JPH04264132A - Hydrophenylpolysilane and its production - Google Patents

Hydrophenylpolysilane and its production

Info

Publication number
JPH04264132A
JPH04264132A JP3045479A JP4547991A JPH04264132A JP H04264132 A JPH04264132 A JP H04264132A JP 3045479 A JP3045479 A JP 3045479A JP 4547991 A JP4547991 A JP 4547991A JP H04264132 A JPH04264132 A JP H04264132A
Authority
JP
Japan
Prior art keywords
hydrophenylpolysilane
absorption
polymerization
dichlorophenylsilane
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3045479A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3045479A priority Critical patent/JPH04264132A/en
Publication of JPH04264132A publication Critical patent/JPH04264132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare hydrophenylpolysilane which has a specific structural formula, shows an improved film-forming capability and an improved adhesion to a substrate, and is useful for a photoresist, etc., by condensing dichlorophenylsilane in the presence of metallic sodium. CONSTITUTION:Dichlorophenylsilane is condensed in the presence of metallic sodium to give hydrophenylpolysilane of the formula (wherein (n) is a mean degree of polymn.).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フォトレジスト、光導
波路材料、シリコンカーバイドの前駆体、半導体、電子
写真感光体、非線型光学材料として、炭素を骨格とする
従来の高分子材料にはないユニークな特徴を持つ新しい
タイプの機能性材料である、シリコンを骨格とする可溶
性ヒドロフェニルポリシラン高分子に関する。
[Industrial Application Field] The present invention is applicable to photoresists, optical waveguide materials, silicon carbide precursors, semiconductors, electrophotographic photoreceptors, and nonlinear optical materials, which are not available in conventional polymeric materials with carbon skeletons. This research concerns a soluble hydrophenylpolysilane polymer with a silicone backbone, which is a new type of functional material with unique characteristics.

【0002】0002

【従来の技術】近年シリコンを骨格とする高分子である
可溶性有機ポリシランは、フォトレジスト、シリコンカ
ーバイドの前駆体、半導体、電子写真感光体、非線型光
学材料、光導波路として、炭素を骨格とする従来の高分
子材料にはないユニークな特徴を持つ新しいタイプの機
能性材料として多くの注目を集めている。有機ポリシラ
ンが興味を引いた原因の一つは有機溶剤に溶解し、繊維
や薄膜に容易に加工できるためである。しかしながらこ
れまで知られている有機ポリシランのほとんどは、Si
に有機置換基が2個導入された(SiR1 R2 )(
R1 、R2 は有機置換基)を繰返し単位とする化学
構造である。そのため、例えば、光化学的な開裂反応や
架橋反応を利用したフォトレジストや光導波路のような
数ミクロン程度の厚みの薄膜加工に対して、感度が十分
でなく、また300から400nm付近に現われるSi
−Si結合に由来する強い紫外吸収帯による自己吸収の
ため膜厚を厚くできず、従来の炭素系高分子材料に比べ
特性的に満足ではなかった。また、実用的な観点からは
、Siに有機置換基が2個導入された(SiR1 R2
 )型の有機ポリシランは、(R1 、R2 は有機置
換基)を繰返し単位とする化学構造ガラスやシリコン基
板との密着性に欠けていた。高感度化を達成するために
は、化学的に活性なSiH結合を有する高分子でかつ照
射紫外線に対して強すぎない吸収を有することが必要で
ある。また、密着性を向上するには、極性なSiH結合
の導入は有効である。SiH結合を含有する低分子物質
は種々知られているが、その高分子はほとんど知られて
いない。 わずかにヒドロフェニルポリシラン類やヒドロアルキル
ポリシラン類に関する報告例は数例あるのみである。し
かしながら報告によると、得られる分子量は最大150
0以下と低いため薄膜形成能に欠け、分子量で通常最低
1万以上有する(SiR1 R2 )を構成単位とする
高分子量有機ポリシラン類に比べて、実用的な観点から
は興味の対象外であった。SiH結合を有する有機ポリ
シランの合成報告例を以下に示す。 (ア)C.アイトキン、J.F.ハロッド、U.S.ギ
ル( C.Aitkin 、 J. F.Harrod
、 U. S. Gill ) 、カナディアン  ジ
ャーナル  オブ  ケミストリー( Can. J.
 Chem.) 、第65巻、第1804頁(1987
):フェニルシラン1mlをトルエン1ml中ジメチル
チタノセン10mgと共に室温で7日間反応させ、数平
均重合度8〜13のヒドロフェニルポリシランを得た。 (イ)T.ナカノ、H.ナカムラ、Y.ナガイ( T.
 Nakano、H. Nakamura、Y.Nag
ai ) 、ケミストリー  レターズ( Chem.
 Lett. )、第83頁(1989):フェニルシ
ランとジフェニルチタノセンを反応させ、重量平均重合
度7〜9のヒドロフェニルポリシランを得た。
[Prior Art] In recent years, soluble organic polysilanes, which are polymers with a silicon skeleton, have been used as photoresists, silicon carbide precursors, semiconductors, electrophotographic photoreceptors, nonlinear optical materials, and optical waveguides. It is attracting a lot of attention as a new type of functional material with unique characteristics not found in conventional polymer materials. One of the reasons why organic polysilanes have attracted interest is that they dissolve in organic solvents and can be easily processed into fibers and thin films. However, most of the organic polysilanes known so far are Si
Two organic substituents were introduced into (SiR1 R2) (
It is a chemical structure in which R1 and R2 are organic substituents) as repeating units. Therefore, for example, the sensitivity is not sufficient for processing thin films of several microns in thickness such as photoresists and optical waveguides using photochemical cleavage reactions and crosslinking reactions, and Si
Because of self-absorption due to the strong ultraviolet absorption band derived from the -Si bond, the film thickness could not be increased, and the properties were not satisfactory compared to conventional carbon-based polymer materials. In addition, from a practical point of view, two organic substituents were introduced to Si (SiR1 R2
)-type organic polysilanes lacked adhesion to glass and silicon substrates having a chemical structure in which (R1 and R2 are organic substituents) are repeating units. In order to achieve high sensitivity, it is necessary to use a polymer that has chemically active SiH bonds and has not too strong absorption of irradiated ultraviolet rays. Furthermore, in order to improve adhesion, it is effective to introduce polar SiH bonds. Although various low-molecular substances containing SiH bonds are known, their polymers are hardly known. There are only a few reports regarding hydrophenylpolysilanes and hydroalkylpolysilanes. However, reports suggest that the molecular weight obtained is up to 150
It lacks thin film forming ability due to its low molecular weight of less than 0, and is not of interest from a practical standpoint compared to high molecular weight organic polysilanes whose constituent units are (SiR1 R2), which usually have a molecular weight of at least 10,000 or more. . Examples of reported synthesis of organic polysilanes having SiH bonds are shown below. (a)C. Aitkin, J. F. Harrod, U. S. Gill (C. Aitkin, J. F. Harrod
, U. S. Gill), Canadian Journal of Chemistry (Can. J.
Chem. ), vol. 65, p. 1804 (1987
): 1 ml of phenylsilane was reacted with 10 mg of dimethyltitanocene in 1 ml of toluene at room temperature for 7 days to obtain hydrophenylpolysilane with a number average degree of polymerization of 8 to 13. (a) T. Nakano, H. Nakamura, Y. Nagai (T.
Nakano, H. Nakamura, Y. Nag
ai), Chemistry Letters (Chem.
Lett. ), p. 83 (1989): Phenylsilane and diphenyltitanocene were reacted to obtain hydrophenylpolysilane having a weight average degree of polymerization of 7 to 9.

