JPS6112744B2 - - Google Patents

Info

Publication number
JPS6112744B2
JPS6112744B2 JP53005058A JP505878A JPS6112744B2 JP S6112744 B2 JPS6112744 B2 JP S6112744B2 JP 53005058 A JP53005058 A JP 53005058A JP 505878 A JP505878 A JP 505878A JP S6112744 B2 JPS6112744 B2 JP S6112744B2
Authority
JP
Japan
Prior art keywords
calcium
type
chelate resin
resin
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53005058A
Other languages
Japanese (ja)
Other versions
JPS5497578A (en
Inventor
Taku Inoe
Makoto Matsuoka
Kazuhiko Naito
Hiromoto Uejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP505878A priority Critical patent/JPS5497578A/en
Publication of JPS5497578A publication Critical patent/JPS5497578A/en
Publication of JPS6112744B2 publication Critical patent/JPS6112744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は官能基末端に水素を有するキレート性
イオン交換樹脂(以下、H型キレート樹脂とい
う)をCa型に変える方法に関し、さらに詳しく
はH型キレート樹脂を中間処理によりNa型に変
えることなく直接Ca型に変える方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting a chelating ion exchange resin having hydrogen at the end of a functional group (hereinafter referred to as an H-type chelate resin) into a Ca-type chelate resin, and more specifically relates to a method for converting a H-type chelate resin into a Ca-type chelate resin by intermediate treatment. This relates to a method of directly converting to Ca type without converting to Na type.

近年、イオン交換樹脂は脱塩のみならず脱色.
PH調整および廃水処理等各種の分野で応用されて
いる。特にイオン交換樹脂を用いる廃水処理法
は、従来、処理費用が高くつくこと等により余り
採用されていなかつたが、排水基準が厳しくなる
につれ、二次、三次の高度処理にイオン交換樹脂
が広く利用されるようになつてきた。中でもアル
カリ金属あるいはアルカリ土類金属と重金属類と
の間に優れた選択性を示すイミノジ酢酸基等の官
能基を有する陽イオン交換樹脂に属するキレート
性イオン交換樹脂(以下、キレート樹脂と称す
る)が廃水処理等に非常に有用であることが認め
られてきた。
In recent years, ion exchange resins have been used not only for desalination but also for decolorization.
It is applied in various fields such as pH adjustment and wastewater treatment. In particular, wastewater treatment methods using ion exchange resins have traditionally not been widely adopted due to high treatment costs, but as wastewater standards become stricter, ion exchange resins are widely used for secondary and tertiary advanced treatment. It's starting to be done. Among them, chelating ion exchange resins (hereinafter referred to as chelate resins), which belong to cation exchange resins having functional groups such as iminodiacetic acid groups that exhibit excellent selectivity between alkali metals or alkaline earth metals and heavy metals, are used. It has been recognized that it is very useful for wastewater treatment, etc.

しかし、キレート樹脂は一般に重金属イオンに
対して優れた選択吸着性能を有するにかかわら
ず、キレート樹脂の収縮性および耐久性等の面で
実用に供する際、問題を生ずることがある。とく
に官能基としてイミノジ酢酸基を有し、末端が
Na型のダウエツクスA−1(ダウケミカル社
製)、ダイヤイオンCR−10(三菱化成工業社製)
等のキレート樹脂は重金属イオンを吸着した際体
積の30〜40%が収縮し、そのため充填樹脂層に亀
裂を生じて水の流れはその亀裂に沿つてシヨート
パスする。従つて、水の流れは充填樹脂層内を均
一に流れず局部的となり、また接触時間が短かく
なるため、処理水質は著しく悪くなる。さらに、
このように重金属イオンの吸着による収縮の繰り
返しで、キレート樹脂の破壊を起こすので実用に
際しては、この収縮を回避すべく方法を講じなけ
ればならない。
However, although chelate resins generally have excellent selective adsorption performance for heavy metal ions, problems may arise when they are put to practical use in terms of shrinkability, durability, etc. of chelate resins. In particular, it has an iminodiacetic acid group as a functional group, and the terminal
Na-type Dowex A-1 (manufactured by Dow Chemical Company), Diaion CR-10 (manufactured by Mitsubishi Chemical Industries, Ltd.)
When chelate resins such as these absorb heavy metal ions, they shrink by 30 to 40% of their volume, which causes cracks in the filled resin layer, and water flows along the cracks. Therefore, the water does not flow uniformly within the filled resin layer, but only locally, and the contact time is shortened, resulting in significantly poor quality of the treated water. moreover,
As described above, repeated shrinkage due to adsorption of heavy metal ions causes destruction of the chelate resin, so in practical use, methods must be taken to avoid this shrinkage.

