JPS61127894A - High-current density electrolytic cell for metallic strip - Google Patents

High-current density electrolytic cell for metallic strip

Info

Publication number
JPS61127894A
JPS61127894A JP24754084A JP24754084A JPS61127894A JP S61127894 A JPS61127894 A JP S61127894A JP 24754084 A JP24754084 A JP 24754084A JP 24754084 A JP24754084 A JP 24754084A JP S61127894 A JPS61127894 A JP S61127894A
Authority
JP
Japan
Prior art keywords
plating
opening
current density
strip
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24754084A
Other languages
Japanese (ja)
Inventor
Hajime Kimura
肇 木村
Tamotsu Mizuta
水田 有
Tadao Fujinaga
藤永 忠男
Shinjiro Murakami
村上 進次郎
Tetsuya Kohama
小浜 哲也
Shuji Iwamoto
岩本 周治
Shinjiro Ishikawa
石川 晋二郎
Asaharu Kihata
木畑 朝晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24754084A priority Critical patent/JPS61127894A/en
Publication of JPS61127894A publication Critical patent/JPS61127894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To remove efficiently the gas generated during plating from an electrolyzing surface and to execute high-speed electrolytic treatment at high current density by embedding a suitable number of members formed with apertures into insoluble electrodes of an electrolytic cell and discharging the gas through the apertures. CONSTITUTION:A suitable number of the members (protective bodies) 3 formed with the apertures equal approximately to the width of a strip 1 are disposed at suitable intervals into the insoluble electrodes 2. The gas generated during plating is discharged through the apertures of such protective bodies 3 from a plating chamber. The higher effect is obtd. by forming the 2nd apertures on the outside of the apertures on both sides of the bodies 3 in the transverse direction of the strip to form the circulation path to suck the plating liquid including the gas through the 1st apertures and returning the same through the 2nd apertures to the plating chamber. The treatment of the metallic strip with the high current density is made possible by the electrolytic cell having the above-mentioned mechanism.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、不溶性電極を用いる金属ストラングの電解処
理において、電解中に発生する酸素ガス、水素ガス等を
電解面から効率よく除去し、高電流密度による高速電解
処理を可能とする電解セルに関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention efficiently removes oxygen gas, hydrogen gas, etc. generated during electrolysis from the electrolytic surface in the electrolytic treatment of metal strings using an insoluble electrode. This invention relates to an electrolytic cell that enables high-speed electrolytic processing using current density.

〈従来の技術とその問題点〉 一般に、金属ストリツプの電解においては、電極交換の
必要がなく、また電極表面形状を一定に保持でき、均一
な電解処理が可能な不溶性電極が多く用いられている。
<Conventional technology and its problems> In general, in the electrolysis of metal strips, insoluble electrodes are often used, which do not require electrode replacement, can maintain a constant electrode surface shape, and can perform uniform electrolytic treatment. .

このような不溶性電極と金属ストリップとの極間に液を
流しながら、高電流密度による高速めっきを行う場合、
次のような問題点がある。
When performing high-speed plating with high current density while flowing a liquid between the insoluble electrode and the metal strip,
There are the following problems.

(1)電解により、不溶性電極(陽8j)表面から10
0%の電流効率で酸素ガスが発生し、電極と金属ストリ
・ンプとの極間に溜まる。
(1) By electrolysis, 10
At 0% current efficiency, oxygen gas is generated and accumulates between the electrode and the metal strip.

(2)高電流密度になるほど、比例してガス発生量は増
える。
(2) As the current density increases, the amount of gas generated increases proportionally.

(3)一方、高電流密度はど、極間の電圧が高くなるの
で、電力費がアップする。このため、極間を狭くすると
、ガス発生量は変化しないので、極間が狭くなるほどガ
ス占積率が増大し、またガス抜けしにくくなり、めっき
処理を阻害する。
(3) On the other hand, high current density increases the voltage between the electrodes, which increases power costs. For this reason, when the gap between the electrodes is narrowed, the amount of gas generated does not change, so the narrower the gap between the electrodes, the higher the gas occupancy factor, and the more difficult it is for gas to escape, impeding the plating process.

