JPS61127732A - Molecular weight fractionation of ladder-type silicone resin - Google Patents

Molecular weight fractionation of ladder-type silicone resin

Info

Publication number
JPS61127732A
JPS61127732A JP25091284A JP25091284A JPS61127732A JP S61127732 A JPS61127732 A JP S61127732A JP 25091284 A JP25091284 A JP 25091284A JP 25091284 A JP25091284 A JP 25091284A JP S61127732 A JPS61127732 A JP S61127732A
Authority
JP
Japan
Prior art keywords
molecular weight
average molecular
solvent
fractionated
silylated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25091284A
Other languages
Japanese (ja)
Other versions
JP2513595B2 (en
Inventor
Masashi Miyagawa
昌士 宮川
Yasuhiro Yoneda
泰博 米田
Shunichi Fukuyama
俊一 福山
Kota Nishii
耕太 西井
Azuma Matsuura
東 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25091284A priority Critical patent/JP2513595B2/en
Publication of JPS61127732A publication Critical patent/JPS61127732A/en
Application granted granted Critical
Publication of JP2513595B2 publication Critical patent/JP2513595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

PURPOSE:To carry out the titled fractionation in high reproducibility, by dissolving a silylated silsesquioxane polymer in a solvent having the maximum average molecular weight to be fractionated as the limit of soluble molecular weight, and precipitating the polymer from the solution by the addition of a solvent having the minimum average molecular weight to be fractionated as the limit of soluble molecular weight. CONSTITUTION:For example, a component having a molecular weight of 1-5X10<4> is fractionated from a silylated silsesquioxane polymer (e.g. polymethyl silsesquioxane), by dissolving the component having a weight-average molecular weight (Mw) of <=5X10<4> in a solvent having the maximum average molecular weight to be fractionated as the limit of soluble molecular weight (e.g. isopropanol), removing the insoluble component, adding a solvent having the minimum average molecular weight to be fractionated as the limit of soluble molecular weight (e.g. methanol) to effect the precipitation of the component having Mw of >1X10<4>, and recovering the precipitate. EFFECT:The obtained resin has excellent sharpness and sensitivity when used as an electron beam resist.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はラダー構造をもつシリル化シルセスキオキサン
系ポリマー(別称ラダー型シリコン樹脂)について特定
の分子量分布のポリマーを分別する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for fractionating a silylated silsesquioxane polymer having a ladder structure (also known as a ladder silicone resin) into a polymer having a specific molecular weight distribution.

発明者等は電子線レジストとしてシリル化したシルセス
キオキサン系ポリマーが優れた解像性と感度を示すこと
を見いだし、この使用を提案している。
The inventors have discovered that a silylated silsesquioxane polymer exhibits excellent resolution and sensitivity as an electron beam resist, and have proposed its use.

ここでポリメチルシルセスキオキサン、ポリフェニルシ
ルセスキオキサン、ポリフェニルメチルシルセスキオキ
サンなどのシルセスキオキサン系ポリマーの製法はポリ
メチルシルセスキオキサンに例をとるとメチルトリクロ
ルシラン、メチルトリメトキシシランなどを低温で加水
分解して三官能モノマーを形成した後、重縮合反応を行
って高分子化するために分子量分布が非常に大きい。
Here, the manufacturing method of silsesquioxane-based polymers such as polymethylsilsesquioxane, polyphenylsilsesquioxane, and polyphenylmethylsilsesquioxane is as follows: For example, methyltrichlorosilane, methyl Trimethoxysilane and the like are hydrolyzed at low temperatures to form a trifunctional monomer, which is then subjected to a polycondensation reaction to form a polymer, resulting in a very wide molecular weight distribution.

それ故、かかるシルセスキオキサン系ポリマーをシリル
化した後、そのまま電子線レジストとして使用すると分
子量の大小によって溶剤に対する溶解度に差があるため
に解像性の劣ったレジストとなってしまう。
Therefore, if such a silsesquioxane polymer is silylated and then used as an electron beam resist as it is, the resist will have poor resolution due to the difference in solubility in a solvent depending on the molecular weight.

それ故に特定の分子量範囲の樹脂を分別して使用する必
要がある。
Therefore, it is necessary to separate and use resins within a specific molecular weight range.

