JPH0326366B2 - - Google Patents

Info

Publication number
JPH0326366B2
JPH0326366B2 JP21329381A JP21329381A JPH0326366B2 JP H0326366 B2 JPH0326366 B2 JP H0326366B2 JP 21329381 A JP21329381 A JP 21329381A JP 21329381 A JP21329381 A JP 21329381A JP H0326366 B2 JPH0326366 B2 JP H0326366B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
cell
sealing material
introduction part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21329381A
Other languages
Japanese (ja)
Other versions
JPS58115417A (en
Inventor
Sunao Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21329381A priority Critical patent/JPS58115417A/en
Publication of JPS58115417A publication Critical patent/JPS58115417A/en
Publication of JPH0326366B2 publication Critical patent/JPH0326366B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 本発明は液晶表示装置に関する。[Detailed description of the invention] The present invention relates to a liquid crystal display device.

更に詳しくは、液晶セルの液晶導入部を長く
し、該液晶導入部の基板表面に吸着能を持つた膜
が形成されている液晶表示装置に関するものであ
る。
More specifically, the present invention relates to a liquid crystal display device in which the liquid crystal introduction section of a liquid crystal cell is lengthened and a film having adsorption ability is formed on the substrate surface of the liquid crystal introduction section.

近年、液晶表示装置の応用が進み腕時計、電卓
あるいは各種情報機器の表示部として多数用いら
れるようになつた。さらに応用分野を広げるため
の手段として表示情報量の増大が図られ、TN表
示用の液晶自体の電圧−コントラスト特性の改良
を始めとして、二周波駆動、相転移表示、レーザ
ー書込みあるいはスイツチング素子を用いたマト
リクス型液晶表示装置等が検討された。
In recent years, the application of liquid crystal display devices has progressed, and they have come to be used in large numbers as display parts for wristwatches, calculators, and various information devices. Furthermore, efforts were made to increase the amount of displayed information as a means of expanding the field of application, including improving the voltage-contrast characteristics of the liquid crystal itself for TN displays, as well as using dual-frequency drive, phase transition displays, laser writing, or switching elements. Matrix-type liquid crystal display devices, etc., were studied.

その中でスイツチング素子を用いたマトリクス
型液晶装置はその駆動方法が従来のTN型液晶表
示装置に用いられている電圧平均化法で良く、他
の方式で必要な高周波や高電圧あるいはレーザー
スキヤン装置等が不必要であるという利点を持つ
ている。
Among these, matrix-type liquid crystal devices using switching elements can be driven using the voltage averaging method used in conventional TN-type liquid crystal display devices; other methods require high frequency, high voltage, or laser scanning devices. It has the advantage that etc. are unnecessary.

この、スイツチング素子を用いて液晶を駆動す
る方法の駆動原理は、第1図に概念的な等価回路
を示すように、Si基板上に作つたトランジスタや
透明基板上に作つた薄膜トランジスタ、あるいは
能動素子ではないがダイオード,バリスタや金属
−酸化膜−金属構造を持つ素子(MIM素子)等
の非線形性を持つ素子をスイツチング素子1とし
て用い、一方の基板上の独立した画素電極と、対
向する基板上の電極との間に形成される容量CLC
及び抵抗RLCを持つ、液晶を誘電体としたコンデ
ンサ2に電荷を注入・保持することによつて液晶
に電界を印加し、液晶の配向を制御して表示を行
なうものである。
The driving principle of this method of driving a liquid crystal using a switching element is as shown in the conceptual equivalent circuit shown in Figure 1. However, a nonlinear element such as a diode, varistor, or element with a metal-oxide film-metal structure (MIM element) is used as the switching element 1, and an independent pixel electrode on one substrate and an element on the opposite substrate are used as the switching element 1. The capacitance formed between the electrodes C LC
An electric field is applied to the liquid crystal by injecting and holding charge into a capacitor 2 having a resistor RLC and a liquid crystal as a dielectric material, thereby controlling the alignment of the liquid crystal to perform display.