このような、極間のガス排出に係る従来技術として次の
ものが挙げられる。
The following are examples of conventional techniques related to such gas discharge between electrodes.

(1)特公昭53−18167号 「ストリップに面する電極面(背後部に処理液をためた
室を有する)から多数の小孔又はスリット孔を通して、
導電中のストリップに、処理液を噴流状態で吹き付け、
電解中に発生するガスを排出する方法。」 と配力法には次のような問題点がある。
(1) Japanese Patent Publication No. 53-18167 "Through a large number of small holes or slit holes from the electrode surface facing the strip (having a chamber storing the processing liquid at the back),
Spray the treatment liquid in a jet onto the conductive strip.
A method of exhausting gases generated during electrolysis. ” and the force distribution method has the following problems.

■ 多数の小孔から噴射される液は互いにぶつかりあう
。ぶつかりあった部分の液は極間に局部的に滞留するの
で、そこに存在するガスは容易に排出しない。したがっ
て、高電流密度めっきが達成できない。
■ The liquid ejected from the many small holes collides with each other. Since the liquid in the areas where they collide stays locally between the poles, the gas present there is not easily discharged. Therefore, high current density plating cannot be achieved.

■ 極間の液は陽極の周辺から外側に流出するので、ス
トリップ幅方向に流速分布が均一でない。とくに、スト
リップ中央部と他の部分との流速が相違しているものと
推測され1合金めっきのタイプによっては、めっき滑合
金成分の均一性が低下する可能性があり、不都合である
。また、最大許容電流密度は局部的に液流速の最も遅い
部分に依存するので、高電流密度めっきが達成できない
、(2)特開昭58−16092号 「電極長手方向に、ストリップの幅方向中央部から両エ
ツジ側へ電解液を流出させる電解液噴出口を設けたこと
を特徴とする金属ストリップの電気めっき用セル。」 この技術についても、上述した特公昭53−18167
号について■で指摘したと同様の問題点がある。
■ The liquid between the electrodes flows outward from the periphery of the anode, so the flow velocity distribution is not uniform in the width direction of the strip. In particular, it is assumed that the flow velocity between the central part of the strip and the other parts is different, and depending on the type of alloy plating, the uniformity of the plated sliding alloy components may be reduced, which is disadvantageous. In addition, since the maximum allowable current density locally depends on the part where the liquid flow rate is slowest, high current density plating cannot be achieved. A metal strip electroplating cell characterized by being provided with an electrolytic solution spout that allows the electrolytic solution to flow out from the edge to both edges.'' This technology was also described in the above-mentioned Japanese Patent Publication No. 53-18167.
Regarding the issue, there are the same problems as pointed out in ■.

そのため、高電流密度電解セルにおいて、不溶性電極表
面から発生する多量のガスを有効に取除く手段は未だ実
現していない。
Therefore, in a high current density electrolytic cell, a means for effectively removing a large amount of gas generated from the surface of an insoluble electrode has not yet been realized.

