JPS6112729B2 - - Google Patents

Info

Publication number
JPS6112729B2
JPS6112729B2 JP52126413A JP12641377A JPS6112729B2 JP S6112729 B2 JPS6112729 B2 JP S6112729B2 JP 52126413 A JP52126413 A JP 52126413A JP 12641377 A JP12641377 A JP 12641377A JP S6112729 B2 JPS6112729 B2 JP S6112729B2
Authority
JP
Japan
Prior art keywords
water
oil
filter
porous sheet
gel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52126413A
Other languages
Japanese (ja)
Other versions
JPS5461362A (en
Inventor
Katsumi Kuboshima
Toshihiro Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUCHI KOKEN KK
SHIZUOKAKEN
Original Assignee
MARUCHI KOKEN KK
SHIZUOKAKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUCHI KOKEN KK, SHIZUOKAKEN filed Critical MARUCHI KOKEN KK
Priority to JP12641377A priority Critical patent/JPS5461362A/en
Publication of JPS5461362A publication Critical patent/JPS5461362A/en
Publication of JPS6112729B2 publication Critical patent/JPS6112729B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、油水分離用フイルターに関し、更に
詳しく言えば、油を含有する水から油を効率よく
分離するための改良された油水分離用フイルター
に関するものである。 従来、油中の水分除去に関しては、石油精製、
食用油精製、各種溶剤製造、塗料製造などの分野
で広く検討されている。また、含油廃水処理ある
いは分散油含有水からの大規模な油回収に関して
も、石油精製、タンカーバラスト、海洋流出油対
策などにおいて、重力式、集油剤、捕集材、油ゲ
ル化剤又は沈降剤などによる処理、更にはオイル
フエンスなどが検討されている。更に、小規模な
含有廃水処理に関し、泡沫法、電解法、吸着法、
過法など各種手段が提案されている。而して、
比較的安価で簡便な方法としてフイルターを用い
る過方法の有効性の指摘はかなり以前からあり
歴史は古い。 しかしながら、従来のフイルターとして検討さ
れてきた布、不織布、発泡体等には、油付着が
原因となる過効率の急速な悪化、またそれに伴
う油の浸出などの重大な問題点が認められる。即
ち、フイルター素材としてのポリオレフイン、ポ
リエステル、アクリル系、ポリアミド系などの合
成繊維は、多くが広義の捕集材として使用される
もので、油水分離用フイルターとした場合に、油
付着が大きく過効率の急速低下をきたすもので
ある。 本発明者は、前記問題点の認識に基づいて種々
の研究、検討を重ねた結果、水不溶性含水ゲル層
を主体とした透水吸水機能と吸蔵された水による
撥油機能を有する特定の油水分離機能を、多孔質
シートの表面部及び/又は液通路表面部に形成す
ることにより、円滑有利に目的が達成され得るこ
とを見出すに至つた。即ち、水溶性吸水(含水)
ゲル体、例えばコンニヤク、寒天などには油が付
着し難く、仮に油が付着しても水中に入れると油