実際の駆動波形及び液晶に印加される波形の一
例を第2図に示す。即ち、スイツチング素子1と
液晶を誘電体とするコンデンサ2の両端には第2
図実線で1フレーム分を示すように、マルチプレ
ツクスの桁数N及びフレーム周期Tによつて定ま
るアドレス時間t1及びt′1(=T/2N)だけスイツ
チング素子1をONさせる高電界が印加され、残
りのt2及びt′2の時間はスイツチング素子1がOFF
状態となる低電界が印加される。この時、液晶を
誘電体とするコンデンサ2はアドレス時間t1及び
t′1の間に充電され、残りのt2及びt′2の時間に抵抗
RLCを通つて自己放電すると考えることが出来、
第2図破線で示す波形が液晶に印加される。即
ち、液晶には第2図斜線部の面積に相当する実効
値が印加されることになる。
FIG. 2 shows an example of an actual driving waveform and a waveform applied to the liquid crystal. That is, a second capacitor is connected to both ends of the switching element 1 and the capacitor 2 whose dielectric is liquid crystal.
As shown by the solid line in the figure for one frame, a high electric field is applied to turn on the switching element 1 for address times t 1 and t' 1 (=T/2N) determined by the number of multiplex digits N and the frame period T. and switching element 1 is OFF during the remaining time t 2 and t' 2 .
A low electric field is applied that results in a state. At this time, the capacitor 2 whose dielectric is liquid crystal is connected to the address time t 1 and
charged during t′ 1 and resistive for the remaining times t 2 and t′ 2
It can be considered that self-discharge occurs through R LC ,
A waveform shown by a broken line in FIG. 2 is applied to the liquid crystal. That is, an effective value corresponding to the area of the shaded area in FIG. 2 is applied to the liquid crystal.

第1図はスイツチング素子1を単なるスイツチ
ング素子として表わしてあるが実際の素子は容量
及び抵抗を持つており、前述の液晶に印加される
波形はその影響を受ける。しかし、基本的には液
晶に印加される実効値は、マルチプレツクスの桁
数が大きくなるほどアドレス時間以外の時間t2
びt′2における自己放電量の影響を受けるように
なる。言い換えると、液晶を誘電体としたコンデ
ンサ2の時定数τLc(CLc×RLc)によつて実効値
が左右され、τLcが大きいほど液晶に印加される
実効値が大きくなる。従つて、不純物の偏在等に
よつて液晶パネル内の液晶の抵抗値が部分的に異
なると、時定数τLcがパネル内で均一でなくなり
実効値が画素毎に異なつてきて表示ムラが生じる
可能性がある。
Although the switching element 1 is shown as a simple switching element in FIG. 1, the actual element has capacitance and resistance, and the waveform applied to the liquid crystal described above is affected by this. However, basically, as the number of multiplex digits increases, the effective value applied to the liquid crystal becomes more influenced by the amount of self-discharge at times t2 and t'2 other than the address time. In other words, the effective value is influenced by the time constant τLc (CLc×RLc) of the capacitor 2 using the liquid crystal as a dielectric, and the larger τLc, the larger the effective value applied to the liquid crystal. Therefore, if the resistance value of the liquid crystal in the liquid crystal panel differs partially due to the uneven distribution of impurities, the time constant τLc will not be uniform within the panel, and the effective value will differ from pixel to pixel, potentially causing display unevenness. There is sex.

従来の液晶パネルは例えば第3図及び第4図に
示すように2枚の基板3,4をシール材5を用い
て接着してセルとなし、シール材5の切れ目を設
けて液晶導入部6としていた。又、第4図に示す
ように、液晶注入後液晶導入部6を封口する封口
剤が液晶セル内に入り込まないようにシール材を
用いて遮蔽部7を設けることもあつた。
In a conventional liquid crystal panel, for example, as shown in FIGS. 3 and 4, two substrates 3 and 4 are bonded together using a sealing material 5 to form a cell, and a cut is made in the sealing material 5 to form a liquid crystal introduction part 6. It was. Further, as shown in FIG. 4, a shielding part 7 was sometimes provided using a sealing material to prevent the sealant for sealing the liquid crystal introduction part 6 from entering into the liquid crystal cell after the liquid crystal was injected.