〈発明の目的〉 本発明の目的は、上記のような問題点を解決し、金属ス
トリップの高電流密度電解セルにおいて投入電流を増加
するために、■不溶性電極を長くし、(め電極間をサイ
ドシールしてめっき液の流速分布を均一にし、■金属ス
トリップの走行方向とめっき液流の方向を対向流にし、
■電極間距離を狭くした場合においても不溶性電極表面
から発生する多量のガスを有効に除去することができ、
しかも、金属ストリップと電極との接触の危機を防1卜
し、極間におけるガス占積率を下げ、電解液流速が、電
解セル中のいずれの場所においても、ほぼ均一とするこ
とのできる開口を形成した部材を、不溶性電極中に埋設
した金属ストリップの高電流密度電解セルを提供しよう
とするものである。
<Objective of the Invention> The object of the present invention is to solve the above-mentioned problems and increase the input current in a metal strip high current density electrolytic cell. The side seal is used to make the flow velocity distribution of the plating solution uniform, and the running direction of the metal strip and the direction of the plating solution flow are opposite to each other.
■Even when the distance between the electrodes is narrowed, a large amount of gas generated from the insoluble electrode surface can be effectively removed.
In addition, the opening prevents the risk of contact between the metal strip and the electrode, lowers the gas space factor between the electrodes, and allows the electrolyte flow rate to be almost uniform at any location in the electrolytic cell. The present invention aims to provide a high current density electrolytic cell of a metal strip in which a member formed with a metal strip is embedded in an insoluble electrode.

〈発明の具体的構成〉 J:述のような目的を達成する第1の発明は、めっき室
内を流れるめっき液中で不溶性電極を用いて金属ストリ
ップにめっきを行う高電流密度電解セルにおいて、ほぼ
ストリップ幅に相当する長さに亘って開口を形成した部
材を前記不溶性電極に埋設し、めっき中に発生するガス
を前記開口を経てめっき室より排出するよう構成したこ
とを特徴とする金属ストリップの高電流密度電解セルで
ある。
<Specific Structure of the Invention> J: The first invention that achieves the above-mentioned object is a high current density electrolytic cell in which a metal strip is plated using an insoluble electrode in a plating solution flowing in a plating chamber. A metal strip characterized in that a member having an opening extending over a length corresponding to the width of the strip is embedded in the insoluble electrode, and gas generated during plating is discharged from the plating chamber through the opening. It is a high current density electrolytic cell.

また、第2の発明は、めっき室内を流れるめっき液中で
不溶性電極を用いて金属ストリップにめっきを行う高電
流密度電解セルにおいて、ほぼストリップ幅に相当する
長さに亘って形成された第1開口および第1開口の外側
に形成された第2開口を有する部材を前記不溶性電極に
埋設し。
Further, the second invention provides a high current density electrolytic cell for plating a metal strip using an insoluble electrode in a plating solution flowing in a plating chamber, in which a first electrode is formed over a length approximately corresponding to the width of the strip. A member having an opening and a second opening formed outside the first opening is embedded in the insoluble electrode.

めっき中に発生するガスを含むめっき液を前記開口を経
てめっき室より吸引し、前記第2開口を経てめっき室に
戻す循環路を形成したことを特徴とする金属ストリップ
の高電流密度電解セルである。
A high current density electrolytic cell for a metal strip, characterized in that a circulation path is formed for sucking a plating solution containing gas generated during plating from the plating chamber through the opening and returning it to the plating chamber through the second opening. be.

以下に、本発明の好適なl実施例を用いて本発明を詳述
する。
The present invention will be explained in detail below using preferred embodiments of the present invention.

第1の発明は、開口を有する保護体からめっき中に発生
するガスを自然に逃出させようとするものであるのに対
し、第2の発明は、上記保護体の開口よりガスおよびめ
っき液を吸引し、戻す強制循環を行うものである。以下
に、その保護体について詳細に説明する。
The first invention is to allow gas generated during plating to escape naturally from the protective body having an opening, whereas the second invention is to allow gas and plating solution to escape from the opening in the protective body. It performs forced circulation by sucking in and returning the water. The protector will be explained in detail below.

第1図は、本発明の開口を形成した部材(以下、保護体
という)3を有する金属ストリップの水平型電解セルの
断面図を示し、第2図は第1図■−II面の側断面図を
示す。
FIG. 1 shows a cross-sectional view of a horizontal electrolytic cell of a metal strip having an opening-formed member (hereinafter referred to as a protector) 3 according to the present invention, and FIG. 2 is a side cross-sectional view of the plane shown in FIG. Show the diagram.

