JPS61127892A - Production of shape memory alloy element - Google Patents

Production of shape memory alloy element

Info

Publication number
JPS61127892A
JPS61127892A JP24861884A JP24861884A JPS61127892A JP S61127892 A JPS61127892 A JP S61127892A JP 24861884 A JP24861884 A JP 24861884A JP 24861884 A JP24861884 A JP 24861884A JP S61127892 A JPS61127892 A JP S61127892A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
shape
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24861884A
Other languages
Japanese (ja)
Inventor
Masao Yamamoto
正夫 山本
Tetsuo Fujiwara
藤原 鉄雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24861884A priority Critical patent/JPS61127892A/en
Publication of JPS61127892A publication Critical patent/JPS61127892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/323Thermally-sensitive members making use of shape memory materials

Abstract

PURPOSE:To prolong the endurance life by putting an electrically conductive metallic layer on the surface of a shape memory alloy substrate and joining them together at a specified temp. so as to increase the adhesion of the metallic layer to the substrate. CONSTITUTION:A layer of an electrically conductive metal such as Cu or Ni is put on pat of the surface of a substrate of a shape memory alloy such as NiTi at one or more positions. The thickness of the metallic layer is <= about 5% of the minimum thickness of the substrate. They are joined together at >=400 deg.C in vacuum or in an inert or reducing gas to obtain a shape memory alloy element. The electrically conductive layer is not stripped by repeated shape restoring action, and the element maintains its stable characteristics for a long time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は形状記憶合金表面(=設けた金属層の密層性を
向上させた形状記憶合金素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a shape memory alloy element with improved layer density of a shape memory alloy surface (=metal layer provided).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周昶のように、組成比が適宜(−設定されたNi−T1
系合金およびCu系合金は、形状記憶機能を有している
。このような形状記憶合金は、所定温度(=加熱される
と記憶している形状に回aするという特異な性質を有し
ている。この特異の性質は、機械的変位動作を必要とす
るもの、たとえば各種のアクチュエータやスイッチ類に
有効(=利用できる。
As in Shusho, the composition ratio is set appropriately (-Ni-T1
The Cu-based alloy and the Cu-based alloy have a shape memory function. Such shape memory alloys have the unique property of changing to the memorized shape when heated to a predetermined temperature.This unique property requires mechanical displacement. For example, it is effective (= can be used) for various actuators and switches.

ところで、針状記憶合金で形成された形状記憶素子(=
形状回復動作を行なわせる(;は、なんらかの手段で形
状記憶素子(=熱を加え、記憶している形状(=戻るの
(=必要な逆変態点温度以上、りまタマルテンサイトを
消滅させ得る!度1;昇直させる必要があるがこのよう
(=昇温させる手段としては一般的(=、形状記憶素子
自身に峨流を流し、このときのジュール熱で昇温させる
方式や、外部の熱源によυ加熱する方式が採用されてい
る。特にいわゆる通電加熱方式は、パルス的な通電(=
よって形状回復制御が行なえるので他の方式C二較べて
制御系の単純化(=寄与している。
By the way, a shape memory element (=
To perform a shape recovery operation (; means to apply heat to the shape memory element (= to return to the memorized shape (= to exceed the required reverse transformation point temperature, and to eliminate the rimata martensite) !degree 1; It is necessary to raise the temperature again, but this is a common method for raising the temperature. A method of heating υ using a heat source is adopted.In particular, the so-called energization heating method uses pulsed energization (=
Therefore, shape recovery control can be performed, which contributes to the simplification of the control system compared to the other methods C.

形状記憶合金で形成された形状記憶基体を表側する従来
のアクチュエータを追尾加熱で作動させる(:は、通常
、形状記憶基体の両端(=電極を設けている。そして、
形状回復制御時(−1これら電極を通して形状記憶素子
全体に竜流を流し、ジュール加熱するようにしている。
A conventional actuator that faces a shape memory substrate made of a shape memory alloy is activated by tracking heating (usually, electrodes are provided at both ends of the shape memory substrate.
During shape recovery control (-1) A torrent flow is applied to the entire shape memory element through these electrodes to generate Joule heating.