分は自力で脱離する現象に着目して、前記の如き
ゲル構造体をフイルター内に設けることにより、
油水分離において油付着が少なく、仮に付着して
も自力脱離が可能であるフイルターとすることが
可能であることを見出したものである。 かくして、本発明は、前記知見に基づいて完成
されたものであり、多孔質シートからなる油水分
離用フイルターにおいて、該多孔質シートの油水
と接触させるべき表面部及び/又は液通路表面部
に水不溶性吸水ゲル層を主体とした透水吸水機能
と吸蔵された水による撥油機能を有する油水分離
機能層を形成せしめたことを特徴とする油水分離
用フイルターを新規に提供するものである。 本発明によれば、フイルター素材として各種合
成繊維、無機繊維、天然繊維、天然パルプ、合成
パルプなどが使用され得る。かゝる素材は前述し
たように、吸油傾向を有するが、油に対する親和
力を有さない水不溶性吸水ゲル層の形成により、
油がフイルターに付着する足がかりが被覆され、
仮にフイルター素材の露出部分に油が付着して
も、油滴粒の生長と共に前記含水ゲル層の脱離作
用を受け、フイルターが水中にあれば、生長した
油滴粒は自らの浮力によつてフイルター面から脱
離するのである。かくして本発明のフイルターに
よれば、油水分離において、油付着がなく過効
率の低下が認められない。しかも特定の吸水ゲル
層により油水からの水の選択的透過が向上せしめ
られ、油と水とを効率よく分離することが可能で
ある。 本発明においては多孔質シートの特定部分に、
水不溶性吸水ゲル層を形成してあることが重要で
ある。而して、水不溶性吸水ゲル層の種類あるい
は形成手段については、特に限定がなく広範囲に
わたつて種々例示され得る。例えば吸水ゲル層の
形成手段としては、(1)アクリルアミド、アクリル
酸カルシウム、アクリル酸ソーダの如き水溶性モ
ノマーとメチレンビスアクリルアミド、N−メチ
ロールアクリルアミドの如きを適宜混合した水溶
液に、過硫酸アンモニウム、過硫酸ソーダ、過硫
酸カリ、過酸化水素の如き重合触媒と塩化アンモ
ニウム、リン酸第一アンモニウムの如き縮合触媒
を添加し、かゝる水溶液を多孔質シートに含浸、
塗布、スプレー等の処理で添着せしめ、しかる後
に80〜110℃程度の温度で加熱乾燥することによ
つて、重縮合反応で水不溶性吸水ゲル層を形成す
る方法、(2)イオン的にの電荷を有する物質(ピ
リジン基、第4級アンモニウム基などカチオン電
荷を有する化合物)の水溶液を、多孔質シートに
添層し、次にの電荷を有する物質(アルボキシ
ル基、スルホン基等のアニオン電荷を有する化合
物)の水溶液を添着して、多孔質シート表面ある
いは内部でイオン的に結合させて所請イオンコン
プレツクスを形成させる方法、(3)カルボキシメチ
ルセルロース、ポリリン酸塩、ポリアクリル酸ソ
ーダの如き水溶性高分子化合物と硫酸マグネシウ
ム、塩化カルシウム等の多価金属塩とのカツプリ
ング反応でゲル化合物を形成する方法、即ち、多
孔質シートに予め多価金属塩の水溶液を含有、塗
布、スプレー等の処理で添着し、次に前記の金属
架橋性の水溶性高分子化合物の水溶液を添着し
て、多価金属イオンの媒介によりゲル化合物を形
成する方法、(4)親水性の天然又は合成高分子化合
物を吸水性を失うことなく不溶化する方法、即
ち、多孔質シートにクロム明バン、カリ明バン、
ホルマリン、塩化亜鉛、ホウ酸、塩化マグネシウ
ムなど架橋剤を添着しておき、ゼラチン、ポリビ
ニルアルコール、アルギン酸、マンナン、セルロ
ース化合物などゲル形成剤を加えて、化学的架橋
化反応でゲル化合物を形成する方法、(5)吸水して
膨油し、水不溶性ゲルを形成する物質を利用する
方法、例えばポリエチレンオキサイドの架橋物
(有機溶剤可溶)を多孔質シートに含浸、塗布、
スプレー処理などで添着したり、あるいはコラー
ゲン繊維、低置換カルボキシメチル化セルロー
ス、ポリビニル繊維などを予め多孔質シート中に
混抄、混紡などにより加える方法、などが各種例
示され得る。 本発明においては、前記の如き水不溶性吸水ゲ
ル層を多孔質シートの油水と接触させるべき表面
部及び/又は液通路表面部に形成させるのである