【0003】0003

【発明が解決しようとする課題】しかしながら、チタノ
セン触媒を使うこれらの方法は、生成するヒドロフェニ
ルポリシランを単離するために、チタノセンを含む有色
反応副生成物をカラムで分離する必要がある上、得られ
る分子量が低く薄膜形成能が十分でなく、かつまた反応
に長時間を要するという欠点を有する。本発明の目的は
、高感度なフォトレジスト、導波損失の少ない光導波路
材料、p/n型ドーピング可能な半導体、変換効率の高
いシリコンカーバイドの前駆体、高感度な電子写真感光
体、高効率な非線型光学材料として期待される、良好な
薄膜形成能と基板との密着性を持つSiH結合を有する
高分子量ヒドロフェニルポリシランを提供することにあ
る。
However, these methods using titanocene catalysts require separation of colored reaction by-products containing titanocene in a column in order to isolate the produced hydrophenylpolysilane. The disadvantages are that the obtained molecular weight is low, the ability to form a thin film is insufficient, and the reaction takes a long time. The objects of the present invention are a highly sensitive photoresist, an optical waveguide material with low waveguide loss, a semiconductor capable of p/n type doping, a silicon carbide precursor with high conversion efficiency, a highly sensitive electrophotographic photoreceptor, and a high efficiency The object of the present invention is to provide a high molecular weight hydrophenylpolysilane having SiH bonds and having good thin film forming ability and adhesion to a substrate, which is expected to be used as a nonlinear optical material.

【0004】0004

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は、ヒドロフェニルポリシランに関す
る発明であって、下記構造式(化1):
[Means for Solving the Problems] To summarize the present invention, the first invention of the present invention relates to hydrophenylpolysilane, which has the following structural formula (Formula 1):

【化1】 (nは重量平均重合度を示す)で表されることを特徴と
する。本発明の第2の発明は、上記構造式(化1)で表
されるヒドロフェニルポリシランの製造方法に関する発
明であって、ジクロロフェニルシランを、金属ナトリウ
ムで縮合させることを特徴とする。
It is characterized by being represented by the following formula (n represents the weight average degree of polymerization). A second invention of the present invention relates to a method for producing hydrophenylpolysilane represented by the above structural formula (Chemical formula 1), and is characterized in that dichlorophenylsilane is condensed with metallic sodium.

