JPS6112787A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS6112787A
JPS6112787A JP59131972A JP13197284A JPS6112787A JP S6112787 A JPS6112787 A JP S6112787A JP 59131972 A JP59131972 A JP 59131972A JP 13197284 A JP13197284 A JP 13197284A JP S6112787 A JPS6112787 A JP S6112787A
Authority
JP
Japan
Prior art keywords
liquid crystal
adsorbent
crystal element
crystal composition
tpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131972A
Other languages
Japanese (ja)
Inventor
Akio Yoshida
明雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59131972A priority Critical patent/JPS6112787A/en
Priority to US06/747,030 priority patent/US4666253A/en
Publication of JPS6112787A publication Critical patent/JPS6112787A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:A liquid crystal element, having a thin film transistor (TFT) containing an adsorbent of an ionic substance in an implanted liquid crystal composition, and having stabilized operation performance in TFT driving. CONSTITUTION:A liquid crystal element, containing an adsorbent of an ionic substance, e.g. alumina, zeolite, ion exchange resin, carbon, metallic alumina, metallic nickel or iron-cobalt alloy, having 1-0.005mum particle diameter, in 0.5- 0.005wt% optimally 0.2-0.05wt% concentration in an implanted liquid crystal composition. The above-mentioned adsorbent is preferably uniformly dispersed in the liquid crystal composition with ultrasonic waves, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶素子(以下L(II)と略す)のうち、
表示電極のON/ OFFの制御を薄膜トランジスタ(
以下TPTと略す)で行わせるものに関し、詳しくは、
液晶のイオン性物質を減少せしめて、TPT駆動におけ
る動作特性を安定化した液晶素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a liquid crystal element (hereinafter abbreviated as L(II)) that
ON/OFF control of display electrodes is performed using thin film transistors (
For details on what to do with TPT (hereinafter abbreviated as TPT), please see
The present invention relates to a liquid crystal element whose operating characteristics in TPT driving are stabilized by reducing ionic substances in the liquid crystal.

[従来の技術] 従来の薄膜トランジスタ(TPT)アレイを備えた液晶
素子について、一画素分の断面要因例を第1図に示す。
[Prior Art] FIG. 1 shows an example of cross-sectional factors for one pixel of a liquid crystal element equipped with a conventional thin film transistor (TPT) array.

ガラス等の基板z上にゲート電極8を付け、絶縁膜7を
介して半導体層6を付ける。この上にソース線(信号線
)5とドレイン線4を配置し、かつドレイン4は画素電
極3の一方と接触している。これらの上に液晶配向膜9
を全面に塗布し、片側基板を形成している。他方の基板
l上には画素電極3と配向膜9を配置し、これらを対向
させてLCD周辺をエポキシ接着剤等でシーリングし液
晶11を封入しである。
A gate electrode 8 is attached on a substrate z such as glass, and a semiconductor layer 6 is attached with an insulating film 7 interposed therebetween. A source line (signal line) 5 and a drain line 4 are arranged on this, and the drain 4 is in contact with one of the pixel electrodes 3. On top of these, a liquid crystal alignment film 9
is applied to the entire surface to form a one-sided substrate. On the other substrate 1, a pixel electrode 3 and an alignment film 9 are arranged, and with these facing each other, the periphery of the LCD is sealed with an epoxy adhesive or the like, and a liquid crystal 11 is sealed.

第2図は上記液晶素子の等価回路である。ここでR又は
RはTPTのON又はOFF抵抗、ON    0FF Cil” i2” LCはそれぞれ配向膜と液晶のコン
デンサ容量、R1□’ Ri2’ RIJは同じく抵抗
を示す。
FIG. 2 is an equivalent circuit of the above liquid crystal element. Here, R or R is the ON or OFF resistance of TPT, ON 0FF Cil"i2" LC is the capacitance of the alignment film and liquid crystal, respectively, and R1□'Ri2' RIJ is the resistance.