本発明はシリル化シルセスキオキサン系ポリマーの分子
量分布を分別する新しい方法に関するものである。
The present invention relates to a new method for fractionating the molecular weight distribution of silylated silsesquioxane polymers.

〔従来の技術〕[Conventional technology]

シリル化シルセスキオキサン系ポリマーの分子量分布か
ら特定な範囲のものを分別する方法として従来は例えば
4メチル2ペンタノンなどの溶剤に溶解した後にアセト
ニドリレなどの非溶剤を添加することによって分子量の
大きなものから沈澱する現象を利用して分別を行ってい
た。
Conventionally, a method for separating silylated silsesquioxane polymers into specific ranges from their molecular weight distribution is to dissolve them in a solvent such as 4-methyl-2-pentanone and then add a non-solvent such as acetonidrile. Separation was carried out using the phenomenon of precipitation.

然し、この方法による場合は非溶剤の添加量や温度が大
きく影響するために所望の分子量組成のものを再現性よ
く分別することができないと云う問題があり、再現性よ
く分取する方法が要望されていた。
However, when using this method, there is a problem in that it is not possible to reproducibly separate substances with the desired molecular weight composition because the amount of non-solvent added and the temperature have a large effect.Therefore, there is a need for a method that can perform preparative separation with good reproducibility. It had been.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように広い分子量分布を持つシリル化シルセ
スキオキサン系ポリ了−から特定の分子量分布領域だけ
を分取する良い方法が見当たらないことが問題である。
As mentioned above, the problem is that no good method has been found for separating only a specific molecular weight distribution region from silylated silsesquioxane polyesters having a wide molecular weight distribution.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点はシリル化シルセスキオキサン系ポリマー
を溶解する各種溶剤について予め該溶剤とこれが可溶す
る平均分子量の最大値との関係を求めておき、まず分別
する最大平均分子量を可溶限とする溶剤を用いて必要と
する平均分子量以下の樹脂溶液を作り、次に該溶液に分
別する最小平均分子量を可溶限とする溶剤を添加するこ
とにより分別範囲の樹脂を沈澱せしめて分離することを
特徴とするラダー型シリコン樹脂の分子量分別法の使用
により解決することができる。
The above problem can be solved by first determining the relationship between the solvent and the maximum average molecular weight in which it can be dissolved in various solvents that dissolve the silylated silsesquioxane polymer, and then determining the maximum average molecular weight to be fractionated as the solubility limit. A resin solution with a molecular weight below the required average molecular weight is prepared using a solvent, and then a solvent whose solubility limit is the minimum average molecular weight to be fractionated is added to the solution to precipitate and separate the resins within the fractionation range. This problem can be solved by using a molecular weight fractionation method for ladder-type silicone resin, which is characterized by the following.

〔作用〕[Effect]

シルセスキオキサン系ポリマーの溶剤に対する溶解度は
このポリマーの分子量と、このポリマーが持つヒドロキ
シ基(OH基)の数に依存するが、発明者はシルセスキ
オキサンに残る08P!Eをシリル化してOR基による
溶解因子を除去した場合について溶剤に対する溶解性を
調査した結果、溶解性が分子量に依存して明瞭に変化す
ることを見いだした。
The solubility of silsesquioxane-based polymers in solvents depends on the molecular weight of this polymer and the number of hydroxy groups (OH groups) that this polymer has, but the inventor discovered that the 08P! As a result of investigating the solubility in solvents when E was silylated to remove the solubility factor due to the OR group, it was found that the solubility clearly changes depending on the molecular weight.

すなわち溶剤には溶質に対して弱く作用する溶剤と強く
作用する溶剤とがあるが、溶剤によってこれが可溶する
シルセスキオキサン系ポリマーの最大平均分子量値が明
瞭に異なることを見いだした。
That is, there are solvents that act weakly on solutes and solvents that act strongly on solutes, but it has been found that the maximum average molecular weight of the silsesquioxane-based polymer in which the solute is soluble differs clearly depending on the solvent.

表は各溶剤による可溶限を溶剤の強弱の順に示すもので
あ、る。
The table shows the solubility limits for each solvent in order of strength of the solvent.