【0005】前記高分子量ヒドロフェニルポリシランを
実現するため、本発明では、前述のC.アイトキンらの
方法で示されたジメチルチタノセンを触媒にしたフェニ
ルシランの脱水素重合でヒドロフェニルシランを得る方
法に対して、対応するジクロロシランを金属Naで縮合
する方法を適用した。
In order to realize the high molecular weight hydrophenylpolysilane, the present invention uses the above-mentioned C.I. In contrast to the method of Aitkin et al., in which hydrophenylsilane is obtained by dehydrogenation polymerization of phenylsilane using dimethyltitanocene as a catalyst, a method of condensing the corresponding dichlorosilane with metallic Na was applied.

【0006】本発明の目的化合物の例としては、単分散
ポリスチレンを基準にしたゲルパーミエーションクロマ
トグラフ法により求めた方法で、nの値が20以上であ
ることを特徴とするヒドロフェニルポリシラン、単分散
ポリスチレンを基準にしたゲルパーミエーションクロマ
トグラフ法により求めた方法でnの値が20以上で、か
つ29Si−FTNMR(CP−MAS法)で約−60
ppmに1本の幅広いピークを持つことを特徴とするヒ
ドロフェニルポリシラン、及び単分散ポリスチレンを基
準にしたゲルパーミエーションクロマトグラフ法により
求めた方法でnの値が20以上で、かつ29Si−FT
NMR(CP−MAS法)で約−60ppmに1本の幅
広いピークを持ち、FT−IR法で求めたSi−H2 
変角振動δ(Si−H)とSi−H伸縮振動ν(Si−
H)との相対吸収強度比が0.45以下であることを特
徴とするヒドロフェニルポリシラン等が挙げられる。
Examples of the target compound of the present invention include hydrophenylpolysilane and monosilane, which are characterized by having an n value of 20 or more as determined by gel permeation chromatography using monodisperse polystyrene as a standard. The value of n is 20 or more as determined by gel permeation chromatography based on dispersed polystyrene, and approximately -60 in 29Si-FTNMR (CP-MAS method).
Hydrophenylpolysilane is characterized by having one broad peak per ppm, and the value of n is 20 or more as determined by gel permeation chromatography based on monodisperse polystyrene, and 29Si-FT
Si-H2 has one broad peak at about -60 ppm in NMR (CP-MAS method) and is determined by FT-IR method.
Bending vibration δ (Si-H) and Si-H stretching vibration ν (Si-
Examples include hydrophenylpolysilane, which is characterized by a relative absorption intensity ratio with H) of 0.45 or less.

【0007】[0007]

【実施例】以下、本発明を実施例及び応用例等により更
に具体的に説明するが、本発明はこれらに限定されない
。なお、反応操作及び精製操作はすべてアルゴンガス雰
囲気下及び室内光をカットして行った。
[Examples] The present invention will be explained in more detail below with reference to Examples and Application Examples, but the present invention is not limited thereto. Note that all reaction operations and purification operations were performed under an argon gas atmosphere and with indoor light cut off.

【0008】実施例1 反応容器内を十分に脱水脱気し、アルゴンガス置換した
後、ジクロロフェニルシラン6.5gとトルエン30m
lをフラスコに入れた。油浴温度110℃において金属
ナトリウム分散液(トルエン30%)8.5gを一気に
添加し、添加後更に約5分間反応させた。反応混合溶液
を加圧ろ過し、脱気した冷イソプロピルアルコールにろ
液を加えた。生じた白色沈殿を遠心分離機で回収し、6
0℃で真空乾燥した。収量は1.02gでジクロロジフ
ェニルシランを基準にした収率で26.2%であった。 単分散ポリスチレンを基準にしたゲルパーミエーション
クロマトグラフ法により求めた重量平均重合度が42.
5、分散度(=重量平均重合度/数平均重合度)が2.
54の単峰性の高分子が得られ、重合度は280から1
2の範囲にわたっていた。得られたヒドロフェニルポリ
シランはスピンコート法や溶媒キャスト法で容易に薄膜
を形成でき、ガラス基板との密着性が良好で少々の力で
はがれることはなかった。したがって、ヒドロフェニル
ポリシランを従来よりも高分子量化したことによるメリ
ットが発現した。
Example 1 After thoroughly dehydrating and degassing the inside of the reaction vessel and purging with argon gas, 6.5 g of dichlorophenylsilane and 30 m of toluene were added.
1 into the flask. At an oil bath temperature of 110° C., 8.5 g of a metal sodium dispersion (toluene 30%) was added all at once, and the reaction was further continued for about 5 minutes after the addition. The reaction mixture solution was filtered under pressure, and the filtrate was added to degassed cold isopropyl alcohol. The resulting white precipitate was collected using a centrifuge, and 6
It was vacuum dried at 0°C. The yield was 1.02 g, which was 26.2% based on dichlorodiphenylsilane. The weight average degree of polymerization determined by gel permeation chromatography using monodisperse polystyrene as a standard is 42.
5. Dispersity (=weight average degree of polymerization/number average degree of polymerization) is 2.
A monomodal polymer of 54 was obtained, with a degree of polymerization ranging from 280 to 1.
It ranged from 2. The obtained hydrophenylpolysilane could be easily formed into a thin film by spin coating or solvent casting, had good adhesion to the glass substrate, and did not peel off with a little force. Therefore, the advantage of using hydrophenylpolysilane with a higher molecular weight than before has been realized.