保護体3は、ストリップ長手方向にはできるだけ狭い巾
を有し、ほぼストリップ巾の長さを有する開口を形成し
た部材を、不溶性電極(陽極)中に電極の長手方向に適
当な間隔で適当な個数を埋設する。ストリップ長手方向
にはできるだけ狭い巾を有することが望ましいが、開口
を形成するための最小限の巾が必要であり、25mm以
下の巾が好ましい。長さはストリップの巾によって異な
るが、ほぼストリップ巾を有し、不溶性電極の巾全体に
渡ることが望ましい。
The protector 3 has a width as narrow as possible in the longitudinal direction of the strip, and a member having an opening approximately the length of the strip width is inserted into the insoluble electrode (anode) at appropriate intervals in the longitudinal direction of the electrode. Bury the quantity. Although it is desirable that the strip has a width as narrow as possible in the longitudinal direction, a minimum width is required to form an opening, and a width of 25 mm or less is preferable. Although the length varies depending on the width of the strip, it is desirable that the length be approximately the width of the strip and span the entire width of the insoluble electrode.

保護体3は電極2表面かられずかに突出して埋設する。The protector 3 is buried so as to slightly protrude from the surface of the electrode 2.

突出しすぎるとめっき液流を乱すので。If it protrudes too much, it will disturb the plating solution flow.

極間距離の2割以下とすることが好ましい。It is preferable to set it to 20% or less of the distance between poles.

この保護体3は、ほぼストリップ巾に相当する長さに渡
って第1開口lOを形成し、めっき中に発生するガスを
、めっき液とともに第1開口10よりめっき室から排出
する。
This protector 3 forms a first opening 10 over a length approximately corresponding to the strip width, and discharges gas generated during plating from the plating chamber through the first opening 10 along with the plating solution.

さらに、保護体3のストリップ巾方向の両サイドには、
第1開口10の外側に第2開口11を形成することが好
ましい。このように第1、第2の開口を形成して、めっ
き中に発生するガスを含むめっき液を第1開口10によ
って吸引し、第2開「111によってめっき室に戻す循
環路13を形成する。循環路13には、めっき液の吸引
のためのポンプ7と流量調整のための流量調整バルブ8
を設けるのが良い。
Furthermore, on both sides of the protector 3 in the strip width direction,
It is preferable to form the second opening 11 outside the first opening 10. By forming the first and second openings in this manner, a circulation path 13 is formed in which the plating solution containing gas generated during plating is sucked through the first opening 10 and returned to the plating chamber through the second opening 111. The circulation path 13 includes a pump 7 for suctioning the plating solution and a flow rate adjustment valve 8 for adjusting the flow rate.
It is good to have a

電極間から第1開口10によりめっき液の1部を外部に
搬出すると、めっき液出口側12に行くに従ってめっき
液流量が少なくなるため流速が低下し、ストリップ長手
方向の流速分布が不均一となる。これを解決するため、
第1開口10から搬出しためっき液を第2開口11から
めっき室に戻す、電極巾の両サイドはストリップが通ら
ず、ストリップの板厚分だけ電極間が広くなっており、
同一液流量においては極間中央部より流速がおそくなっ
ているので、第2開口11によってめっき液を排出させ
て、流速分布をストリップの巾方向にも均一にすること
ができる。
When a portion of the plating solution is carried out from between the electrodes through the first opening 10, the flow rate of the plating solution decreases toward the plating solution outlet side 12, so the flow velocity decreases, and the flow velocity distribution in the longitudinal direction of the strip becomes uneven. . To solve this,
The plating solution carried out from the first opening 10 is returned to the plating chamber from the second opening 11.The strip does not pass through both sides of the electrode width, and the gap between the electrodes is widened by the thickness of the strip.
At the same liquid flow rate, the flow velocity is slower than the center part between the electrodes, so the second opening 11 allows the plating solution to be discharged, thereby making the flow velocity distribution uniform in the width direction of the strip.