表 すなわち本発明はシリル化シルセスキオキサン系ポリマ
ーから例えば1〜5 XIO’の分子量成分を分別した
い場合は広い分子量分布をもつ樹脂よリイソプロパノー
ルを用いてM−が5X10’までの成分を抽出した後に
、メタノールを添加してゆくとM−がI XIO’を越
す成分は沈澱して(るためにこれを回収することによっ
て再現性よく分別を行うものである。
In other words, when it is desired to separate components with a molecular weight of 1 to 5 XIO' from a silylated silsesquioxane polymer, the present invention uses a resin with a wide molecular weight distribution and extracts components with an M- of up to 5X10' using lysopropanol. After that, when methanol is added, components in which M- exceeds IXIO' precipitate, and are collected to perform fractionation with good reproducibility.

〔実施例〕〔Example〕

以下ラダー型シリコン樹脂としてシリル化ポリメチルシ
ルセスキオキサンの製法とこの方法で得られた広い分子
量分布の樹脂成分の中から特定の分子量成分を分別する
方法を実施例について説明す゛る。
Hereinafter, a method for producing silylated polymethylsilsesquioxane as a ladder-type silicone resin and a method for separating a specific molecular weight component from among the resin components having a wide molecular weight distribution obtained by this method will be described with reference to Examples.

ポリメチルシルセスキオキサンの合成例:、。Synthesis example of polymethylsilsesquioxane:.

4メチル−2ペンタノン250gとトリエチルアミン3
1.2gとを12の丸底フラスコに入れ、ドライアイス
−エタノール浴にて一20℃に冷却した。
250 g of 4-methyl-2-pentanone and 3 triethylamine
1.2 g was placed in a 12 round bottom flask and cooled to -20°C in a dry ice-ethanol bath.

次にこれを攪拌しながら45gのメチルトリクロロシラ
ン、次いで54gの脱イオン水を滴下した。
Next, while stirring, 45 g of methyltrichlorosilane and then 54 g of deionized water were added dropwise.

滴下終了後に混合液を徐々に室温にまで上昇した後、9
5℃の温度で4時間に互って反応させた。
After the dropwise addition was completed, the mixture was gradually raised to room temperature, and then
The reaction was allowed to proceed for 4 hours at a temperature of 5°C.

このとき窒素ガス(N2)をバブリングして系内の塩素
ガス(C1z)を系外に除去した。
At this time, nitrogen gas (N2) was bubbled to remove chlorine gas (C1z) in the system to the outside of the system.

反応の終了後、11の脱イオン水で5回洗滌を行い有機
層を分取した。
After the reaction was completed, the organic layer was washed 5 times with deionized water (No. 11) and separated.

次にシリル化の方法としてはこのようにして得られた有
機層に50gのトリメチルクロルシランを添加し、攪拌
しながら脱水ピリジン50gを滴下した。
Next, as a silylation method, 50 g of trimethylchlorosilane was added to the organic layer thus obtained, and 50 g of dehydrated pyridine was added dropwise while stirring.

この反応液は11の脱イオン水を用いて5回洗強し、有
機層を分取した。
This reaction solution was washed 5 times with 11 deionized water, and the organic layer was separated.

これに500ccのアセトニトリルを添加し、生じた沈
澱を吸引濾過して乾燥し、シリル化ポリメチルシルセス
キオキサンを得た。
500 cc of acetonitrile was added thereto, and the resulting precipitate was suction filtered and dried to obtain silylated polymethylsilsesquioxane.

この樹脂をGPC分析法で調べた結果、重量平均分子f
i(Mw)は5xio’であり、分散度(Mw/Mn)
は6.5であった。
As a result of examining this resin by GPC analysis, it was found that the weight average molecule f
i (Mw) is 5xio', and the degree of dispersion (Mw/Mn)
was 6.5.

実施例1: このようにして合成したシリル化ポリメチルシルセスキ
オキサン10gを200ccのイソプロパツールに溶解
し、60℃で20分間に互って加熱した後、20℃にて
24時間静置した。
Example 1: 10 g of silylated polymethylsilsesquioxane synthesized in this manner was dissolved in 200 cc of isopropanol, heated at 60°C for 20 minutes, and then left at 20°C for 24 hours. did.

