-27 2006-02-09 The Timken Company Adaptive bearing system containing a piezoelectric actuator for controlling setting
DE102005027082A1 (en) * 2005-06-11 2006-12-14 Daimlerchrysler Ag Bearing device for e.g. differential gear in motor vehicle, has fastening device with intermediate unit, which enables change of axial pre-stressing of roller bearings through load-sensitive change of its thickness measurement
DE102008052261A1 (en) * 2008-10-18 2010-04-22 Bosch Mahle Turbo Systems Gmbh & Co. Kg Exhaust gas turbocharger for internal combustion engine, particularly motor vehicle, has shaft, which rotates compressor and turbine wheel
WO2012174762A1 (en) * 2011-06-20 2012-12-27 西安交通大学 Non-uniform-distribution pretightening-force-controllable high-speed main shaft based on piezoelectric actuator and control method thereof
JP2012147666A (en) * 2012-03-02 2012-08-02 Nsk Ltd Shaft direction micromotion mechanism with rolling mechanism and positioning device using the same

Also Published As

Publication number Publication date
JPH0554565B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
JPS61127922A (en) Automatic preload regulating method for rolling bearing and device thereof
CN106984836A (en) A kind of built-in dynamic/static piezoelectric main shaft of high-speed, high precision
US11148241B2 (en) Main shaft device
JP2011167799A (en) Main spindle device
US6505972B1 (en) Bearing with adjustable setting
TW200900602A (en) Preload adjusting method in rolling bearing assembly and device therefor
CN205148047U (en) High -speed precision roll bistrique with adjustable
US10189127B2 (en) Positioning of a spindle with micrometric forwarding control and tilting of its rotation axis
CN108247535A (en) A kind of numerically control grinder electro spindle for having self-adjustable bearing pretightning force
JPH11239902A (en) Spindle supporting device for machine tool
JPS61121802A (en) Antifriction bearing for machine tool spindle
JP3845757B2 (en) Spindle device of machine tool and operation method thereof
JPH05208339A (en) Temperature control device for spindle of machine tool
US2719064A (en) Conical self-adjusting bearing
JP2001162490A (en) Method and device for compensating thermal displacement of machine tool main spindle
CN207915135U (en) A kind of main shaft housing outer diameter superfine milling special tooling
CN208005457U (en) A kind of numerically control grinder electro spindle having self-adjustable bearing pretightning force
JPH02101944A (en) Control method for thermal displacement of rotating shaft
JPH05138408A (en) High speed main shaft device
JPH0425343A (en) Method for cooling bearing for main spindle of machine
US4700510A (en) Spindle stock unit for surface grinding machine
JP6645048B2 (en) Hydrostatic bearing, method of manufacturing the same, and machine tool using the same
JPH0571535A (en) Static pressure fluid bearing
JP2000126938A (en) Spindle device of discharge machine
JP2001159421A (en) Rolling bearing device