さらに、電極間をサイドシール6によって閉路に形式す
れば、ストリップの巾方向、長手方向の流速分布はさら
に均一となる。
Furthermore, if the side seals 6 form a closed circuit between the electrodes, the flow velocity distribution in the width direction and length direction of the strip becomes even more uniform.

第1開口および第2開口は1個以上の開口で構成すれば
よく、電解面(ストリップの最大中)に対応する第1開
口10から吸引した電解液を、第2開口11により保護
体3の両サイドから排出してめっき室12に戻すのであ
るが、この場合、吸引と排出の断面積をほぼ同一とする
ことが望ましい。また、開口の形状は、スリットなどの
角形、丸形、多角形、楕円形など任意の形状をとること
ができ、穴の直径、個数あるいは穴あけ密度を変えて吸
引と排出の断面積をほぼ同一としてもよい。電解面に対
応するスリットから吸い出す液量は極間流量の20%以
内が望ましい、20%を超えると極間内の流速が変動し
、また、吸入、排出のスペース、装置も大きくなり、実
用的でない。
The first opening and the second opening may be composed of one or more openings, and the electrolytic solution sucked from the first opening 10 corresponding to the electrolytic surface (the maximum middle of the strip) is transferred to the protector 3 through the second opening 11. It is discharged from both sides and returned to the plating chamber 12. In this case, it is desirable that the suction and discharge cross-sectional areas be approximately the same. In addition, the shape of the opening can be any shape such as a square such as a slit, a round shape, a polygon, an ellipse, etc., and the cross-sectional area of suction and discharge can be made almost the same by changing the diameter, number, or density of holes. You can also use it as It is desirable that the amount of liquid sucked out from the slit corresponding to the electrolytic surface be within 20% of the interelectrode flow rate; if it exceeds 20%, the flow rate within the interelectrode will fluctuate, and the space and equipment for suction and discharge will also become larger, making it impractical. Not.

なお、電極表面から発生したガスは、そのまま電極面に
沿って流れる特性がみられるので、むやみに吸い出す液
量を多くする必要はなく、必要最小限の流量を実験によ
って求めれば、発生したガスを開口から効率よく除去す
ることが可能である。
Note that the gas generated from the electrode surface has a characteristic of flowing directly along the electrode surface, so there is no need to unnecessarily increase the amount of liquid sucked out.If the minimum necessary flow rate is determined by experiment, the gas generated can be easily removed. It is possible to efficiently remove it from the opening.

電極面の長手方向に設置する保護体の間隔は。What is the interval between protectors installed in the longitudinal direction of the electrode surface?

電極の有効長250〜750mm毎がよい。250mm
より短くなっても、電解面のガス除去効率はそれ以上向
上しない。一方、750mmを超えると極間のガス除去
が十分できなくなる。
The effective length of the electrode is preferably every 250 to 750 mm. 250mm
Even if it becomes shorter, the gas removal efficiency of the electrolytic surface does not improve any further. On the other hand, if it exceeds 750 mm, gas between the electrodes cannot be removed sufficiently.

保護体に使用する材質は、絶縁性のものが望ましいが、
Tiのように、表面に強固な絶縁性の高い不働態皮膜を
形成する金属を用いることもできる。その代表例として
は、テフロン、ポリプロビレン、FRPなどを挙げるこ
とができる。
It is desirable that the material used for the protector be insulating, but
A metal that forms a strong, highly insulating passive film on the surface, such as Ti, can also be used. Typical examples thereof include Teflon, polypropylene, and FRP.

以上のような構成を有する保護体3は、水平型電解セル
、縦型電解セル、ラジアル型電解セル等のいかなる型の
電解セルの電極にも適用することができる。
The protector 3 having the above structure can be applied to the electrode of any type of electrolytic cell such as a horizontal electrolytic cell, a vertical electrolytic cell, a radial electrolytic cell, etc.