このとき形状記憶基体に流れる電流は、形状記憶基体全
体にはぼ均一−流れる。したがって、ジュール熱も形状
記憶基体全体に重って均一に生じ、この熱(=よって起
こる形状回復も形状記憶基体全体(=亙って均一(−起
こる。このよう(=、従来のこの種のアクチェエータ(
:あっては、形状記憶基体全体を逆変態点@度を越える
ifまで昇温させて形状記憶基体全体を瞬時(=記憶形
状まで変位させたときのステップ的な変位を利用する方
式を採用している。
At this time, the current flowing through the shape memory base almost uniformly flows throughout the shape memory base. Therefore, Joule heat is also generated uniformly over the entire shape memory substrate, and shape recovery caused by this heat (= occurs uniformly (-) over the entire shape memory substrate. Actuator (
: If so, a method is adopted in which the temperature of the entire shape memory substrate is raised to if exceeding the reverse transformation point @ degree, and the entire shape memory substrate is instantaneously (=stepwise displaced when it is displaced to the memorized shape). ing.

しかしながら、上述のよう(=形状記憶素子全体のステ
ップ的な変位だけを利用した従来のアクチュエータ(=
あっては、1つの単純な動作だけしか行なうことができ
ず、使用できる範囲が大幅(′−狭いという欠点がある
。たとえば、1つのアクチュエータで人間の指に類似し
た掴み動作を行なわせたυ、あるいはまた複雑な複数種
類の動作を行なわせることはできない。このため使用範
囲が必然的に特定さnる問題があった。形状記憶合金の
動きを多様化する手段のひとつ(−1形状記憶合盆の形
状記憶同値制御部分に金属4峨Ii#’Y設ける方法が
ある。即ち、形状回復を制御したい形状回復制御領域(
=、241J−を予め接合等により設けておき、適確加
熱時の磁流を導dL層に流し、形状記憶合金に流れる電
流を制御して形状回復抑mlj領感の温度上昇を制御す
る方法である。通常、形状記憶基体を用いた形状記憶素
子において、その形状回復の速寂9tは通磁時の加熱盆
によって異なり、電圧を一定とすれば流丁礒流が小さけ
nば発熱tも小さく、従って昇温速度も遅くなるため、
形状回復の所要時間は長くなフ、回復の速度も遅くなる
However, as mentioned above (= conventional actuator that uses only stepwise displacement of the entire shape memory element (=
However, the drawback is that only one simple movement can be performed, and the usable range is significantly narrower. , or it is not possible to perform multiple types of complex movements.For this reason, there is a problem that the range of use is inevitably specified.One of the means to diversify the movements of shape memory alloys (-1 shape memory alloy) There is a method of providing a metal 4-hole Ii#'Y in the shape memory equivalence control part of the joint.In other words, the shape recovery control area (
=, 241J- is provided in advance by bonding, etc., and a magnetic current during proper heating is passed through the conductive dL layer, and the current flowing through the shape memory alloy is controlled to control the temperature rise in the shape recovery inhibition region. It is. Normally, in a shape memory element using a shape memory substrate, the speed of shape recovery 9t varies depending on the heating tray during magnetization, and if the voltage is constant, the smaller the current, the smaller the heat generation t. Therefore, the rate of temperature rise will be slower,
The time required for shape recovery is long, and the speed of recovery is also slow.

また、形状記憶合金に負荷する電圧、流れる磁流が非常
に小さければ、形状回復を起こすの(;必要な温度(A
s点)に連しないため、形状回復に伴う変位は発生しな
い。このよう(=、形状回復は通電時の電圧と磁流によ
って制御することができる。
In addition, if the voltage applied to the shape memory alloy and the magnetic current flowing through it are very small, shape recovery will occur (required temperature (A
(point s), no displacement occurs due to shape recovery. In this way (=, shape recovery can be controlled by the voltage and magnetic current during energization.