【0009】溶媒キャスト法で作製したヒドロフェニル
ポリシラン薄膜のFT−IR吸収スペクトルを図1に示
す。帰属は以下の通りである。芳香族C−H伸縮振動3
066、3048、3010cm−1、Si−H伸縮振
動2106cm−1、芳香族C=C伸縮振動1594、
1492、1428cm−1、Si−H2変角振動90
6cm−1、Si−C伸縮振動1100cm−1、モノ
置換ベンゼン環吸収734、696cm−1、Si−S
i伸縮振動490cm−1。末端Si−H2 結合及び
Si−H結合に基づく2106cm−1にSi−H伸縮
振動ν(Si−H)並びに906cm−1に末端Si−
H2 結合に基づくSi−H2 変角振動(δSi−H
)が認められ、それらの相対吸収強度比I(δSi−H
)/I(νSi−H)は0.40であった。またSi−
O−Siに基づく1000〜1100cm−1付近の吸
収がほとんど認められない。脂肪族炭化水素基に基づく
2900cm−1付近のC−H伸縮振動がほとんど認め
られない。このことは得られたフェニルポリシランはシ
ロキサン構造がほとんど存在せず、また反応溶媒である
トルエンや再沈殿溶媒であるイソプロピルアルコールと
もほとんど反応していないことを示す。なお、図1にお
いて横軸は波数(cm−1)、縦軸は吸光度を示し、基
板はKBrである。
FIG. 1 shows the FT-IR absorption spectrum of a hydrophenylpolysilane thin film produced by the solvent casting method. The attribution is as follows. Aromatic C-H stretching vibration 3
066, 3048, 3010 cm-1, Si-H stretching vibration 2106 cm-1, aromatic C=C stretching vibration 1594,
1492, 1428 cm-1, Si-H2 bending vibration 90
6 cm-1, Si-C stretching vibration 1100 cm-1, monosubstituted benzene ring absorption 734, 696 cm-1, Si-S
iStretching vibration 490cm-1. Si-H stretching vibration ν (Si-H) at 2106 cm-1 based on terminal Si-H2 bond and Si-H bond and terminal Si-
Si-H2 bending vibration based on H2 bond (δSi-H
) was observed, and their relative absorption intensity ratio I (δSi-H
)/I(νSi-H) was 0.40. Also, Si-
Almost no absorption near 1000 to 1100 cm-1 due to O-Si is observed. Almost no C-H stretching vibration around 2900 cm-1 due to aliphatic hydrocarbon groups is observed. This indicates that the obtained phenylpolysilane has almost no siloxane structure, and also hardly reacts with toluene, which is a reaction solvent, or isopropyl alcohol, which is a reprecipitation solvent. In FIG. 1, the horizontal axis represents wave number (cm-1), the vertical axis represents absorbance, and the substrate is KBr.

【0010】得られたヒドロフェニルポリシラン固体の
29Si−FTNMR(CP−MAS法)を図2に示す
。 約−60ppmに一本の幅広いピークを示すのみで、他
にはピークが認められない。このことは得られたヒドロ
フェニルポリシランは直線状骨格を有し、3次元架橋構
造がないことを意味する。なお、図2において横軸の単
位はppmである。
FIG. 2 shows 29Si-FTNMR (CP-MAS method) of the obtained hydrophenylpolysilane solid. It shows only one broad peak at about -60 ppm, and no other peaks are observed. This means that the obtained hydrophenylpolysilane has a linear skeleton and does not have a three-dimensional crosslinked structure. In addition, in FIG. 2, the unit of the horizontal axis is ppm.

【0011】得られたヒドロフェニルポリシランのUV
吸収スペクトルを図3に示す(溶媒:テトラヒドロフラ
ン、室温)。通常の有機ポリシランに見られるような3
00から400nm帯での強い特性吸収は認められない
が、約270nm付近に吸収係数約4000(単位Si
モノマー)−1(1)−1のSi−Si連鎖に由来する
吸収が認められる。
UV of the obtained hydrophenylpolysilane
The absorption spectrum is shown in FIG. 3 (solvent: tetrahydrofuran, room temperature). 3 as found in ordinary organic polysilanes.
Although strong characteristic absorption is not observed in the band from 00 to 400 nm, there is an absorption coefficient of about 4000 (unit: Si) near about 270 nm.
Absorption derived from the Si-Si chain of monomer)-1(1)-1 is observed.