第3図にはTPT駆動させた時の電圧波形の一例を示す
。第1図のゲート電極8に第3図のV。の様なゲートパ
ルスが印加され、同時にソース線5に+V、ボルト印加
されたとする。この時画素電極3の上下間に生ずる電圧
V  は急CD 速に+V、に達する。(充電過程)この後V。が下がっ
た時に液晶層に蓄えられた電化で逃げる事によって■、
より電圧が下がってくる。(放電過程)この放電過程の
時定数で。□は τoFF=R−C・・・・・・(1) LCLC で示され、液晶層の抵抗RLCに依存する。
FIG. 3 shows an example of a voltage waveform when TPT is driven. V in FIG. 3 is applied to the gate electrode 8 in FIG. Assume that a gate pulse such as the following is applied and +V and volts are simultaneously applied to the source line 5. At this time, the voltage V generated between the upper and lower sides of the pixel electrode 3 rapidly reaches +V at CD speed. (Charging process) After this, V. By escaping with the electricity stored in the liquid crystal layer when the
The voltage will drop further. (Discharge process) The time constant of this discharge process. □ is expressed as τoFF=R−C (1) LCLC, and depends on the resistance RLC of the liquid crystal layer.

実際に液晶層に印加される実効電圧は、第3図の斜線部
で示される面積であり、1=1.では■、。(0)で示
される。またviは配向膜部分にかかる電圧であり、液
晶層には寄与しない。
The effective voltage actually applied to the liquid crystal layer is the area shown by the shaded area in FIG. 3, where 1=1. So ■. It is indicated by (0). Further, vi is a voltage applied to the alignment film portion and does not contribute to the liquid crystal layer.

この時VLc(0)は次式で示される。At this time, VLc(0) is expressed by the following equation.

・・・・・・(2) また液晶層の抵抗RLGが小さくなると必然的に斜線部
の面積が小さくなり、液晶層にかかる実効電圧が小さく
なる。よって誘電異方性が正のネマチック液晶を用い、
水平配向させたLCIIの場合、TPT駆動させた時の
V−T曲線は矩形波駆動させ時よりも高電圧側にシフト
する。いまBDH社液晶E−7での例を第4図の曲線(
a)に示す。
(2) Furthermore, when the resistance RLG of the liquid crystal layer becomes smaller, the area of the shaded portion inevitably becomes smaller, and the effective voltage applied to the liquid crystal layer becomes smaller. Therefore, using a nematic liquid crystal with positive dielectric anisotropy,
In the case of horizontally aligned LCII, the VT curve when driven by TPT shifts to a higher voltage side than when driven by square wave. An example of the BDH liquid crystal E-7 is shown in the curve in Figure 4 (
Shown in a).

】Dは配向膜にポリイミド1000人、セルギャップJ
pm 、ツイスト角80°である。
] D is polyimide 1000 for alignment film, cell gap J
pm, and the twist angle is 80°.

また第5図にはV  =6Vの時のV、。D波形のを示
す、液晶テレビなどでは通常線順次駆動にって画面を表
示するが、各走査線が選択されてない時間は情報を保持
していなければならな、 8QHzノンインターレスモ
ードの場合この時間約IB、7m5ecとなり、この時
間内にvLc(t)が液のvth以下になると画像表示
ができなくなる。
Also, in Fig. 5, V when V = 6V. In the case of 8QHz non-interlace mode, which shows the D waveform, LCD TVs usually display the screen by line sequential driving, but the information must be retained during the time when each scanning line is not selected. This time is about IB, 7m5ec, and if vLc(t) becomes less than vth of the liquid within this time, image display will no longer be possible.

7の未処理の場合VLcoの大幅な低下が見られ(第5
図(a) ) 、これは液晶層の抵抗RLCが小いため
である。
In the case of untreated No. 7, a significant decrease in VLco was observed (No. 5
This is because the resistance RLC of the liquid crystal layer is small.

以上の様にTPT駆動の場合、液晶の抵抗が低下ると (イ)V−T曲線が高電圧側にシフトし、駆動電圧が上
がる、 (ロ)極端な場合絵が出なくなる、 いう欠点があった。
As mentioned above, in the case of TPT drive, when the resistance of the liquid crystal decreases, (a) the V-T curve shifts to the high voltage side and the drive voltage increases, and (b) in extreme cases, the picture does not appear. there were.