このようなキレート樹脂の収縮を防止する方法
として、キレート樹脂の官能基末端をCa型にし
て実際の処理に供する方法がある。この方法はカ
ルシウムをキレート樹脂の官能基末端にあらかじ
め吸着させてから重金属イオンを吸着させること
により、キレート樹脂の体積変化を小さくして、
重金属イオンの吸着による収縮を防止せんとする
ものである。しかし、通常のH型キレート樹脂は
カルシウム化合物の水溶液だけで処理しても、そ
の官能基末端のCa型化率はわずか2〜3%であ
り、直接にCa型化することが困難であり、その
ため、H型キレート樹脂を苛性ソーダで処理して
官能基末端を一旦Na型化してからさらにカルシ
ウム化合物の水溶液で処理してCa型化する方法
が一般に行われている。しかし、かかる処理方法
はH型キレート樹脂を二段階で処理することが必
要であるため、工程が複雑となり、またとくにH
型キレート樹脂をNa型化する際、キレート樹脂
の膨潤が非常に大きいためにキレート樹脂充填搭
を過大にしなければならない欠点を有し、そして
これらは経済的にも非常に不利である。
As a method of preventing such shrinkage of the chelate resin, there is a method of converting the terminal functional group of the chelate resin into Ca type and subjecting it to the actual treatment. This method minimizes the volume change of the chelate resin by adsorbing calcium to the end of the functional group of the chelate resin and then adsorbing heavy metal ions.
This is intended to prevent shrinkage due to adsorption of heavy metal ions. However, even when ordinary H-type chelate resins are treated with only an aqueous solution of a calcium compound, the conversion rate of the terminal functional groups to Ca type is only 2 to 3%, and it is difficult to convert them directly to Ca type. Therefore, a commonly used method is to treat the H-type chelate resin with caustic soda to once convert the functional group terminals into the Na type, and then further treat them with an aqueous solution of a calcium compound to convert them into the Ca type. However, such a treatment method requires the H-type chelate resin to be treated in two stages, making the process complicated, and especially the H-type chelate resin.
When converting a Na-type chelate resin into a Na-type chelate resin, the swelling of the chelate resin is very large, so the chelate resin filling tower has to be made too large, which is very disadvantageous economically.

本発明者らは、キレート樹脂の官能基末端を
Ca型化することが実用上非常に有用であるこ
と、Ca型化の処理方法の改良が広く望まれてい
ることから、その処理方法について鋭意研究した
結果、従来、H型キレート樹脂の実用的なCa型
化が不可能とされていたカルシウム化合物の水溶
液による処理をアンモニア水の共存下で行うと、
Ca型化率がほぼ100%となる有効な方法を見い出
し本発明を完成した。
The present inventors have determined that the functional group end of the chelate resin is
Since converting into Ca type resin is very useful in practice and improving the treatment method for Ca type conversion is widely desired, as a result of intensive research on the treatment method, we have found that When treatment with an aqueous solution of a calcium compound, which was thought to be impossible to convert into Ca type, is carried out in the coexistence of ammonia water,
We have found an effective method to achieve a Ca-type conversion rate of almost 100% and completed the present invention.

すなわち、本発明は、H型キレート樹脂をアン
モニア水が共存するカルシウム化合物の水溶液で
処理することを特徴とするH型キレート樹脂を
Ca型に変える方法である。
That is, the present invention provides an H-type chelate resin characterized in that the H-type chelate resin is treated with an aqueous solution of a calcium compound in which aqueous ammonia coexists.
This is a method of changing to Ca type.