【0012】実施例2 反応容器内を十分に脱水脱気し、アルゴンガス置換した
後、トルエン30mlと金属ナトリウムの小片2.6g
をフラスコに入れた。油浴温度110℃において、ジク
ロロフェニルシラン6.5gを添加し更に約30分間反
応させた。反応混合溶液を加圧ろ過し、ろ液を脱気した
冷エチルアルコールに加えた。生じた白色沈殿を遠心分
離機で回収し、60℃で真空乾燥した。収量は0.65
gであった。単分散ポリスチレンを基準にしたゲルパー
ミエーションクロマトグラフ法により求めた重量平均重
合度が20、分散度(=重量平均重合度/数平均重合度
)が2.88の単峰性の高分子が得られた。得られたヒ
ドロフェニルポリシランはスピンコート法や溶媒キャス
ト法で容易に薄膜を形成することができた。相対吸収強
度比I(δSi−H)/I(νSi−H)は0.44で
あった。
Example 2 After the inside of the reaction vessel was sufficiently dehydrated and degassed and replaced with argon gas, 30 ml of toluene and 2.6 g of small pieces of metallic sodium were added.
into the flask. At an oil bath temperature of 110° C., 6.5 g of dichlorophenylsilane was added and the reaction was further continued for about 30 minutes. The reaction mixture solution was filtered under pressure, and the filtrate was added to degassed cold ethyl alcohol. The resulting white precipitate was collected using a centrifuge and vacuum dried at 60°C. Yield is 0.65
It was g. A monomodal polymer with a weight average degree of polymerization of 20 and a degree of dispersion (=weight average degree of polymerization/number average degree of polymerization) of 2.88 determined by gel permeation chromatography using monodisperse polystyrene as a standard was obtained. It was done. The obtained hydrophenylpolysilane could be easily formed into a thin film by spin coating or solvent casting. The relative absorption intensity ratio I(δSi-H)/I(νSi-H) was 0.44.

【0013】比較例1 R.H.クラッグ、R.G.ジョーンズ、A.C.スウ
ェイン、S.J.ウエブ( R. H. Cragg、
 R. G. Jones、 A. C. Swain
、 S. J. Webb ) 、ジャーナルオブ  
ケミカル  ソサィエティ( J. Chem. So
c. )、第1147頁(1990)の報告に示された
ように、クラウンエーテルを用いた有機ポリシラン類の
低温合成法をヒドロフェニルポリシランの合成に適用を
試みた。反応容器内を十分に脱水脱気し、アルゴンガス
置換した後、ジクロロフェニルシラン5.3g、エチル
エーテル50ml、15−5クラウンエーテル1.0g
をフラスコに入れた。 油浴温度40℃において金属ナトリウム分散液(トルエ
ン30%)6.5gを素早く添加し、添加後更に約5時
間反応させた。反応混合溶液を加圧ろ過し、ろ液をメチ
ルアルコールに加えた。極く小量生じた白色沈殿を遠心
分離機で回収し、60℃で真空乾燥し、ゲルパーミエー
ションクロマトグラフ法により求めた重合度を求めた。 その結果、重量平均重合度が3ないし4と極めて低い重
合度のヒドロフェニル系縮合体が得られた。
Comparative Example 1 R. H. Cragg, R. G. Jones, A. C. Swain, S. J. Webb (R.H. Cragg,
R. G. Jones, A. C. Swain
, S. J. Webb), Journal of
Chemical Society (J.Chem.So
c. ), p. 1147 (1990), we attempted to apply a low-temperature synthesis method of organic polysilanes using crown ether to the synthesis of hydrophenylpolysilane. After thoroughly dehydrating and degassing the inside of the reaction vessel and purging with argon gas, 5.3 g of dichlorophenylsilane, 50 ml of ethyl ether, and 1.0 g of 15-5 crown ether were added.
into the flask. At an oil bath temperature of 40° C., 6.5 g of a metal sodium dispersion (toluene 30%) was quickly added, and the reaction was further continued for about 5 hours after the addition. The reaction mixture solution was filtered under pressure, and the filtrate was added to methyl alcohol. A very small amount of white precipitate was collected using a centrifuge, vacuum dried at 60°C, and the degree of polymerization was determined by gel permeation chromatography. As a result, a hydrophenyl condensate having an extremely low weight average degree of polymerization of 3 to 4 was obtained.