しかし、この方法(=おいて設けられた4砥鳩と形状記
憶合金との密着性は必ずしも充分ではなく、くり返しの
使用中(=、導電層が剥離するという欠点を有している
。特(=耐食性、耐劣化性に渡れる・という理由からア
クチュエータ、スイッチ等に多く用いられているNiT
i形状記憶合金は、弄面(−生成している薄い酸化皮膜
のため(=、密着性はさら(=悪く、形状記憶合金を導
電層により制御する上で障害となっていた。
However, this method has the drawback that the adhesion between the four whetstones and the shape memory alloy provided at = is not always sufficient, and the conductive layer peels off during repeated use. =NiT is often used in actuators, switches, etc. because it has excellent corrosion resistance and deterioration resistance.
The shape memory alloy had a thin oxide film formed on the surface, and its adhesion was poor, which was an obstacle to controlling the shape memory alloy with a conductive layer.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情(:鑑みてなされ比もので、そ
の目的とするところは、形状記憶合金を部分的に制御す
るために設けられた金属4鷹層と形状記憶合金の密着性
を強くして、くジ返しの使用寿命を向上させた形状記憶
合金素子の製造方法を提供すること(−ある。
The present invention was made in view of the above circumstances, and its purpose is to strongly strengthen the adhesion between the metal 4-layer, which is provided to partially control the shape memory alloy, and the shape memory alloy. To provide a method for manufacturing a shape memory alloy element, which improves the service life of a repeater.

〔発明の概−双〕[Summary of the invention-double]

本発明は所定温度に加熱されると記憶している形状に回
彼する形状記憶合金からなる形状記1.は基体表面に設
けられた、部分制御用金属41層と形状記憶基体との4
8!!着性を改醤させた形状記憶合金素子を対象(=し
ている。
The present invention provides a shape memory alloy made of a shape memory alloy that reverts to its memorized shape when heated to a predetermined temperature.1. is a 4-layer structure consisting of 41 layers of metal for partial control and a shape memory substrate provided on the surface of the substrate.
8! ! Targeting shape memory alloy elements with modified adhesion properties.

このような形状記憶合金素子において、本発明は金14
層を形状記憶基体表面に設けた後、400℃以上の温度
で接合処理を施し、金属導電ノーと形状記憶基体の密着
性を向上させたものである。ここで接合処理1度を4o
o’c以上としたのは、金属導電層と形状記憶合金とが
拡散し、接合を開始する温度が400℃付近であるため
であるが、接合をよシ強くするためには600℃以上の
温度にすることが好ましい。また処理時間は高温になる
程短かくてよいが、600Cで処理した場合は、10分
以上行なえばよい。
In such a shape memory alloy element, the present invention uses gold-14
After the layer is provided on the surface of the shape memory substrate, a bonding treatment is performed at a temperature of 400° C. or higher to improve the adhesion between the metal conductive layer and the shape memory substrate. Here, the bonding process is performed once at 4o
The reason for setting the temperature above o'c is that the temperature at which the metal conductive layer and the shape memory alloy diffuse and start bonding is around 400°C. Preferably at a temperature. Further, the treatment time may be shorter as the temperature increases, but when the treatment is performed at 600C, the treatment time may be 10 minutes or more.

ま九、金属導41−の形状記憶基体全体からの剥離は、
金属溝QC盾の4部および、形状記憶合金素子の角1@
S(=多く生ずることから、本接合処理は、金属導電j
―の端部が多い形状記憶合金素子、即ち部分的制御の之
め(=複数ケ所に金属導電層を有している形状記憶合金
素子や、角部を有する形状記憶合金素子に特に有効であ
る。
Nine, the peeling of the metal conductor 41- from the entire shape memory substrate is as follows:
4 parts of metal groove QC shield and corner 1 of shape memory alloy element @
S (= Since this occurs a lot, this bonding process is suitable for metal conductivity
Particularly effective for shape memory alloy elements that have many edges, i.e., for partial control (=shape memory alloy elements that have metal conductive layers in multiple locations, and shape memory alloy elements that have corners) .

さらに、金属導電層を厚く着けすぎると、付属導電層の
財力が形状記憶合金の回復力(=影響し、形状回復が完
全(−生じなくなることから、完全形状回復させるため
には金属環m+麹の厚さを、形状記憶基体の最小厚さの
5%以下とする必要かある。
Furthermore, if the metal conductive layer is applied too thick, the financial strength of the attached conductive layer will affect the recovery power of the shape memory alloy, and complete shape recovery will not occur. It is necessary that the thickness of the shape memory substrate be 5% or less of the minimum thickness of the shape memory substrate.