本発明の方法は、通常、筒内に充填したH型キ
レート樹脂層にアンモニア水が共存するカルシウ
ム化合物の水溶液(以下、アンモニア性カルシウ
ム液と称する)を通液した後、水洗してCa型に
変えるものである。
The method of the present invention usually involves passing an aqueous solution of a calcium compound in which aqueous ammonia coexists (hereinafter referred to as ammoniacal calcium solution) through an H-type chelate resin layer filled in a cylinder, and then washing it with water to convert it to a Ca-type. It is something that can be changed.

本発明の方法にいうH型キレート樹脂として
は、たとえばフエノール系,スチレン系,アクリ
ル酸エステル系,塩化ビニル系,エポキシ系の樹
脂を母体とし、配位子に窒素を有するジエチレン
テトラミン、テトラエチレンペンタミン、ペンタ
エチレンヘキサミン等のアミン類やイミノジ酢酸
あるいは上記アミン類とハロゲン化酢酸等との反
応物であるアミノカルボン酸類、ジエタノールア
ミン、ジプロパノールアミン等のアルコールアミ
ン類を官能基とし、その末端に水素を有するもの
があげられ、末端に水素を有するキレート樹脂で
あれば、いずれも本発明に有効に使用し得る。
Examples of the H-type chelate resin used in the method of the present invention include diethylenetetramine, tetraethylenepentafluoride, and diethylenetetramine having nitrogen as a ligand, which are based on phenol, styrene, acrylic ester, vinyl chloride, and epoxy resins. The functional group is amines such as amine, pentaethylenehexamine, iminodiacetic acid or aminocarboxylic acids which are the reaction products of the above amines and halogenated acetic acid, etc., and alcohol amines such as diethanolamine and dipropanolamine, and hydrogen is added to the terminal. Any chelate resin having a hydrogen terminal can be effectively used in the present invention.

また、本発明の方法に用いるアンモニア水と
は、直接にアンモニア水を使用しなくても、アン
モニア水を生成させる物質でもよく、たとえばカ
ルシウム化合物の水溶液中にアンモニアガスを吹
き込んでアンモニア水を生成させて用いること
も、あるいはカルシウム化合物に酸性炭酸アンモ
ニウム、硫安、塩安、亜硫安、硝安、亜硝安、リ
ン安、酸性リン安、弗化アンモニウム等のアンモ
ニウム塩と、苛性ソーダ、炭酸ソーダ、苛性カ
リ、炭酸カリ、水酸化リチウム、水酸化マグネシ
ウム、生石灰、消石灰、炭酸カルシウム、水酸化
バリウム等のアルカリ剤との組み合わせによりア
ンモニア水を生成させて用いることもできる。ま
た、カルシウム化合物が水酸化物の場合には、上
記のアンモニウム塩を単独で用いて、アンモニア
水を生成させることもできる。
Furthermore, the ammonia water used in the method of the present invention may be a substance that generates ammonia water without directly using ammonia water. For example, ammonia water is generated by blowing ammonia gas into an aqueous solution of a calcium compound. It can also be used as a calcium compound, or with ammonium salts such as acidic ammonium carbonate, ammonium sulfate, ammonium chloride, ammonium sulfite, ammonium nitrate, ammonium nitrite, ammonium phosphorous, acidic ammonium phosphorous, ammonium fluoride, and caustic soda, sodium carbonate, caustic potash, carbonic acid. Aqueous ammonia can also be produced and used in combination with an alkaline agent such as potash, lithium hydroxide, magnesium hydroxide, quicklime, slaked lime, calcium carbonate, barium hydroxide, or the like. Furthermore, when the calcium compound is a hydroxide, aqueous ammonia can also be generated by using the above ammonium salt alone.