【0014】応用例1 得られたヒドロフェニルポリシランが、250から35
0nmにわたって、幅広い吸収を有することから、キセ
ノン、重水素、水銀などを封入した紫外光源あるいは窒
素レーザーやエキシマレーザーなどの強力光源による微
細加工が容易になることが期待される。事実、得られた
ヒドロフェニルポリシラン薄膜(厚み約0.3ミクロン
)に波長254nmの水銀ランプ(出力6W)を照射す
ると約10分で完全にヘプタンなどの非極性溶媒に対し
て不溶化を起こし、いわゆるネガ型特性を示す。また、
ヒドロフェニルポリシラン厚膜(厚み約10ミクロン)
に波長365nmの水銀ランプ(出力6W)を照射する
と同様に約15分で完全に不溶化を起こした。
Application Example 1 The obtained hydrophenylpolysilane has a molecular weight of 250 to 35
Since it has a wide absorption range over 0 nm, it is expected to facilitate microfabrication using an ultraviolet light source filled with xenon, deuterium, mercury, etc., or a powerful light source such as a nitrogen laser or excimer laser. In fact, when the obtained hydrophenylpolysilane thin film (thickness approximately 0.3 microns) is irradiated with a mercury lamp (output 6W) with a wavelength of 254 nm, it becomes completely insolubilized in nonpolar solvents such as heptane in about 10 minutes, and the so-called Shows negative characteristics. Also,
Hydrophenylpolysilane thick film (approximately 10 microns thick)
When irradiated with a mercury lamp with a wavelength of 365 nm (output 6 W), insolubilization occurred completely in about 15 minutes.

【0015】ヒドロフェニルポリシラン薄膜の光反応を
空気中室温で、紫外吸収スペクトルとFT−IRを用い
て追跡した。実施例1で合成されたヒドロフェニルポリ
シラン薄膜の紫外線照射に伴うUV吸収スペクトルの経
時変化を図4に、FT−IR吸収スペクトルの経時変化
を図5に表す(波長:254nm、出力6W、空気中、
室温)。紫外吸収スペクトルからは、光照射時間と共に
、235から350nmにわたるSi−Si連鎖に由来
する幅広い吸収帯が全く消失し、フェニル基の存在に由
来する250から300nm付近の弱い吸収帯のみとな
った。FT−IRからは、ヒドロフェニルポリシランに
由来する2100cm−1付近のSi−H伸縮振動並び
に490cm−1付近のSi−Si結合に由来する伸縮
振動が消失し、ヒドロフェニルポリシロキサン構造に由
来する2170cm−1付近のSi−H伸縮振動、10
76、1060cm−1付近のSi−O−Si結合に由
来する伸縮振動、ケトン構造に由来する1718cm−
1付近のブロードな吸収、そして、Si−OH結合会合
体の構造に由来する3400cm−1の幅広い吸収が出
現した。 これらのことから、ヒドロフェニルポリシラン膜は、光
照射により速やかに、主鎖のSi−Si結合がSi−O
−Si結合に変化し、また一部のSi−H結合がSi−
OHと変化し、そのSi−OHが更にSi−O−Si結
合として架橋することによって、不溶化するものと考え
られる。これまで知られている有機ポリシランは光照射
で主鎖のSi−Si結合がSi−O−Si結合に変化し
溶媒に対する溶解度が向上するため、いわゆるポジ型の
挙動を示す。本発明で示された高分子量ヒドロフェニル
ポリシランは逆にネガ型特性を示す。
The photoreaction of the hydrophenylpolysilane thin film was monitored in air at room temperature using ultraviolet absorption spectroscopy and FT-IR. Figure 4 shows the change over time in the UV absorption spectrum of the hydrophenylpolysilane thin film synthesized in Example 1 due to ultraviolet irradiation, and Figure 5 shows the change over time in the FT-IR absorption spectrum (wavelength: 254 nm, output 6 W, in air). ,
room temperature). From the ultraviolet absorption spectrum, as the light irradiation time increased, the broad absorption band originating from the Si-Si chain spanning from 235 to 350 nm completely disappeared, leaving only a weak absorption band from around 250 to 300 nm originating from the presence of the phenyl group. From FT-IR, the Si-H stretching vibration around 2100 cm derived from hydrophenylpolysilane and the stretching vibration derived from the Si-Si bond around 490 cm disappeared, and the stretching vibration at 2170 cm derived from the hydrophenylpolysiloxane structure disappeared. Si-H stretching vibration near -1, 10
76, stretching vibration originating from the Si-O-Si bond near 1060 cm-1, and 1718 cm- originating from the ketone structure.
A broad absorption near 1 and a broad absorption at 3400 cm −1 derived from the structure of the Si-OH bond aggregate appeared. Based on these facts, the hydrophenylpolysilane film can be rapidly converted from Si-Si bonds in the main chain to Si-O by light irradiation.
-Si bonds, and some Si-H bonds become Si-
It is thought that the Si--OH is further cross-linked as a Si--O--Si bond, thereby becoming insolubilized. Conventionally known organic polysilanes exhibit so-called positive behavior because the Si--Si bonds in the main chain change to Si--O--Si bonds upon irradiation with light, improving their solubility in solvents. The high molecular weight hydrophenylpolysilane shown in the present invention, on the contrary, exhibits negative-tone properties.