従来のTN液晶表示装置のように、行電極と列
電極を交差させてマトリクス状とした場合には殆
んど問題が無いが、スイツチング素子を用いて各
画素電極に電荷を注入・保持して液晶の配向を制
御する方式の場合には、液晶セルに注入される液
晶の純度によつては問題が起きる。
There is almost no problem when the row electrodes and column electrodes are crossed to form a matrix like in conventional TN liquid crystal display devices, but it is possible to inject and hold charge into each pixel electrode using a switching element. In the case of a method that controls the alignment of liquid crystal, problems may occur depending on the purity of the liquid crystal injected into the liquid crystal cell.

即ち、例えば第5図に示すようなシール5形状
を持つセルに不純物を含む液晶を注入すると、液
晶導入部6の付近の基板表面9にその不純物が吸
着され、その部分9の液晶の抵抗RLCが低下し前
述の理由によつて液晶導入部6付近9の画素では
実効値が低下する。一方、液晶導入部6から離れ
た部分には不純物が少なくなつた液晶が注入され
ることになり実効値はより高くなる。
That is, for example, when liquid crystal containing impurities is injected into a cell having a seal 5 shape as shown in FIG. LC decreases, and the effective value of the pixels 9 near the liquid crystal introducing portion 6 decreases due to the above-mentioned reason. On the other hand, liquid crystal containing fewer impurities is injected into a portion away from the liquid crystal introducing portion 6, and the effective value becomes higher.

従つて、液晶導入部6付近9とそれ以外の場所
での各画素のコントラストが異なり、液晶導入部
6付近9の画素はコントラストが低くなつてしま
うという欠点を有していた。又、この欠点は、ス
イツチング素子が基板表面に薄膜を形成して作ら
れるため、薄膜の表面の活性度が高いことと、基
板表面の凹凸の有無に左右されTFTなどの場合
には特に顕著に現われていた。
Therefore, the contrast of each pixel in the vicinity 9 of the liquid crystal introduction part 6 is different from that in other places, and the contrast of the pixels in the vicinity 9 of the liquid crystal introduction part 6 is low. Additionally, this drawback is particularly noticeable in the case of TFTs because the switching element is made by forming a thin film on the substrate surface, so the activity of the thin film surface is high, and it depends on the presence or absence of irregularities on the substrate surface. It was appearing.

本発明はかかる欠点を除去するために、液晶導
入部を長くすると共に、該液晶導入部の基板表面
に吸着能を有する膜を形成することによつて液晶
中の不純物を該液晶導入部の基板表面に吸着さ
せ、セル内の液晶の抵抗値を均一にして表示コン
トラストのムラを無くするものである。
In order to eliminate such drawbacks, the present invention makes the liquid crystal introduction part longer and forms a film having adsorption ability on the surface of the substrate of the liquid crystal introduction part, thereby removing impurities in the liquid crystal from the substrate of the liquid crystal introduction part. It is adsorbed onto the surface to make the resistance value of the liquid crystal in the cell uniform and eliminate uneven display contrast.

以下、実施例に従つて説明する。 Examples will be explained below.

実施例 1 第6図に示すようにMIM素子及び画素電極を
形成したガラス基板11とストライプ状の対向電
極を設けたガラス基板12とを、液晶導入部13
を長くしたシール材14によつて接着しセルを作
る。液晶導入部13の基板表面には前もつて
SiO2の多孔質膜を蒸着しておく。
Example 1 As shown in FIG. 6, a glass substrate 11 on which MIM elements and pixel electrodes are formed and a glass substrate 12 on which striped counter electrodes are provided are placed in a liquid crystal introduction section 13.
A cell is created by adhering with a long sealing material 14. The front surface of the substrate of the liquid crystal introduction part 13 is
A porous film of SiO 2 is deposited.

実施例 2 第6図に示すようにTFT及び画素電極を設け
た石英基板15と全面に透明電極を設け液晶注入
口16を設けた対向基板17とを、液晶導入部1
8を持つシール材19によつて接着しセルを作
る。TFT側基板15にはSiO斜方蒸着によつて
液晶の配向処理がなされており、液晶導入部18
にもSiO膜が形成されている。
Embodiment 2 As shown in FIG. 6, a quartz substrate 15 provided with TFTs and pixel electrodes, and a counter substrate 17 provided with transparent electrodes on the entire surface and provided with a liquid crystal injection port 16 were placed in the liquid crystal introduction section 1.
A cell is formed by adhering with a sealing material 19 having a diameter of 8. The TFT side substrate 15 is subjected to liquid crystal alignment treatment by SiO oblique evaporation, and the liquid crystal introduction part 18
A SiO film is also formed on the surface.