本発明の方法に用いるカルシウム化合物として
は、たとえば塩化カルシウム、生石灰、消石灰、
石こう、亜硫酸カルシウム、亜硫酸水素カルシウ
ム、硝酸カルシウム、亜硝酸カルシウム、亜硝酸
水素カルシウム、リン酸カルシウム、リン酸水素
カルシウム、炭酸カルシウム、炭酸水素カルシウ
ム等カルシウムのハロゲン化物、酸化物、水酸化
物、イオウ、窒素、リン、炭素の酸素酸塩等を用
いることができるが、この中でとくにカルシウム
の塩化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、
重炭酸塩が好ましい。
Calcium compounds used in the method of the present invention include, for example, calcium chloride, quicklime, slaked lime,
Gypsum, calcium sulfite, calcium hydrogen sulfite, calcium nitrate, calcium nitrite, calcium hydrogen nitrite, calcium phosphate, calcium hydrogen phosphate, calcium carbonate, calcium hydrogen carbonate, etc. Calcium halides, oxides, hydroxides, sulfur, nitrogen , phosphorus, carbon oxygen salts, etc., among which calcium chlorides, hydroxides, sulfates, nitrates, carbonates, etc. can be used.
Bicarbonates are preferred.

本発明において、アンモニア性カルシウム液中
のカルシウム化合物の含有量は、H型キレート樹
脂の平衡交換容量1モルに対してCa換算で1モ
ル以上含まれているとよく、通常1〜3モルであ
り、また、このときのカルシウム化合物は通常1
種を用いるが、同時に2種以上併用してもよい。
In the present invention, the content of the calcium compound in the ammoniacal calcium solution is preferably 1 mol or more in terms of Ca per 1 mol of equilibrium exchange capacity of the H-type chelate resin, and is usually 1 to 3 mol. , and the calcium compound at this time is usually 1
Although one species is used, two or more species may be used in combination at the same time.

本発明において、アンモニア性カルシウム液の
PHは通常8〜14(このときのアンモニア水の含有
量は、通常、アンモニア性カルシウム液に対して
NH4OH換算で0.002〜60wt/wt%)であるが、特
にPH9〜12(このときのアンモニア水の含有量
は、通常、アンモニア性カルシウム液に対して
NH4OH換算で0.01〜10wt/wt%)が好ましい。
〓が8以下の場合はCa型化に著しく長時間を要
し、PHが14以上の場合はCa型化時間は短かくて
よいが、アンモニアガスの発生が著しいので好ま
しくない。
In the present invention, an ammoniacal calcium solution is
PH is usually 8 to 14 (at this time, the content of ammonia water is usually
0.002 to 60wt/wt% in terms of NH 4 OH), but especially PH9 to 12 (at this time, the content of ammonia water is usually higher than that of ammoniacal calcium liquid).
0.01 to 10 wt/wt% in terms of NH 4 OH) is preferable.
If 〓 is 8 or less, it takes a very long time to convert into Ca type, and if pH is 14 or more, the time to convert into Ca type may be shortened, but this is not preferable because ammonia gas is generated significantly.

本発明の方法は、通常、常温で行い、加温して
もよいが、あまり高温にするとアンモニアガスが
多量に発生するので好ましくない。
The method of the present invention is usually carried out at room temperature, and may be heated, but if the temperature is too high, a large amount of ammonia gas will be generated, which is not preferable.

次に本発明の実施の態様を説明すると、筒内に
充填したH型キレート樹脂層にアンモニア性カル
シウム液あるいは水を通液する場合の通液方向は
上向流でも下向流でもよいが、アンモニア性カル
シウム液の通液する場合に限つて、H型キレート
樹脂は膨潤の傾向を示すので上向流の方が好まし
い。このときのアンモニア性カルシウ液あるいは
水の通液速度は空間速度(以下SVと称する)50
〔1/Hr〕以下が好ましく、VS=50〔1/Hr〕
以上にすると圧力損失が大きくなり好ましくな
い。
Next, an embodiment of the present invention will be described. When an ammoniacal calcium solution or water is passed through the H-type chelate resin layer filled in the cylinder, the direction of the flow may be either an upward flow or a downward flow. Only when an ammoniacal calcium solution is passed through, upward flow is preferable because the H-type chelate resin shows a tendency to swell. At this time, the flow rate of ammoniacal calcium solution or water is a space velocity (hereinafter referred to as SV) of 50
[1/Hr] or less is preferable, VS = 50 [1/Hr]
If it is more than that, the pressure loss will increase, which is not preferable.