[発明が解決しようとする問題点] 本発明は、上記のように従来問題となっていた、液晶層
の抵抗が経時的に低下するために起こる欠点をなくすた
めになされたものである。
[Problems to be Solved by the Invention] The present invention has been made in order to eliminate the conventional problems as described above, which occur because the resistance of the liquid crystal layer decreases over time.

[問題点を解決するための手段及び作用]本発明は、上
記液晶層の抵抗の低下が液晶と接触している物質から液
晶内へ溶出したイオンによりひき起させること、また、
このイオンを吸着剤によって吸着させて液晶中のイオン
濃度が増大しないようにすれば、TPT駆動の液晶素子
における液晶の抵抗の低下、それに基づく駆動電圧の上
昇や画像が出なくなる現象を抑制することができること
を見いだしたことに基づきなされたものである。
[Means and effects for solving the problems] The present invention provides that the reduction in the resistance of the liquid crystal layer is caused by ions eluted into the liquid crystal from a substance in contact with the liquid crystal, and
By adsorbing these ions with an adsorbent to prevent the ion concentration in the liquid crystal from increasing, it is possible to suppress the decrease in the resistance of the liquid crystal in a TPT-driven liquid crystal element, the resulting increase in the driving voltage, and the phenomenon in which images do not appear. This was done based on the discovery that it could be done.

しかして、本発明によれば薄膜トランジスタを備えた液
晶素子や液晶シャッタ素子などであって、注入された液
晶組成物中にイオン性物質の吸着剤を含有せしめてなる
ことを特徴とする液晶素子が提供される。
According to the present invention, there is provided a liquid crystal element including a thin film transistor, a liquid crystal shutter element, etc., which is characterized in that an adsorbent for an ionic substance is contained in an injected liquid crystal composition. provided.

(1)式中の液晶層抵抗RLoを大にすれば、τ。オが
大になり、情報の保持時間が長くなる。
(1) If the liquid crystal layer resistance RLo in equation (1) is increased, τ. This increases the information retention time.

一方液晶層の比抵抗ρは次式で町。と関係付けられる。On the other hand, the specific resistance ρ of the liquid crystal layer is expressed by the following formula. be associated with.

−d RLC=  5    ・・・・・・(3)ここでSは
電極面積、dは電極間隔である。
-d RLC=5 (3) where S is the electrode area and d is the electrode spacing.

液晶組成物の製造段階では精製をくり返し、ρ≧ix+
ouΩcmを得る事は十分可能であるが、L(dlに注
入された後にセル内の不純物を溶かしこみ、ρは低下す
る。経験的にρのレベルは5 X 109〜5XIO1
0Ωcmであり、別の実験から、この時溶けこんだ不純
物濃度は数ppm以下と推定できる。換言すれば、数p
pm以下の不純物が溶は込む事でpは一桁低下し、RL
oも同様に低下する。逆に数ppm程度の不純物を取除
けばRLCの低下もない訳である。
At the manufacturing stage of the liquid crystal composition, purification is repeated until ρ≧ix+
Although it is quite possible to obtain ouΩcm, after being injected into L(dl), the impurities in the cell are dissolved and ρ decreases.Experientially, the level of ρ is 5X109~5XIO1
0 Ωcm, and from another experiment, it can be estimated that the concentration of impurities dissolved at this time is several ppm or less. In other words, the number p
When impurities below pm dissolve in, p decreases by one order of magnitude, and RL
o similarly decreases. On the contrary, if several ppm of impurities are removed, there is no decrease in RLC.

そこで、セルに注入されるべき液晶組成物に吸着剤を含
有せしめてRLcのアップを図ったものである。
Therefore, an attempt was made to increase the RLc by incorporating an adsorbent into the liquid crystal composition to be injected into the cell.

本発明におけるイオン性物質の吸着剤としては、アルミ
ナ、ゼオライト、イオン交換樹脂、カーボンの他、金属
アルミニウム、金属ニッケル、鉄−コバルト合金等の金
属が用いられる。
In addition to alumina, zeolite, ion exchange resins, and carbon, metals such as metal aluminum, metal nickel, and iron-cobalt alloys are used as adsorbents for ionic substances in the present invention.