実施例1及び実施例2のセルに比抵抗2×
1010Ω−cmの液晶を封入し、偏光板を貼付けて
TN形液晶パネルとして駆動してみたが表示コン
トラストのムラは見られなかつた。
Specific resistance 2× for the cells of Example 1 and Example 2
10 Insert a 10 Ω-cm liquid crystal and attach a polarizing plate.
I tried driving it as a TN type liquid crystal panel, but no unevenness in display contrast was observed.

同じ液晶を第5図に示したシール形状を持つセ
ルに封入し、同様にTN形液晶パネルとして駆動
したところ、第5図のように液晶導入部6の付近
9は他の部分にくらべコントラストが低かつた。
When the same liquid crystal was sealed in a cell with the seal shape shown in Fig. 5 and similarly driven as a TN type liquid crystal panel, as shown in Fig. 5, the contrast in the vicinity 9 of the liquid crystal introduction part 6 was lower than in other parts. It was low.

又、実施例ではTN形液晶パネルについて述べ
たが原理的には電界効果形の液晶パネルへの応用
が可能で、ゲスト−ホスト形あるいは相転移形の
液晶パネルに応用することも出来る。
Further, in the embodiment, a TN type liquid crystal panel has been described, but in principle it can be applied to a field effect type liquid crystal panel, and can also be applied to a guest-host type or phase change type liquid crystal panel.

又、液晶導入部の表面処理についても、基板表
面が清浄であればある程度の吸着能を持つている
為単に液晶導入部を長くするだけでも本発明と同
様の効果を得ることが来るが、液晶パネルのデツ
ドスペースを少なくする為には本発明のように吸
着能を有する膜を用いた方が望ましい。吸着能を
有する膜については、一般的に薄膜自体がかなり
活性で吸着能を有しているが使用する液晶と反応
を起こさない物質を選ぶ必要があり、実施例以外
にも例えばA2O3,MgO,MgF,TiO2等の酸
化物を用いることが出来る。又、膜の形成法につ
いても、蒸着、スパツタリングやCVD法等の真
空プロセスや、真空プロセスを用いて形成したA
等の金属を陽極酸化することなどで得ることも
出来る。
Regarding the surface treatment of the liquid crystal introduction part, if the substrate surface is clean, it will have a certain degree of adsorption ability, so the same effect as the present invention can be obtained by simply lengthening the liquid crystal introduction part. In order to reduce the dead space of the panel, it is preferable to use a membrane having adsorption ability as in the present invention. Regarding films with adsorption ability, it is generally necessary to select a substance that is quite active and has adsorption ability, but does not react with the liquid crystal used . , MgO, MgF, TiO 2 and other oxides can be used. In addition, regarding the film formation method, vacuum processes such as vapor deposition, sputtering, and CVD methods, and A
It can also be obtained by anodizing metals such as.