次に傾斜法により不溶解分を除去したのち、溶液を50
0ccのアセトニトリルに投入し、沈澱を吸引濾過して
乾燥した。
Next, after removing the undissolved matter by the decanting method, the solution was
The mixture was poured into 0 cc of acetonitrile, and the precipitate was suction filtered and dried.

この場合のhは5X10’であり、また分散度は1.8
であった。
h in this case is 5X10' and the degree of dispersion is 1.8
Met.

実施例2: 先の方法により合成したシリル化ポリメチルシルセスキ
オキサンIQgを200ccのシクロヘキサノンに溶解
し、60℃で20分に互って加熱した後、20℃で24
時間静置した。
Example 2: The silylated polymethylsilsesquioxane IQg synthesized by the above method was dissolved in 200 cc of cyclohexanone, heated at 60°C for 20 minutes, and then heated at 20°C for 24 minutes.
Let it stand for a while.

次に傾斜法により不溶解成分を除去した後、tlのイソ
プロパツールを添加し、生じた沈澱を吸引濾過して乾燥
した。
Next, after removing insoluble components by a decanting method, tl of isopropanol was added, and the resulting precipitate was filtered with suction and dried.

このようにして得た樹脂のMwは13X10’でありま
た分散度は2.3であった。
The resin thus obtained had an Mw of 13×10′ and a dispersity of 2.3.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明はシリル化シルセスキオキサン
が溶剤に対して明瞭な溶解特性を持つことを利用し、強
弱二つの溶剤を用いて特定の分子量分布の樹脂を分別す
るもので、本発明の実施により再現性の良い分取が可能
になる。
As described above, the present invention utilizes the fact that silylated silsesquioxane has distinct solubility characteristics in solvents, and uses two strong and weak solvents to separate resins with a specific molecular weight distribution. By carrying out the invention, fractionation with good reproducibility becomes possible.

Claims (1)

【特許請求の範囲】[Claims] シリル化シルセスキオキサン系ポリマーを溶解する各種
溶剤について予め該溶剤とこれが可溶する平均分子量の
最大値との関係を求めておき、まず分別する最大平均分
子量を可溶限とする溶剤を用いて必要とする平均分子量
以下の樹脂溶液を作り、次に該溶液に分別する最小平均
分子量を可溶限とする溶剤を添加することにより分別範
囲の樹脂を沈澱せしめて分離することを特徴とするラダ
ー型シリコン樹脂の分子量分別法。
For various solvents that dissolve silylated silsesquioxane polymers, first determine the relationship between the solvent and the maximum average molecular weight in which it can be dissolved, and first use a solvent whose solubility limit is the maximum average molecular weight to be fractionated. A resin solution having a required average molecular weight or less is prepared, and then a solvent whose solubility limit is the minimum average molecular weight to be fractionated is added to the solution to precipitate and separate the resins in the fractionation range. Molecular weight fractionation method for ladder-type silicone resin.
JP25091284A 1984-11-28 1984-11-28 Method of molecular weight fractionation of ladder type silicone resin Expired - Lifetime JP2513595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25091284A JP2513595B2 (en) 1984-11-28 1984-11-28 Method of molecular weight fractionation of ladder type silicone resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25091284A JP2513595B2 (en) 1984-11-28 1984-11-28 Method of molecular weight fractionation of ladder type silicone resin

Publications (2)

Publication Number Publication Date
JPS61127732A true JPS61127732A (en) 1986-06-16
JP2513595B2 JP2513595B2 (en) 1996-07-03

Family

ID=17214869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25091284A Expired - Lifetime JP2513595B2 (en) 1984-11-28 1984-11-28 Method of molecular weight fractionation of ladder type silicone resin

Country Status (1)