本発明の方法は、通常、H型キレート樹脂を筒
内に充填して連続式で行うが、筒内に充填しない
でアンモニア性カルシウム液中に浸漬処理してバ
ツチ式でも、目的が達成できる。
The method of the present invention is usually carried out in a continuous manner by filling a cylinder with the H-type chelate resin, but the purpose can also be achieved by a batch method in which the H-type chelate resin is not filled in a cylinder and is immersed in an ammoniacal calcium solution.

本発明は、H型キレート樹脂を直接に一段処理
でCa型化できるものであるから、従来の中間処
理してNa型化にした後、Ca型化する方法と比較
して、処理工程および操作が簡単であり、中間処
理のNa型化を略したので、H型キレート樹脂の
体積変化が非常に小さくなつて、H型キレート樹
脂の耐久性が向上する。また、キレート樹脂充填
塔が小さくなり、設備全体もコンパクトになり、
処理時間も短縮され、薬液費、電気費、用水費も
安くなり、経済面の効果は大である。
Since the present invention allows H-type chelate resin to be directly converted into Ca-type in one step, the processing steps and operations are simpler than the conventional method of converting it into Na-type through intermediate treatment and then converting it into Ca-type. is simple, and the intermediate treatment to form Na-type is omitted, so the volume change of the H-type chelate resin is extremely small, and the durability of the H-type chelate resin is improved. In addition, the chelate resin packed tower has become smaller, and the entire equipment has become more compact.
Processing time is shortened, and chemical costs, electricity costs, and water costs are also reduced, so the economic effects are significant.

本発明の方法は、従来の方法に比して、処理工
程および操作が簡略化されてイニシヤルコストお
よびランニングコストのダウンに大きく寄与する
ものである。
Compared to conventional methods, the method of the present invention simplifies the processing steps and operations and greatly contributes to reducing initial costs and running costs.

次に本発明の方法を実施例により、さらに具体
的に説明する。
Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 市販のキレート樹脂ユニセレツクUR−30(樹
脂母体にフエノール・ホルマリン樹脂.官能基と
してイミノジ酢酸を有し、その末端に水素を有す
る。ユニチカ社製)60mlを内径20mmφのガラス製
カラムに充填し、塩化カルシウム8g、28%アン
モニア水9g、および水100mlからなるPHが12の
アンモニア性塩化カルシウム液をSV=5〔1/
Hr〕で上向流にて2時間循環通液後、水500mlを
SV=10〔1/Hr)で下向流にて通水水洗して官
能基末端にCaを有するキレート樹脂(以下、Ca
型キレート樹脂という)に変えた。
Example 1 60 ml of commercially available chelate resin Uniselect UR-30 (phenol-formalin resin as the resin base. It has iminodiacetic acid as a functional group and has hydrogen at its terminal. Manufactured by Unitika) was packed into a glass column with an inner diameter of 20 mmφ. Then, an ammoniacal calcium chloride solution with a pH of 12 consisting of 8 g of calcium chloride, 9 g of 28% ammonia water, and 100 ml of water was mixed with SV = 5 [1/
After circulating the liquid for 2 hours in an upward flow with [Hr], add 500ml of water.
The chelate resin having Ca at the end of the functional group (hereinafter referred to as Ca
type chelate resin).

このようにしてCa型化キレート樹脂層に、さ
らに2N塩酸100mlをSV=2〔1/Hr〕で下向流
にて通液後、水500mlをSV=10〔1/Hr〕で下
向流にて通水水洗し、カルシウムイオンを脱離
し、その脱離液にエリオクロムブラツクT指示薬
を加えた後、EDTA標準液によりキレート滴定
し、キレート樹脂中のカルシウム量を測定した。
In this way, 100 ml of 2N hydrochloric acid was passed through the Ca-type chelate resin layer in a downward flow at SV = 2 [1/Hr], and then 500 ml of water was passed in a downward flow at SV = 10 [1/Hr]. After washing with water and desorbing calcium ions, an Eriochrome Black T indicator was added to the desorbed liquid, and chelate titration was performed using an EDTA standard solution to measure the amount of calcium in the chelate resin.

その結果、Ca型化率は99%であつた。 As a result, the Ca type conversion rate was 99%.