以上説明したように、スイツチング素子を用い
て一方の基板上の独立した画素電極に電荷を注
入・保持させて、対向する基板上の電極との間に
電界を生じさせることにより液晶の配向を制御し
て表示を行なう液晶表示装置においては、セルへ
の液晶導入部を長くし、該液晶導入部の基板表面
に吸着能を有する膜を形成することによつて表示
コントラストのムラを解消することが出来る。
As explained above, the orientation of the liquid crystal is controlled by using a switching element to inject and hold charge in an independent pixel electrode on one substrate and generate an electric field between it and the electrode on the opposite substrate. In a liquid crystal display device that displays images, it is possible to eliminate uneven display contrast by lengthening the liquid crystal introduction part into the cell and forming a film with adsorption ability on the substrate surface of the liquid crystal introduction part. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスイツチング素子を用いて液晶を駆動
する場合の等価回路の概念図である。第2図は第
1図に示す等価回路の両端に印加される波形と液
晶部分に印加される波形を示す図。第3図及び第
4図は従来の液晶パネルのシール形状例を示す
図。第5図は第3図のシール形状を有する液晶パ
ネルを駆動する場合の説明図である。第6図及び
第7図は本発明の実施例における液晶パネルのシ
ール形状を示す図。
FIG. 1 is a conceptual diagram of an equivalent circuit when a switching element is used to drive a liquid crystal. FIG. 2 is a diagram showing waveforms applied to both ends of the equivalent circuit shown in FIG. 1 and waveforms applied to a liquid crystal portion. 3 and 4 are diagrams showing examples of seal shapes of conventional liquid crystal panels. FIG. 5 is an explanatory diagram when driving a liquid crystal panel having the seal shape shown in FIG. 3. FIG. 6 and FIG. 7 are diagrams showing the seal shape of a liquid crystal panel in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一方が透明な2枚の基板を、一定
の間隔を有し且つシール材を介して対向させてセ
ルを形成し、該セル内に液晶が封入されてなり、
基板上に設けた複数の独立した画素電極と、対向
する基板上の電極との間に電界を生じさせること
により液晶の配向を制御させて表示を行なう液晶
表示装置において、該シール材の少なくとも1辺
の第1のシール材と、該第1のシール材と平行に
延長して配設された第2のシール材との間に形成
された液晶導入部を有し、該液晶導入部の該液晶
と接する該基板面には吸着能を有する酸化膜が形
成されてなることを特徴とする液晶表示装置。
1 Two substrates, at least one of which is transparent, are placed opposite to each other with a certain interval between them to form a cell, and a liquid crystal is sealed within the cell,
In a liquid crystal display device that performs display by controlling the alignment of liquid crystal by generating an electric field between a plurality of independent pixel electrodes provided on a substrate and an electrode on an opposing substrate, at least one of the sealing materials is used. A liquid crystal introducing portion is formed between a first sealing material on a side and a second sealing material extending parallel to the first sealing material, and the liquid crystal introducing portion is A liquid crystal display device characterized in that an oxide film having adsorption ability is formed on the surface of the substrate in contact with liquid crystal.
JP21329381A 1981-12-28 1981-12-28 Liquid crystal display Granted JPS58115417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21329381A JPS58115417A (en) 1981-12-28 1981-12-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21329381A JPS58115417A (en) 1981-12-28 1981-12-28 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPS58115417A JPS58115417A (en) 1983-07-09
JPH0326366B2 true JPH0326366B2 (en) 1991-04-10

Family

ID=16636716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21329381A Granted JPS58115417A (en) 1981-12-28 1981-12-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JPS58115417A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169324U (en) * 1986-04-16 1987-10-27
JP2011095485A (en) * 2009-10-29 2011-05-12 Tokai Rika Co Ltd Cell

Also Published As

Publication number Publication date
JPS58115417A (en) 1983-07-09

Similar Documents

Publication Publication Date Title
US4978203A (en) Liquid crystal device with an apparent hysteresis
JP2001209063A (en) Liquid crystal display device and its displaying method
JPH06214244A (en) Active matrix type liquid crystal display device
JP2002207462A (en) Method for driving liquid crystal display element
US4846560A (en) Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions
KR950000405B1 (en) Liquid crystal display device
JPH0326366B2 (en)
JP3559719B2 (en) Plasma address type liquid crystal display
JPH02221929A (en) Ferrodielectric liquid crystal-changeover- and-display element having lowered optical hysteresis
JPH0921997A (en) Liquid crystal display device
JPH11271716A (en) Liquid crystal display device
JP2868758B1 (en) Liquid crystal display
JP2707074B2 (en) Liquid crystal element
JPH0434412A (en) Method for driving active matrix type liquid crystal display element and active matrix type liquid crystal display element
JPS63132220A (en) Ferroelectric liquid crystal element and its driving method
JP2578942B2 (en) Driving method of active matrix liquid crystal display device
JP2001188233A (en) Liquid crystal display device
JPH05289114A (en) Liquid crystal display device
JP2761581B2 (en) Liquid crystal device
JPH0518736Y2 (en)
JPH02126226A (en) Liquid crystal electrooptic element
JPH0291614A (en) Driving method for liquid crystal element
JPS62134628A (en) Storage capacitor address diode type active matrix liquid crystal display device and its driving method
JPS6112787A (en) Liquid crystal element
JPH05188348A (en) Ferroelectric liquid crystal display element