吸着剤の粒径はLCD中に入り込ませるためにスペーサ
ー粒径(約1OILI11)以下である必要があり、l
pm〜0.005 g mの範囲であるのが好ましい。
The particle size of the adsorbent must be smaller than the spacer particle size (approximately 1 OILI11) in order to penetrate into the LCD.
The range is preferably from pm to 0.005 gm.

なお吸着剤そのものをスペーサーとすることもでき、そ
の場合は吸着剤の粒径はセルキャップに対応させて約1
0gm以下とするのが良い。
Note that the adsorbent itself can also be used as a spacer, in which case the particle size of the adsorbent should be approximately 1 mm, corresponding to the cell cap.
It is preferable to set it to 0 gm or less.

吸着剤の濃度は液晶組成物の0.5〜0.005重量%
であるのが好ましく、0.2〜0.05重量%がより好
ましい。
The concentration of the adsorbent is 0.5 to 0.005% by weight of the liquid crystal composition.
It is preferably 0.2 to 0.05% by weight, and more preferably 0.2 to 0.05% by weight.

吸着剤は超音波等を用いて液晶組成物中に均一分散する
のが好ましい。
The adsorbent is preferably uniformly dispersed in the liquid crystal composition using ultrasound or the like.

第4図に本発明に係る液晶素子の一実施例の断面を示す
。lOは吸着剤の粒子である。
FIG. 4 shows a cross section of an embodiment of a liquid crystal element according to the present invention. lO are particles of adsorbent.

本発明の液晶素子における液晶配向膜9の材料としては
、ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコ
ール、フェノール樹脂等の合成樹脂や、シリコン系カッ
プリング剤、チタン系カップ、リング剤、ジルコニウム
系カップリング剤等のカップリング剤等が用いられる゛
Materials for the liquid crystal alignment film 9 in the liquid crystal element of the present invention include synthetic resins such as polyimide resin, polyamide resin, polyvinyl alcohol, and phenol resin, silicone coupling agents, titanium cups, ring agents, and zirconium coupling agents. Coupling agents such as are used.

液晶配向膜は上記の材料を所定の濃度の溶液状あるいは
液状でスピンナー、ロールコータ−等でLCD基板上に
塗布することにより成膜される。
The liquid crystal alignment film is formed by applying the above-mentioned materials in solution or liquid form at a predetermined concentration onto the LCD substrate using a spinner, roll coater, or the like.

第4図のゲート電極8にゲートパルス■。を印加し、同
時にソース線5に+V8ポルト印加すると、画素電極3
の上下間に■LC[lは 急 速 に+V に達する。
A gate pulse ■ is applied to the gate electrode 8 in FIG. When +V8 port is applied to the source line 5 at the same time, the pixel electrode 3
■LC[l rapidly reaches +V between the upper and lower sides of.

この後■Gが下がった時にV  がVsなる値から下が
ってくる状態を実施CD 例1の場合について第6図(b)(V8= 6Vの場合
)に示す。吸着剤無添加の従来例の場合[第6図(a)
] と比較すると、18.7m5ec経過後のvLcD
の値が大きいことがわかる。
6(b) (in the case of V8=6V) shows the state in which V falls from the value Vs when ■G falls after this for the case of Example 1 of the implementation CD. In case of conventional example without adsorbent added [Figure 6 (a)
], compared to vLcD after 18.7 m5ec
It can be seen that the value of is large.

[実施例] 次に実施例を挙げて本発明を説明する。[Example] Next, the present invention will be explained with reference to Examples.

実施例1 平均粒径500人のアルミナ(富士見研磨剤■社製)0
.2重量%をBDH社製液晶液晶7に分散し、LCDに
注入し、第4図に示す構造のLCDを作成した。このも
のに関し得られたV−T曲線を第5図(b)に、またで
  の変化を第6図(b)に示す。
Example 1 Average particle size: 500 alumina (manufactured by Fujimi Abrasive Company) 0
.. 2% by weight was dispersed in Liquid Crystal Liquid Crystal 7 manufactured by BDH Co., Ltd. and injected into an LCD to create an LCD having the structure shown in FIG. 4. The VT curve obtained for this product is shown in FIG. 5(b), and the change in straddle is shown in FIG. 6(b).