さらく−望ましくは3条以下とするOとがよい。ここで
形状記憶基体が線材の場合(=は最小厚さは直径であり
、板材の場合には板厚でめる。
Smooth - preferably 3 or less threads. Here, when the shape memory substrate is a wire rod (=, the minimum thickness is the diameter, and when the shape memory substrate is a plate material, it is determined by the plate thickness.

金属1−としては、尋峨性を有するものならばいずlし
でもよいが、待に部分的な制御を対象とする場合には形
状記憶合金より比抵抗の小さい銅、ニッケル、並、アル
ミニウム、 tk6るいはそれらの合金などを用いる事
が好ましい。4蝿層を改灯る主段としてはメツ干、スパ
ック、魚看、mW、s償等、形状記憶合金表面に接合で
きれば、いずれの方法でもよい、また恢曾処理は、4篭
盾金属の橿fA―よりても異なるが、処理中の形状記憶
合金や4@1−金属の酸化を考えると真空中、あるいは
アルゴン、f素などの不活性ガス中やCoTKどの還元
性ガス中で行なうことが遣ましい。さら(−1いすnの
方法においても、醜索分比が1O−3turr  より
低い圧力となるよう(ニすることが特にjI!ましい。
As the metal 1-, any metal may be used as long as it has a high tensile strength, but in the case where the target is partial control, copper, nickel, ordinary metal, aluminum, It is preferable to use TK6 or an alloy thereof. As the main stage for changing the 4-fly layer, any method can be used as long as it can be bonded to the surface of the shape memory alloy, such as Metsu-boshi, Spak, Fish-watch, mW, S-bonding, etc. Although it is different from fA-, considering the oxidation of shape memory alloys and 4@1-metals during processing, it is recommended to carry out the process in vacuum, in an inert gas such as argon or F, or in a reducing gas such as CoTK. I'm sorry. Furthermore, even in the -1 method, it is particularly desirable to set the pressure so that the pressure ratio is lower than 10-3 turr.

形状記憶合金としては形状記憶性を有する合金であれば
いずれでもよいが、特性の安定性を考えるとNlTi系
およびCu系の形状記憶基体がよいが、部分制御を有効
に働かすため;二はNiTi系形状記憶合金がよく、こ
の場合金属導電層(=用いる金属としては拡散、密着性
の点から銅、ニッケルが望ましい。
The shape memory alloy may be any alloy that has shape memory properties, but from the viewpoint of stability of properties, NlTi-based and Cu-based shape memory substrates are preferred; however, in order to achieve effective partial control; Shape memory alloys are preferred; in this case, the metal conductive layer (= copper and nickel are preferred from the viewpoint of diffusion and adhesion).

〔発明の効果〕〔Effect of the invention〕

本発明の形状記憶台金素子〇よCば、形状記憶基体表面
に設けられた金属溝に盾と形状記憶合金との密着性が向
上し、くり返しの形状回復前作中での導電層の剥離がな
くなり、安定した特性を長時間(=亙って維持できる。
Shape memory metal elements 0 and C of the present invention improve the adhesion between the shield and the shape memory alloy in the metal grooves provided on the surface of the shape memory base, and prevent peeling of the conductive layer during repeated shape recovery operations. It is possible to maintain stable characteristics for a long time (= over a long period of time).

〔発明の実施例〕[Embodiments of the invention]

以下実施例をもって本発明の形状記憶素子を詳細(=説
明する。
The shape memory element of the present invention will be explained in detail with reference to Examples below.