保護体3の一構成例を第5図に示す。An example of the structure of the protector 3 is shown in FIG.

保護体3は突出部15を有し、その前面16はガスを含
むめっき液を開口部17に向けて案内する。開口部17
は全体に亘って同じ幅でもよいが、特にめっき液を循環
させるような場合には、中央部18は幅狭に1両端部1
9は幅広に構成するのが好ましい。この場合、開口部1
8と19との間は隔壁20で区画するのが良い。
The protector 3 has a protrusion 15 whose front surface 16 guides the gas-containing plating solution toward the opening 17 . Opening 17
may have the same width throughout, but especially in cases where plating solution is circulated, the center portion 18 may be narrower, with one width at both ends 1.
9 is preferably configured to be wide. In this case, opening 1
8 and 19 is preferably separated by a partition wall 20.

く実 施 例〉 第1図、第2図に示す本発明の水平型セルを用いて、鋼
板ストリップへのめっきを行なった。pb系不溶性陽極
に材質テフロン製の保護体を電極の長手方向に500m
mの間隔で1陽極に2個埋設し、約300文/linで
、めっき液を吸引し循環させた。電極とストリップとの
極間距#5〜15■、ラインスピード最大300 m/
win 、めっき液の噴出速度最大300 m/win
として、対向流によりめっきを行なったところ、不溶性
陽極付近のガスによる気泡はほとんど認められず、最大
電流密度300 A/d■2の高電流密度によるめっき
を良好に行うことができた。
EXAMPLE A steel plate strip was plated using the horizontal cell of the present invention shown in FIGS. 1 and 2. A protective body made of Teflon is placed on the PB-based insoluble anode for 500 m in the longitudinal direction of the electrode.
Two electrodes were buried in one anode at an interval of m, and the plating solution was sucked and circulated at a rate of about 300 m/lin. Distance between electrode and strip #5~15■, line speed maximum 300 m/
win, plating solution ejection speed maximum 300 m/win
When plating was carried out using countercurrent flow, almost no gas bubbles were observed near the insoluble anode, and plating was successfully carried out at a high current density of 300 A/d2 at the maximum current density.

また、1述の如く、めっき液を吸引して強制的に循環さ
せることなく、保護体より自然にガスを放出させるよう
にした場合においても、不溶性陽極付近のガス占積率は
大幅に低下し、比較的良好なめっきを行うことができた
Furthermore, as mentioned in 1, even when the gas is naturally released from the protector without suctioning and forcibly circulating the plating solution, the gas occupancy factor near the insoluble anode is significantly reduced. , relatively good plating could be performed.

〈発明の効果〉 本発明の金属ストリップの高電流密度電解セルは、開口
を形成した部材(保護体)を埋設する不溶性電極を有す
るので、めっき中に不溶性電極表面から発生する多量の
ガスを有効に除去することができ、しかも、高電流密度
達成のため金属ストリップと電極間の距離を狭くした場
合でも、ストリップと電極の接触の危険がない。
<Effects of the Invention> Since the high current density electrolytic cell of the metal strip of the present invention has an insoluble electrode in which a member (protector) with an opening is embedded, a large amount of gas generated from the surface of the insoluble electrode during plating can be effectively used. Furthermore, there is no risk of contact between the metal strip and the electrode, even when the distance between the metal strip and the electrode is narrowed to achieve high current densities.