FF 本発明のLCDではV−T曲線のシフト量が小さくなり
、かつで  も大きくなっていることがわがFF る。
FF: In the LCD of the present invention, the shift amount of the V-T curve is small, and at the same time, it is large.

この様に、本発明の効果はTPT駆動において顕著に現
われている。
As described above, the effects of the present invention are clearly manifested in TPT driving.

実施例2〜4 実施例1におけるアルミナを下記表1の吸着剤に変えた
以外は、実施例と同様にして吸着剤を含有する液晶組成
物を注入したしCDを作製し、V−丁酉線及びV  波
形を調べたところ、実施例とCD 略同様の好結果が得られた。
Examples 2 to 4 A liquid crystal composition containing an adsorbent was injected in the same manner as in Example 1, except that the alumina in Example 1 was changed to the adsorbent shown in Table 1 below, and a CD was prepared. When the waveforms of CD and V were examined, good results were obtained that were substantially the same as those of the example.

表  1 [発明の効果] 本発明においては、上記のようにTPTを備えた液晶素
子の液晶組成物中にイオン性物質の吸着剤を含有せしめ
であるので、液晶中に溶出したイオン性物質は吸着剤に
吸着されるため、液晶層の抵抗町。が低下せず、またV
−T曲線が高電圧側にシフトするのが防止され、低、電
圧駆動かつ定電圧駆動が可能になり、動作特性が安定化
する特徴がある。さらにRLCが高く保持されるため、
放電過程の時定数τ  が大きく、情報の保持時間FF が長くなり、画像表示についての品位が上がる。
Table 1 [Effects of the Invention] In the present invention, as described above, since an adsorbent for an ionic substance is contained in the liquid crystal composition of a liquid crystal element equipped with TPT, the ionic substance eluted into the liquid crystal is The resistance of the liquid crystal layer decreases because it is adsorbed by the adsorbent. does not decrease, and V
The -T curve is prevented from shifting to the high voltage side, low voltage driving and constant voltage driving are possible, and the operating characteristics are stabilized. Furthermore, since RLC is kept high,
The time constant τ of the discharge process is large, the information retention time FF becomes long, and the quality of image display is improved.

また、τ  が増大することは画像の単位面積FF 当りの走査線数を増す事が可能になる事をも意味し、高
品位のディスプレイ化(例えば液晶テレビの表示品位の
向上)にも連ながる。
In addition, an increase in τ also means that it becomes possible to increase the number of scanning lines per unit area of the image FF, which is connected to the development of high-quality displays (for example, improving the display quality of LCD TVs). Garu.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTPTを備えた従来の液晶素子の例を示す断面
要因、第2図は第1図の素子の等価回路を示す回路図、
第3図は第1図に示した素子をTPT駆動させた時の電
圧波形の一例を示す概略説明図、第4図は本発明に係る
液晶素子の実施例を示す断面要因、第5図は吸着剤無添
加の液晶組成物を用いた場合(a)と本発明に係る吸着
剤添加の液晶組成物を用いた場合(b)のV−T曲線を
示すグラフ、第6図は吸着剤無添加の液晶組成物を用い
た場合(a)と吸着剤添加の液晶組成物を用イタ場合(
b) (7) V s =6 V (30H2(7)場
合)の■  波形を示す波形図である。 CD 1.2・・・ガラス基板、  3・・・透明電極、4・
・・ドレイン電極、    5・・・ソース電極、6・
・・半導体層、     7・・・絶縁層、8・・・ゲ
ート電極、    9・・・液晶配向膜、10・・・吸
着剤の粒子、   11・・・液晶、。8. 。□・・
・ON又はOFF時のTPT抵抗R C,□、C12・・・液晶配向膜の容量CLo・・・液
晶層容量 R,□、Ri2・・・液晶配向膜の抵抗RLC・・・液
晶層の抵抗 ■G・・・ゲート電圧 ■、・・・ソース電圧 ■  ・・・上下電極間に生ずる電圧 CD
Fig. 1 is a cross-sectional diagram showing an example of a conventional liquid crystal element equipped with TPT, Fig. 2 is a circuit diagram showing an equivalent circuit of the element in Fig. 1,
FIG. 3 is a schematic explanatory diagram showing an example of a voltage waveform when the device shown in FIG. A graph showing the V-T curves of (a) when a liquid crystal composition without an adsorbent is used and (b) when a liquid crystal composition with an adsorbent according to the present invention is used. Case (a) using a liquid crystal composition with addition of adsorbent and case (a) using a liquid crystal composition with addition of adsorbent (
b) (7) It is a waveform diagram showing the ■ waveform of V s = 6 V (30H2 (7) case). CD 1.2... Glass substrate, 3... Transparent electrode, 4...
...Drain electrode, 5...Source electrode, 6.
... Semiconductor layer, 7... Insulating layer, 8... Gate electrode, 9... Liquid crystal alignment film, 10... Adsorbent particles, 11... Liquid crystal. 8. . □・・・
-TPT resistance R when ON or OFF ■G...gate voltage■,...source voltage■...voltage CD generated between the upper and lower electrodes