(実施例1) 直径1m、長さ1000 +nのNLTi形状記形状記
憶合金極20關、長さ50+11翼のコイルに形状記憶
させた形状記憶合金コイルの一端から250mm間隔で
2ケ所に幅250 rxtx 、 20μm厚の銅およ
びニッケルを電気メッキした。次いで350〜900’
Cで加分接合処理を行なった後、谷メッキ部を加ケ所で
切断し、縦断面、および横断面の接合状態を光学顕微鏡
で調べた。その結果を第1表≦二示す。
(Example 1) NLTi shape memory alloy poles with a diameter of 1 m and a length of 1000 + n, with a width of 250 rxtx at 2 locations at 250 mm intervals from one end of the shape memory alloy coil, which is shaped into a coil with a length of 50 + 11 blades. , electroplated with 20 μm thick copper and nickel. Then 350-900'
After performing the additive bonding process in step C, the valley plated portion was cut at the joint, and the bonding state in the vertical and cross sections was examined using an optical microscope. The results are shown in Table 1≦2.

第 1 表 なお第1衣中 ×:界面はメッキ後と変らない Δ:部分的に拡散接合 ○:完全(=拡散接合 をそれぞれ示す。Table 1 In addition, the first robe ×: The interface remains the same as after plating. Δ: Partially diffusion bonded ○: Complete (=diffusion bonding are shown respectively.

(実施例2) 実施例1の形状記憶コイルのうち、350’Cおよび6
00 ’Cで各I分接合処理した形状比1惠合金コイル
を全長が250 tax (:なるよりじバイアスバネ
により伸ばした後、−線を介してコイル両端に2Vの直
流電圧を加秒間負荷しコイルを完全に形状回復させた。
(Example 2) Among the shape memory coils of Example 1, 350'C and 6
A shape ratio 1 alloy coil which was bonded for each I minute at 00'C was stretched to a total length of 250 tax (: After being stretched by a twist bias spring, a DC voltage of 2V was applied to both ends of the coil for an extended period of time through the - wire. The coil was completely restored to its shape.

次いで3分間冷却した後、コイルを再び伸ばし、以下上
記サイクルを100回くり返した。
After cooling for 3 minutes, the coil was stretched again, and the above cycle was repeated 100 times.

:150 ”Cで接合処理した形状記憶合金コイルは1
2回のく夛返しく二よりメッキ1i!端部および中央部
(=剥離が認められ、くり返し数ととも(=剥W&部が
増加した。18回のくり返しで端部がめく八、n回のく
ジ返しで中央部付近のメッキ層に割れを生じ、これとと
もにく9返し数が増すとともに尾流が不安定となった。
:150"C shape memory alloy coil is 1
Plated 1i from 2 repeated repetitions! Peeling was observed at the edges and center (= peeling was observed, and with the number of repetitions (= peeling W & part) increased. After 18 repetitions, the edges were turned over, and after repeating n times, the plating layer near the center was peeled off. Cracks occurred, and as the number of repeats increased, the tail stream became unstable.

これに対し、600’Cで接合処理した形状記憶合金コ
イルのメッキ部は100回のくジ返しでも全く剥離を生
じなかった。
On the other hand, the plated portion of the shape memory alloy coil bonded at 600'C did not peel off at all even after 100 twists.

(美掘ψIJ3) 直径1絹、長さ1000BのNiTi形状記憶合金線を
直径20賭、長さ50紹のコイル(=形状記憶させた形
状記憶合金コイルの一端から250關間隔で2ケ所に部
250非、厚さ5μm、および55μmのニッケルを4
気メツキした。次いで7QO”C,30分の接合処理を
施した後、バイアスバネによりコイル全長が250JI
ILl二なるよう(=伸ばした後、2vの直流電圧を刃
秒間負荷し、コイルを形状回復させたところ、5μm厚
さのニッケルメッキをしたコイルは完全に形状t!!i
復し九が、55μmの厚さのニッケルメッキを施したコ
イルは約85チまでしか形状回復しなかった。コイルの
形状回復を10θ凹くり返したが、6μmのメッキ厚、
55μmのメッキ厚を有するコイルとも剥離はなかった
(Miho ψIJ3) A NiTi shape memory alloy wire with a diameter of 1 silk and a length of 1000B is divided into a coil with a diameter of 20mm and a length of 50cm (= shape memory alloy coil coil is divided into two parts at 250mm intervals from one end of the coil). 250, 5 μm thick, and 55 μm nickel
I felt nervous. Next, after 7QO"C and 30 minutes of bonding, the total length of the coil was reduced to 250JI using a bias spring.
After stretching, the coil was applied with a DC voltage of 2V for a few seconds to recover its shape, and the nickel-plated coil with a thickness of 5 μm completely recovered to its shape.
However, the coil with 55 μm thick nickel plating recovered to only about 85 inches. The shape recovery of the coil was repeated in a 10θ concave, but the plating thickness was 6 μm,
There was no peeling with the coil having a plating thickness of 55 μm.