比較例 1 28%アンモニア水を添加しなかつた他は実施例
1と同様に処理した結果、実施例1で用いた市販
のH型キレート樹脂のCa型化率は3%だけであ
つた。
Comparative Example 1 As a result of the same treatment as in Example 1 except that 28% aqueous ammonia was not added, the Ca type conversion rate of the commercially available H type chelate resin used in Example 1 was only 3%.

実施例 2 重金属を吸着した市販のキレート樹脂ダイヤイ
オンCR−10−(樹脂母体にポリエチレン樹脂、官
能基としてイミノジ酢酸を有し、その末端にナト
リウムを有する。三菱化成工業社製)を硫酸水溶
液で重金属を溶離し、H型とした樹脂60mlを容量
1のガラス製ビーカーに入れ、さらに石こう12
g、硫安23g、苛性ソーダ14g、水200mlからな
るPHが10のアンモニア性石こう液(30℃)を入れ
て3時間撹拌した。次に布にて過してキレー
ト樹脂と余剰の希薄アンモニア性石こう液を分離
し、布内のキレート樹脂を別の容量1のガラ
ス製ビーカーに移して水500mlを加えて10分間撹
拌し、この操作を2回繰り返して残存するアンモ
ニア性石こう液を水洗除去し、Ca型キレート樹
脂に変えた。
Example 2 A commercially available chelate resin Diamondion CR-10- (polyethylene resin as the resin base, iminodiacetic acid as a functional group, and sodium at the end; manufactured by Mitsubishi Chemical Industries, Ltd.) that adsorbed heavy metals was dissolved in an aqueous sulfuric acid solution. Put 60 ml of the resin into H-form by eluting heavy metals into a glass beaker with a capacity of 1, and add 12 ml of gypsum.
An ammoniacal gypsum solution (30°C) with a pH of 10 consisting of 23 g of ammonium sulfate, 14 g of caustic soda, and 200 ml of water was added and stirred for 3 hours. Next, pass through a cloth to separate the chelate resin and excess dilute ammonia gypsum solution, transfer the chelate resin in the cloth to another glass beaker with a capacity of 1, add 500 ml of water, stir for 10 minutes, The operation was repeated twice to remove the remaining ammoniacal gypsum solution by washing with water and convert it into a Ca-type chelate resin.

このCa型化したキレート樹脂に2N塩酸200mlを
加えて2時間撹拌した後、紙にて過してキレ
ート樹脂と余剰のアンモニア性石こう液を分離
し、紙内のキレート樹脂を別の容量1のガラ
ス製ビーカーに移して、水500mlを加えて10分間
撹拌し、この操作を2回繰り返して残存するアン
モニア性石こう液を水洗除去して、カルシウムイ
オンを脱離し、脱離液のカルシウム量を実施例1
と同様にして測定した。
After adding 200 ml of 2N hydrochloric acid to this Ca-type chelate resin and stirring for 2 hours, it was filtered through paper to separate the chelate resin and excess ammoniacal gypsum solution. Transfer to a glass beaker, add 500 ml of water, stir for 10 minutes, repeat this operation twice to remove remaining ammoniacal gypsum solution by washing with water, desorb calcium ions, and measure the amount of calcium in the desorbed solution. Example 1
It was measured in the same manner.

その結果、Ca型化率は98%であつた。 As a result, the Ca type conversion rate was 98%.

比較例 2 硫安を添加しなかつた他は実施例2と同様に処
理した結果、実施例2で用いたH型とした市販の
キレート樹脂のCa型化率は2%だけであつた。
Comparative Example 2 The same treatment as in Example 2 was carried out except that ammonium sulfate was not added. As a result, the conversion rate of the commercially available chelate resin, which was made into the H type used in Example 2, to the Ca type was only 2%.

実施例 3,比較例 3 ビスフエノールA、エピクロルヒドリン及びイ
ミノジ酢酸を反応させて得たキレート樹脂(樹脂
母体にエポキシ樹脂、官能基としてイミノジ酢酸
を有し、その末端に水素を有する。)を用いる以
外は実施例1と全く同様に処理した。
Example 3, Comparative Example 3 Other than using a chelate resin obtained by reacting bisphenol A, epichlorohydrin, and iminodiacetic acid (epoxy resin as the resin matrix, iminodiacetic acid as a functional group, and hydrogen at its terminal). was treated in exactly the same manner as in Example 1.