Claims (1)

【特許請求の範囲】[Claims] 薄膜トランジスタを備えた液晶素子であって、注入され
た液晶組成物中にイオン性物質の吸着剤を含有せしめて
なることを特徴とする液晶素子。
1. A liquid crystal element comprising a thin film transistor, the liquid crystal element comprising an injected liquid crystal composition containing an adsorbent for an ionic substance.
JP59131972A 1984-06-28 1984-06-28 Liquid crystal element Pending JPS6112787A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59131972A JPS6112787A (en) 1984-06-28 1984-06-28 Liquid crystal element
US06/747,030 US4666253A (en) 1984-06-28 1985-06-20 Liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131972A JPS6112787A (en) 1984-06-28 1984-06-28 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPS6112787A true JPS6112787A (en) 1986-01-21

Family

ID=15070530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131972A Pending JPS6112787A (en) 1984-06-28 1984-06-28 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS6112787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281420A (en) * 1988-05-09 1989-11-13 Seiko Epson Corp Liquid crystal panel
US5390869A (en) * 1991-12-16 1995-02-21 Shimano Inc. Baitcasting reel having a level wind mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281420A (en) * 1988-05-09 1989-11-13 Seiko Epson Corp Liquid crystal panel
US5390869A (en) * 1991-12-16 1995-02-21 Shimano Inc. Baitcasting reel having a level wind mechanism

Similar Documents

Publication Publication Date Title
JPH05265016A (en) Liquid crystal device
JPH07181439A (en) Active matrix liquid crystal display device
JPH086025A (en) Liquid crystal electro-optic device, projection type display system using the same and method for driving liquid crystal electro-optic device
JPS5979286A (en) Liquid crystal display
US4666253A (en) Liquid crystal device
JP5588961B2 (en) Liquid crystal display
JPH0954325A (en) Liquid crystal display element and its production
JP3657012B2 (en) Liquid crystal display device and method for driving the liquid crystal display device
JPS6111724A (en) Liquid crystal element
JP4174951B2 (en) Liquid crystal display
JPS6112787A (en) Liquid crystal element
JP2002023178A (en) Liquid crystal display device
JPH0264525A (en) Tn type liquid crystal panel
JPS63163426A (en) Ferroelectric liquid crystal element
JPH0854629A (en) Liquid crystal display element and its production
TW200408879A (en) Liquid crystal display
JPH11249174A (en) Liquid crystal display device
JP2543682B2 (en) Liquid crystal electro-optical device
JPH05232476A (en) Liquid crystal display element
JP2001188233A (en) Liquid crystal display device
JP2761581B2 (en) Liquid crystal device
JPH02264219A (en) Ferroelectric liquid crystal display device
JPH05203936A (en) Electro-optical liquid crystal element
JP3056840B2 (en) Liquid crystal display
JPH03192324A (en) Polymer dispersion type liquid crystal display device