【0016】[0016]

【発明の効果】以上説明したように、ヒドロフェニルジ
クロロシランを金属ナトリウムで脱塩素縮重合すること
によって、少なくとも重量平均重合度20以上のSi−
H結合を有する薄膜形成能と基板密着性に優れたヒドロ
フェニルポリシランを極めて短時間に提供することがで
きる。本発明で得られた高分子量ヒドロフェニルポリシ
ランは、高感度なフォトレジスト、導波損失の少ない光
導波路材料、p/n型制御可能な半導体、変換効率の高
いシリコンカーバイドの前駆体、高感度な電子写真感光
体、高効率な非線型光学材料として、幅広い分野の応用
が期待される。特に波長300ないし400nmにSi
−Si連鎖に基づく弱い吸収帯が存在するため、微細加
工用ネガ型材料として増感材のいらない高分子厚膜のパ
ターン化に適している。
Effects of the Invention As explained above, by dechlorinating and polymerizing hydrophenyldichlorosilane with metallic sodium, Si-
Hydrophenylpolysilane having H-bonds and excellent thin film forming ability and substrate adhesion can be provided in an extremely short time. The high molecular weight hydrophenylpolysilane obtained in the present invention can be used as a highly sensitive photoresist, an optical waveguide material with low waveguide loss, a semiconductor capable of controlling p/n type, a silicon carbide precursor with high conversion efficiency, and a highly sensitive photoresist. It is expected to be applied in a wide range of fields as an electrophotographic photoreceptor and a highly efficient nonlinear optical material. Especially at wavelengths of 300 to 400 nm, Si
Since it has a weak absorption band based on -Si chains, it is suitable as a negative-tone material for microfabrication and for patterning thick polymer films that do not require a sensitizer.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1で合成されたヒドロフェニル
ポリシランのFT−IR吸収スペクトルを表す図である
(基板:KBr)。
FIG. 1 is a diagram showing the FT-IR absorption spectrum of hydrophenylpolysilane synthesized in Example 1 of the present invention (substrate: KBr).

【図2】本発明の実施例1で合成されたヒドロフェニル
ポリシランのSi−FTNMRスペクトルを表す図であ
る(CP−MAS法)。
FIG. 2 is a diagram showing a Si-FTNMR spectrum of hydrophenylpolysilane synthesized in Example 1 of the present invention (CP-MAS method).

【図3】本発明の実施例1で合成されたヒドロフェニル
ポリシランのUV吸収スペクトルを表す図である(溶媒
;テトラヒドロフラン、室温)。
FIG. 3 is a diagram showing the UV absorption spectrum of hydrophenylpolysilane synthesized in Example 1 of the present invention (solvent: tetrahydrofuran, room temperature).

【図4】本発明の実施例1で合成されたヒドロフェニル
ポリシラン薄膜の紫外線照射に伴うUV吸収スペクトル
の経時変化を表す図である(波長:254nm、出力6
W、空気中、室温)。
FIG. 4 is a diagram showing the change over time in the UV absorption spectrum of the hydrophenylpolysilane thin film synthesized in Example 1 of the present invention due to ultraviolet irradiation (wavelength: 254 nm, output 6
W, in air, room temperature).

【図5】本発明の実施例1で合成されたヒドロフェニル
ポリシラン薄膜の紫外線照射に伴うFT−IR吸収スペ
クトルの経時変化を表す図である(波長:254nm、
出力6W、空気中、室温)。
FIG. 5 is a diagram showing the change over time in the FT-IR absorption spectrum of the hydrophenylpolysilane thin film synthesized in Example 1 of the present invention due to ultraviolet irradiation (wavelength: 254 nm,
Output 6W, in air, room temperature).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  下記構造式(化1):【化1】 (nは重量平均重合度を示す)で表されるヒドロフェニ
ルポリシラン。
1. A hydrophenylpolysilane represented by the following structural formula (Chemical formula 1): [Chemical formula 1] (n represents a weight average degree of polymerization).
【請求項2】  ジクロロフェニルシランを、金属ナト
リウムで縮合させることを特徴とする請求項1に記載の
構造式(化1)で表されるヒドロフェニルポリシランの
製造方法。
2. The method for producing hydrophenylpolysilane represented by the structural formula (Chemical formula 1) according to claim 1, characterized in that dichlorophenylsilane is condensed with metallic sodium.
JP3045479A 1991-02-19 1991-02-19 Hydrophenylpolysilane and its production Pending JPH04264132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045479A JPH04264132A (en) 1991-02-19 1991-02-19 Hydrophenylpolysilane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045479A JPH04264132A (en) 1991-02-19 1991-02-19 Hydrophenylpolysilane and its production