その結果、Ca型化率は97%であつた。 As a result, the Ca type conversion rate was 97%.

また、比較のため、上記で用いたH型キレート
樹脂を比較例1と全く同様に処理した。
For comparison, the H-type chelate resin used above was treated in exactly the same manner as in Comparative Example 1.

その結果、Ca型化率は5%であつた。 As a result, the Ca type conversion rate was 5%.

実施例 4,比較例 4 フエノール、ホルマリン及びテトラエチレンペ
ンタミンをパール重縮合してポリアミンを有する
フエノール・ホルマリン樹脂を得、次いでこの樹
脂をモノクロル酢酸と反応させて得たキレート樹
脂(樹脂母体にフエノール・ホルマリン樹脂、官
能基としてアミン類(テトラエチレンペンタミ
ン)をハロゲン化酢酸(モノクロル酢酸)との反
応物(N置換グリシンを有するアミノカルボン
酸)を有し、その末端に水素を有する。)を用い
る以外は実施例1と全く同様に処理した。
Example 4, Comparative Example 4 A chelate resin obtained by pearl polycondensation of phenol, formalin and tetraethylenepentamine to obtain a phenol-formalin resin having a polyamine, and then reacting this resin with monochloroacetic acid (phenol in the resin matrix)・Formalin resin, which has a reaction product (aminocarboxylic acid with N-substituted glycine) of amines (tetraethylenepentamine) and halogenated acetic acid (monochloroacetic acid) as a functional group, and has hydrogen at its terminal.) The treatment was carried out in exactly the same manner as in Example 1 except for the use.

その結果、Ca型化率は99%であつた。 As a result, the Ca type conversion rate was 99%.

また、比較のため、上記用いたH型キレート樹
脂を比較例1と全く同様に処理した。
For comparison, the H-type chelate resin used above was treated in exactly the same manner as in Comparative Example 1.

その結果、Ca型化率は5%であつた。 As a result, the Ca type conversion rate was 5%.

実施例 5,比較例 4 市販の塩化ビニル樹脂を20〜50メツシユの粒度
に粉砕し、次いでこの樹脂をアンモニア水とモノ
クロル酢酸と反応させて得たキレート樹脂(樹脂
母体に塩化ビニル樹脂、官能基としてN置換グリ
シリンを有するアミノカルボン酸であり、その末
端に水素を有する。)を用いる以外は実施例1と
全く同様に処理した。
Example 5, Comparative Example 4 A chelate resin obtained by pulverizing a commercially available vinyl chloride resin to a particle size of 20 to 50 mesh, and then reacting this resin with aqueous ammonia and monochloroacetic acid (with vinyl chloride resin in the resin matrix and a functional group) The process was carried out in exactly the same manner as in Example 1, except for using an aminocarboxylic acid having N-substituted glycerin and hydrogen at its terminal.

その結果、Ca型化率は96%であつた。 As a result, the Ca type conversion rate was 96%.

また、比較のため、上記で用いたH型キレート
樹脂を比較例1と全く同様に処理した。その結
果、Ca型化率は4%であつた。
For comparison, the H-type chelate resin used above was treated in exactly the same manner as in Comparative Example 1. As a result, the Ca type conversion rate was 4%.

Claims (1)