Claims (2)

【特許請求の範囲】[Claims] (1)所定温度に加熱されると記憶している形状に回復
する形状記憶合金で形成された形状記憶基体表面の一部
に、少なくとも1ヶ所以上に金属層を設けた後、400
℃以上の温度で接合処理を施したことを特徴とする形状
記憶合金素子の製造方法。
(1) After providing a metal layer in at least one place on a part of the surface of a shape memory base made of a shape memory alloy that recovers its memorized shape when heated to a predetermined temperature,
A method for manufacturing a shape memory alloy element, characterized in that a bonding treatment is performed at a temperature of ℃ or higher.
(2)前記金属層の厚さが形状記憶基体の最小厚さの5
%以下であることを特徴とする特許請求の範囲第1項記
載の形状記憶合金素子の製造方法。
(2) The thickness of the metal layer is 5% of the minimum thickness of the shape memory substrate.
% or less, the method for manufacturing a shape memory alloy element according to claim 1.
JP24861884A 1984-11-27 1984-11-27 Production of shape memory alloy element Pending JPS61127892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24861884A JPS61127892A (en) 1984-11-27 1984-11-27 Production of shape memory alloy element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24861884A JPS61127892A (en) 1984-11-27 1984-11-27 Production of shape memory alloy element

Publications (1)

Publication Number Publication Date
JPS61127892A true JPS61127892A (en) 1986-06-16

Family

ID=17180790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24861884A Pending JPS61127892A (en) 1984-11-27 1984-11-27 Production of shape memory alloy element

Country Status (1)

Country Link
JP (1) JPS61127892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358796A (en) * 1991-04-09 1994-10-25 The Furukawa Electric Co., Ltd. Joined parts of Ni-Ti alloys with different metals and joining method therefor
US5669991A (en) * 1995-03-01 1997-09-23 United Technologies Corporation Electrical discharge machining of complex holes using shape memory alloy electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358796A (en) * 1991-04-09 1994-10-25 The Furukawa Electric Co., Ltd. Joined parts of Ni-Ti alloys with different metals and joining method therefor
US5669991A (en) * 1995-03-01 1997-09-23 United Technologies Corporation Electrical discharge machining of complex holes using shape memory alloy electrodes

Similar Documents

Publication Publication Date Title
JPS5929111B2 (en) Magnetron sputtering method of ferromagnetic material and cathode target
US3384958A (en) Method of brazing
JPH0586465A (en) Target for sputtering and its manufacture
JPS61127892A (en) Production of shape memory alloy element
JPH07157893A (en) Sn plated wire for electrical contact point and production thereof
JPH052940A (en) Material for electric contact and manufacture the same
JP2002042556A (en) Flat cable, conductor for it, and manufacturing method thereof
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
JPWO2018180920A1 (en) Rolled copper foil
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JPH0466695A (en) Heat resisting silver coated copper wire and its production
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JP2009110906A (en) High-resistance material composite oxide superconductive tape
JPS61256579A (en) Connector
JP3814723B2 (en) Method for forming joint structure of shape memory alloy
JPS61190177A (en) Shape memory element
JPS6171925A (en) Method of producing composite electrode wire for electrospark machining
CN109411378A (en) A kind of preparation method of copper strips winding-type welding column
JP3098615U (en) Electroplating equipment for metal coating the surface of high-temperature superconductors
JPH04174911A (en) Extra fine electric wire
JP2009247067A (en) Member of commutator for motor, and motor
JPS60187651A (en) Shape memory element
JP3944401B2 (en) Flexible printed circuit board and manufacturing method thereof
JPS6115995A (en) Shape memory alloy element
JP2007141621A (en) Lead wire for solar battery