また、本発明は、第1開口の外側に形成した第2開口を
有し、第1開口から吸引したガスを含むめっき液を第2
開口からめっき室に戻す循環路を形成する部材を埋設す
る不溶性電極をも有するので、めっき中に電極から発生
する多量のガスを強制的に有効に除去することができ、
さらに、めっき室中のめっき液の流速分布を均一にする
ことができる。
Further, the present invention has a second opening formed outside the first opening, and the plating solution containing the gas sucked from the first opening is transferred to the second opening.
Since it also has an insoluble electrode embedded with a member that forms a circulation path that returns from the opening to the plating chamber, it is possible to forcibly and effectively remove a large amount of gas generated from the electrode during plating.
Furthermore, the flow velocity distribution of the plating solution in the plating chamber can be made uniform.

このため、本発明は、高速、高効率めっきを行うために
、電解セルを高電流密度とするための以下のような電解
セルにおいても、電極表面にガスが滞留することなく、
高電流密度による高速電解が可能である。
Therefore, in order to perform high-speed, high-efficiency plating, the present invention can also be used in the following electrolytic cell to provide a high current density, without gas remaining on the electrode surface.
High-speed electrolysis is possible due to high current density.

■電解セルを多くしないで高電流密度とするために不溶
性電極を長くした場合。
■When the insoluble electrode is lengthened to achieve high current density without increasing the number of electrolytic cells.

■めっき液の流速分布を均一にするため電極間をサイド
シールした場合。
■When a side seal is used between the electrodes to make the flow velocity distribution of the plating solution uniform.

■めっき液の相対速度を速くするためにストリップの走
行方向とめっき液の流れを対向流とした場合。
■When the running direction of the strip and the flow of the plating solution are made to flow in opposite directions to increase the relative speed of the plating solution.

■電極間距離を狭くした場合。■When the distance between electrodes is narrowed.

また、本発明は、ガス発生量の多い合金めっきに適用す
る場合に、より顕著な効果を有する。
Furthermore, the present invention has more significant effects when applied to alloy plating that generates a large amount of gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水平型セルにおける本発明例を示す線図的断面
図、第2図は第1図のIT−IT線の側断面図である。 第3図はラジアル型セルにおける本発明例を示す線図的
断面図、第4図は第3図の1’V−IV線の側断面図で
ある。 第5図は、保護体の斜視図である。 符号の説明 ■・・・金属ストリップ、2・・・不溶性電極、3・・
・保護体(スリット付)、4・・・ノズルへラダー、5
・・・コンダクタ−ロール、6・・・サイドシール、7
・・・ポンプ、8・・・流量調整バルブ、9・・・メイ
ンロール、10・・・第13f1口、11・・・第2開
口、12・・・めっき室、13・・・循環路、14・・
・めっき液出口側、15・・・突出部、16・・・前面
、17・・・開口部、18・・・幅狭部、19・・・幅
広部、20・・・隔壁FIG、I FIG、2 FIG、3 FIG、4
FIG. 1 is a schematic sectional view showing an example of the present invention in a horizontal cell, and FIG. 2 is a side sectional view taken along the IT--IT line in FIG. 1. FIG. 3 is a schematic sectional view showing an example of the present invention in a radial type cell, and FIG. 4 is a side sectional view taken along line 1'V-IV in FIG. 3. FIG. 5 is a perspective view of the protector. Explanation of symbols■...Metal strip, 2...Insoluble electrode, 3...
・Protective body (with slit), 4... Ladder to nozzle, 5
...Conductor roll, 6...Side seal, 7
... pump, 8 ... flow rate adjustment valve, 9 ... main roll, 10 ... 13th f1 port, 11 ... second opening, 12 ... plating chamber, 13 ... circulation path, 14...
・Plating solution outlet side, 15...Protruding part, 16...Front surface, 17...Opening part, 18...Narrow width part, 19...Wide part, 20...Partition wall FIG, I FIG ,2 FIG,3 FIG,4

Claims (2)