【特許請求の範囲】 1 官能基末端に水素を有するキレート性イオン
交換樹脂をアンモニア水が共存するカルシウム化
合物の水溶液で処理することを特徴とするH型キ
レート性イオン交換樹脂をCa型に変える方法。 2 アンモニア水が共存するカルシウム化合物の
水溶液のPHが9〜12である特許請求の範囲第1項
記載の方法。 3 カルシウム化合物がカルシウムの塩化物であ
る特許請求の範囲第1項または第2項記載の方
法。 4 カルシウム化合物がカルシウムの水酸化物で
ある特許請求の範囲第1項または第2項記載の方
法。 5 カルシウム化合物がカルシウムの硫酸塩であ
る特許請求の範囲第1項または第2項記載の方
法。 6 カルシウム化合物のカルシウムの硝酸塩であ
る特許請求の範囲第1項または第2項記載の方
法。 7 カルシウム化合物のカルシウムの炭酸塩であ
る特許請求の範囲第1項または第2項記載の方
法。 8 カルシウム化合物がカルシウムの重炭酸塩で
ある特許請求の範囲第1項または第2項記載の方
法。
[Claims] 1. A method for converting an H-type chelating ion-exchange resin into a Ca-type chelating ion-exchange resin, which comprises treating a chelating ion-exchange resin having hydrogen at the end of a functional group with an aqueous solution of a calcium compound in which aqueous ammonia coexists. . 2. The method according to claim 1, wherein the aqueous solution of the calcium compound in which aqueous ammonia coexists has a pH of 9 to 12. 3. The method according to claim 1 or 2, wherein the calcium compound is a calcium chloride. 4. The method according to claim 1 or 2, wherein the calcium compound is calcium hydroxide. 5. The method according to claim 1 or 2, wherein the calcium compound is a calcium sulfate. 6. The method according to claim 1 or 2, wherein the calcium compound is a calcium nitrate. 7. The method according to claim 1 or 2, wherein the calcium compound is a carbonate of calcium. 8. The method according to claim 1 or 2, wherein the calcium compound is calcium bicarbonate.
JP505878A 1978-01-19 1978-01-19 Change of h-type chelate ion exchange resin into ca-type Granted JPS5497578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP505878A JPS5497578A (en) 1978-01-19 1978-01-19 Change of h-type chelate ion exchange resin into ca-type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP505878A JPS5497578A (en) 1978-01-19 1978-01-19 Change of h-type chelate ion exchange resin into ca-type

Publications (2)

Publication Number Publication Date
JPS5497578A JPS5497578A (en) 1979-08-01
JPS6112744B2 true JPS6112744B2 (en) 1986-04-09

Family

ID=11600788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP505878A Granted JPS5497578A (en) 1978-01-19 1978-01-19 Change of h-type chelate ion exchange resin into ca-type

Country Status (1)

Country Link
JP (1) JPS5497578A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112033A (en) * 1974-06-15 1976-01-30 Maschf Augsburg Nuernberg Ag Nainenkikan tokunisenpakuyokikanno atsushukukukishidokenseidosochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112033A (en) * 1974-06-15 1976-01-30 Maschf Augsburg Nuernberg Ag Nainenkikan tokunisenpakuyokikanno atsushukukukishidokenseidosochi

Also Published As

Publication number Publication date
JPS5497578A (en) 1979-08-01

Similar Documents

Publication Publication Date Title
US3589999A (en) Deionization process
US4080290A (en) Method for removing phosphates from aqueous solutions
JP2012509237A (en) Use of desalted waste liquid
US4039442A (en) Ion-exchange process for desalting water and subsequent regeneration of the ion exchangers
US4266045A (en) Etherified phenolic chelate resin, process for its production, and method for adsorption treatment
Kunin et al. New deionization techniques based upon weak electrolyte ion exchange resins
US3842002A (en) Method for removing sulfate and bicarbonate ions from sea water or brackish water through the use of weak anionic exchange resins containing amino groups of the primary and secondary type
BG61108B1 (en) Production of alkali metal carbonates
US4299922A (en) Method for regenerating anion exchange resins in bicarbonate form
US4188292A (en) Inexpensive purification of urea waste streams
US3429835A (en) Regeneration of weak base anion exchange resins
JPS6112744B2 (en)
JPS6025540A (en) Humic acid type adsorbent
JPS6112743B2 (en)
RU2081130C1 (en) Process for preparing sorbent
US3458439A (en) Ion exchange process and regeneration of anion exchange resins
US7157005B2 (en) Regenerant reuse
JPH044092A (en) Method for purifying aqueous alkali chloride solution
RU2217382C1 (en) Method for removing oxygen from water
CN111974463B (en) Amphoteric coexisting ionic exchange resin for electroplating wastewater treatment application and preparation method thereof
JPH0460700B2 (en)
WO2001094015A1 (en) Regeneration of weakly basic anion exchange resins with a combination of alkali metal
JP3173836B2 (en) Manufacturing method of activated carbon adsorbent
SU1047843A1 (en) Method of na-cl ionizing of water
US3391078A (en) Regeneration of anion exchange resins