Country Link
JP (1) JP2513595B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063267A (en) * 1990-11-28 1991-11-05 Dow Corning Corporation Hydrogen silsesquioxane resin fractions and their use as coating materials
US5247043A (en) * 1991-08-06 1993-09-21 Dow Corning Toray Silicone Co., Ltd. Phenylpolysilsesquioxanes and method for their preparation
EP0599209A2 (en) * 1992-11-24 1994-06-01 Dow Corning Toray Silicone Co., Ltd. Method for the molecular weight fractionation of polyhydrogen silsesquioxane
US5779299A (en) * 1995-06-07 1998-07-14 Asc Incorporated Apparatus for achieving automotive vehicle roof isolation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063267A (en) * 1990-11-28 1991-11-05 Dow Corning Corporation Hydrogen silsesquioxane resin fractions and their use as coating materials
EP0493879A2 (en) * 1990-11-28 1992-07-08 Dow Corning Corporation Hydrogen silsesquioxane resin fractions and their use as coating materials
US5247043A (en) * 1991-08-06 1993-09-21 Dow Corning Toray Silicone Co., Ltd. Phenylpolysilsesquioxanes and method for their preparation
EP0599209A2 (en) * 1992-11-24 1994-06-01 Dow Corning Toray Silicone Co., Ltd. Method for the molecular weight fractionation of polyhydrogen silsesquioxane
EP0599209A3 (en) * 1992-11-24 1995-03-15 Dow Corning Toray Silicone Method for the molecular weight fractionation of polyhydrogen silsesquioxane.
US5416190A (en) * 1992-11-24 1995-05-16 Dow Corning Toray Silicone Co., Ltd. Method for the molecular weight fractionation of polyhydrogen silsesquioxane
US5486564A (en) * 1992-11-24 1996-01-23 Dow Corning Toray Silicone Company, Ltd. High purity polyhydrogen silsesquioxane resin for electronic coatings
US5779299A (en) * 1995-06-07 1998-07-14 Asc Incorporated Apparatus for achieving automotive vehicle roof isolation

Also Published As

Publication number Publication date
JP2513595B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
Sakamoto et al. Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene
KR101314794B1 (en) Polymer structure whose surface and/or interface is modified, and method for producing same
JP2003530464A (en) Low dielectric constant organic dielectric mainly composed of cage-like structure
Zhang et al. Cylindrical polypeptide brushes
Busatto et al. Reactive Polymorphic Nanoparticles: Preparation via Polymerization‐Induced Self‐Assembly and Postsynthesis Thiol–para‐Fluoro Core Modification
Krishnan et al. Octa (maleimido phenyl) silsesquioxane copolymers
CN107207664B (en) Polymer and positive resist composition
Suriano et al. Carbohydrate‐based amphiphilic diblock copolymers: Synthesis, characterization, and aqueous properties
Sanda et al. Helical Polymer Carrying Helical Grafts from Peptide‐Based Acetylene Macromonomers: Synthesis
US3663650A (en) Substantially transparent polydimethylsiloxane - polyalkylmethacrylate compositions and method for making same
JPS61127732A (en) Molecular weight fractionation of ladder-type silicone resin
DE68916143T2 (en) Silicon-containing polymer and photosensitive material containing the same.
Vielhauer et al. Linear and star‐shaped POSS hybrid materials containing crystalline isotactic polystyrene chains
JP2006265514A (en) Copolymer and manufacturing method thereof
Li et al. Soluble network polymers based on trifluoropropyl‐substituted open‐cage silsesquioxane: Synthesis, properties, and application for surface modifiers
Pesak et al. Polar domains on globular macromolecules: Shape-persistent, amphiphilic tridendrons
Antoun et al. A Simple Route to Rod‐Coil Block Copolymers of Oligo‐and Polythiophenes with PMMA and Polystyrene
JPH04264132A (en) Hydrophenylpolysilane and its production
JPH06248082A (en) Method of synthesis of polysilsesquioxane and utilization of obtained compound
Kamath et al. Interpenetrating polymer networks of photocrosslinkable cellulose derivatives
EP4112672A1 (en) Resin material including siloxane-bond-containing polymer having host group and/or guest group
TWI686413B (en) Polymer and positive photoresist composition
JP2526187B2 (en) Fluorosilicone resin and method for producing the same
Gipstein et al. The synthesis and evaluation of cyclic olefin sulfone copolymers and terpolymers as electron beam resists
JPH04264130A (en) Alkyl-substituted diphenylpolysilane and its production