【特許請求の範囲】[Claims] (1)めっき室内を流れるめっき液中で不溶性電極を用
いて金属ストリップにめっきを行う高電流密度電解セル
において、ほぼストリップ幅に相当する長さに亘って開
口を形成した部材を前記不溶性電極に埋設し、めっき中
に発生するガスを前記開口を経てめっき室より排出する
よう構成したことを特徴とする金属ストリップの高電流
密度電解セル。
(1) In a high current density electrolytic cell in which a metal strip is plated using an insoluble electrode in a plating solution flowing in a plating chamber, a member with an opening extending over a length approximately equivalent to the width of the strip is attached to the insoluble electrode. 1. A high current density electrolytic cell of a metal strip, characterized in that the metal strip is buried and gas generated during plating is discharged from the plating chamber through the opening.
(2)めっき室内を流れるめっき液中で不溶性電極を用
いて金属ストリップにめっきを行う高電流密度電解セル
において、ほぼストリップ幅に相当する長さに亘って形
成された第1開口および第1開口の外側に形成された第
2開口を有する部材を前記不溶性電極に埋設し、めっき
中に発生するガスを含むめっき液を前記開口を経てめっ
き室より吸引し、前記第2開口を経てめっき室に戻す循
環路を形成したことを特徴とする金属ストリップの高電
流密度電解セル。
(2) In a high current density electrolytic cell that uses an insoluble electrode to plate a metal strip in a plating solution flowing in a plating chamber, a first opening formed over a length approximately equivalent to the width of the strip; A member having a second opening formed on the outside is buried in the insoluble electrode, and a plating solution containing gas generated during plating is sucked from the plating chamber through the opening, and into the plating chamber through the second opening. A metal strip high current density electrolytic cell characterized by forming a return circulation path.
JP24754084A 1984-11-22 1984-11-22 High-current density electrolytic cell for metallic strip Pending JPS61127894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24754084A JPS61127894A (en) 1984-11-22 1984-11-22 High-current density electrolytic cell for metallic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24754084A JPS61127894A (en) 1984-11-22 1984-11-22 High-current density electrolytic cell for metallic strip

Publications (1)

Publication Number Publication Date
JPS61127894A true JPS61127894A (en) 1986-06-16

Family

ID=17165013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24754084A Pending JPS61127894A (en) 1984-11-22 1984-11-22 High-current density electrolytic cell for metallic strip

Country Status (1)

Country Link
JP (1) JPS61127894A (en)

Similar Documents

Publication Publication Date Title
JPS59162298A (en) High current density plating method of metallic strip
US4310403A (en) Apparatus for electrolytically treating a metal strip
JP4521146B2 (en) Method and apparatus for the electrolysis of electrically conductive structures electrically isolated from each other on the surface of an electrically insulating foil material and the use of said method
US4376683A (en) Method and device for the partial galvanization of surfaces which are conducting or have been made conducting
JPS61127894A (en) High-current density electrolytic cell for metallic strip
FI110367B (en) Electrolytic surface treatment method and apparatus for carrying out this
JP2801710B2 (en) Horizontal electroplating equipment
US4248674A (en) Anodizing method and apparatus
JPH036394A (en) Horizontal plating bath
JPS59116398A (en) Horizontal type electroplating cell
JPH0730688Y2 (en) Vertical electroplating equipment
JPS6324096A (en) Countercurrent electrolyte injector
JP2545850B2 (en) Electric plating device
KR910004971B1 (en) Metal Strip Electrolytic Equipment
JPH036395A (en) Horizontal plating bath
JP3027118B2 (en) Vertical electroplating apparatus and electrochrome plating method
JP3288229B2 (en) Electroplating equipment
JP2801841B2 (en) Electrode unit for electric treatment tank of metal strip
JPH11158697A (en) Continuous electrochemical treating device
JPS6199695A (en) Nozzle for supplying plating liquid
JPS5915997B2 (en) Strip proximity electrolyzer
JPS59185797A (en) Continuous electroplating device provided with soluble electrode
JPH08277492A (en) Horizontal electroplating device
CA1216822A (en) Electrotreating cell
JPS58104198A (en) Electroplating device