Publications (1)

Publication Number Publication Date
JPH04264132A true JPH04264132A (en) 1992-09-18

Family

ID=12720536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045479A Pending JPH04264132A (en) 1991-02-19 1991-02-19 Hydrophenylpolysilane and its production

Country Status (1)

Country Link
JP (1) JPH04264132A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002322A1 (en) * 1995-07-03 1997-01-23 Ciba Specialty Chemicals Holding Inc. Polysilanes
WO1997046605A1 (en) * 1996-06-07 1997-12-11 Osaka Gas Company Limited Polysilanes and positive hole transporting materials
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
JP2007077198A (en) * 2005-09-12 2007-03-29 Osaka Gas Co Ltd Copolysilane and resin composition containing copolysilane
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
EP2278407A1 (en) 2009-07-23 2011-01-26 Ricoh Company, Ltd. Image forming apparatus
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002322A1 (en) * 1995-07-03 1997-01-23 Ciba Specialty Chemicals Holding Inc. Polysilanes
WO1997046605A1 (en) * 1996-06-07 1997-12-11 Osaka Gas Company Limited Polysilanes and positive hole transporting materials
US7181156B2 (en) 2003-07-25 2007-02-20 Ricoh Company, Ltd. Image forming apparatus using a cleaning member for preventing noises and process cartridge therefor
US7295802B2 (en) 2003-07-25 2007-11-13 Ricoh Company, Ltd Image forming apparatus using a cleaning unit for preventing noises
US7995950B2 (en) 2005-07-15 2011-08-09 Ricoh Co., Ltd. Image forming apparatus, image forming method and process cartridge involving the use of a cleaning blade that removes toner remaining on a surface of an image bearing member
JP2007077198A (en) * 2005-09-12 2007-03-29 Osaka Gas Co Ltd Copolysilane and resin composition containing copolysilane
US7897313B2 (en) 2006-04-27 2011-03-01 Ricoh Company Limited Electrostatic latent image bearing member, and image forming apparatus and process cartridge using the electrostatic latent image bearing member
EP2146251A1 (en) 2008-07-15 2010-01-20 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge
EP2278407A1 (en) 2009-07-23 2011-01-26 Ricoh Company, Ltd. Image forming apparatus
WO2012099182A1 (en) 2011-01-21 2012-07-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming method, image forming apparatus, and process cartridge using the electrophotographic photoconductor

Similar Documents

Publication Publication Date Title
Tsuchida et al. Ethene and propene copolymers containing silsesquioxane side groups
CA1335542C (en) Pattern-forming material and pattern formation method
Sakamoto et al. Highly ordered high-molecular weight alternating polysilylene copolymer prepared by anionic polymerization of masked disilene
US6258506B1 (en) Ultraviolet-curable polysiloxane composition and method for the formation of cured patterns therefrom
US4761464A (en) Interrupted polysilanes useful as photoresists
GB2156834A (en) Polysilane positive photoresist materials and methods for their use
US5702776A (en) Organic polysilane composition, colored material, method of manufacturing colored material and liquid crystal display
JPH04264132A (en) Hydrophenylpolysilane and its production
EP0506432B1 (en) Three-dimensional polysilane
EP0129834B1 (en) Photo and radiation-sensitive organopolymeric material
US5426160A (en) Process for the addition of functional groups to polysilyne polymers
JPH04264131A (en) Alkyl-substituted diphenylpolysilane and its production
JPH04264130A (en) Alkyl-substituted diphenylpolysilane and its production
JPH04264133A (en) Alkyl-substituted diphenylpolysilane and its production
JPH0368587A (en) Aromatic polyimidesilanol and its presursor and polymer
JPH06248082A (en) Method of synthesis of polysilsesquioxane and utilization of obtained compound
JPH0525282A (en) Organosilicon polymer and its preparation
US5254439A (en) Light-sensitive polymer, method for preparing the same and method for forming patterns
JP3283407B2 (en) Polysilane optical device
Hu et al. Synthesis and properties of novel conjugated poly (silylacetylene silazane) s
KR20010062667A (en) Coating solution for forming porous organic film
Sãcãrescu et al. Polyhydrosilanes I. Synthesis
Lemaitre et al. Photochemistry of polymeric systems VII. Photo‐cross‐linking of liquid polysiloxanes including cinnamic groups
US5126419A (en) Light-sensitive polymer, method for preparing the same andmethod for forming patterns
Clemenson et al. Thermal and photo-oxidative degradation of poly (5′, 6′-bis (trifluoromethyl)-bicyclo [2.2. 2] octa-5′, 7′-diene-2′, 3′-diyl)-1, 2-ethenediyl, the Durham polyacetylene precursor polymer, and polyacetylene