が、吸水ゲル層形成後の多孔質シートのフイルタ
ー有孔度が損なわれない様にすることが重要であ
る。吸水ゲル層形成には、有孔度の減少を見込ん
だフイルター素材の選択(充分に有孔度を有し得
る素材とその組合せ)などにより、所望の過方
式(自然重力、加圧方式など)に合せて設計する
のが望ましい。透水量が余りに大きすぎると、油
水分離の効率が低下し、油水の浸出傾向が増大
し、また透水量が余りに小さすぎると、油水分離
速度が極端に低下してしまう。 本発明においては、前記の如き吸水ゲル層の形
成と共に、撥油耐油等の機能、油捕集、油滴の粗
大化等の油分離機能の効果を高め、また持続せし
めるための処理を更に施すのが望ましい。例え
ば、フツ素系化合物、クロム−フツ素系化合物の
如き撥油剤、ステアリン酸化合物、シリコーン系
化合物、ワツクス系化合物の如き親油剤あるいは
油捕集剤、高級アルキルアルコール、シリコーン
アルキレンオキサイド、フツ素系界面活性剤の如
き表面張力降下剤又は集油剤などを、水不溶性吸
水ゲル層中に添加するか、あるいはかゝる効果剤
を塗布、含浸、スプレーなどの処理で、吸水ゲル
層形成前又は後の多孔質シートを処理するなどで
ある。また、多孔質シートは親油部分を吸水ゲル
層と共に形成することが可能である。例えば、ポ
リオレフイン系繊維又はパルプ、合成繊維、ガラ
ス繊維などを混抄、混紡などにより混合して、フ
イルター素材を構成することにより、油滴粒の集
油−生長−脱離による分離効果を向上させること
ができる。 本発明において、多孔質シートとしては、フイ
ルターとしての用途に充分耐え得る特性、即ち、
透水性、耐水性、耐圧力性、耐久性などを有する
ものであれば、特に限定されることなく広範囲に
わたつて採用され得る。例えば、布、不織布、
紙、発泡シートなどがあり、パルプ、コツトン、
レーヨン、アセチルセルロースの如きセルロース
系繊維を主体とした紙、不織布などの非織物で
は、特許第659628号公報所載の強化方法などによ
り耐水性、耐圧性、耐久性などを付与して採用す
る。また、布の如き織布からなる多孔質シート
では、それ自体が既に耐水性、耐圧性などフイル
ターとしての特性を有するので、前記の如き強化
方法を省略しても良いが、勿論強化処理を適用す
ることもできる。又、熱熔融性の合成パルプ(ポ
リオレフイン、ナイロン、ポリスチレンなど)を
混合して非織性有孔シートを形成し、加熱処理に
よつて合成パルプを融着する方法、尿素−ホルマ
リン縮合物、メラミン−ホルマリン縮合物、エピ
クロルヒドリン化合物、メチロール基含有化合
物、ジビニルスルホン化合物など架橋性化合物を
多孔質シートに塗布し、含浸、スプレー等によ
り、フイルター機能を失なわないように適用して
強化することなども可能である。 その他、本発明における多孔質シートとして
は、ポリエチレン、ポリプロピレン、フエノール
樹脂系、ポリエステル、ポリアミドの如き合成繊
維を素材としたもの、さらにグラスフアイバー、
セラミツクフアイバー、石綿の如き無機繊維を素
材としたもの、あるいは前記各繊維を複合したも
のなども勿論採用され得る。 而して、本発明においては、特定吸水ゲル層か
多孔質シートから脱離しないように、定着処理を
施すことが好ましい実施態様である。例えば、吸
水ゲル層や多孔質シートの種類に応じてポリエチ
レンイミン、エピクロルヒドリンポリアミン、ジ
シアンジアミド−ホルマリン縮合物の如きカチオ
ン系定着剤又は尿素−ホルマリン縮合物、メラミ
ン−ホルマリン縮合物の如きアニオン系定着剤を
用い、前記吸水ゲル層の形成前後に多孔質シート
に塗布、含浸、スプレーなどで添着するか、ある
いは吸水ゲル層に混入させるかなどにより実施さ
れ得る。 次に、本発明の実施例について、更に具体的に
説明するが、かゝる説明によつて本発明が何ら限
定されないことは勿論である。 実施例 1〜5 ポリオレフイン系合成バルブ(ポリエチレン、
三井ゼラパツク製SWP)とコツトンパルプから
なる二成分系の多孔質シートを、通常の湿式抄紙
法で形成する。このシートを170℃×2〜3分
間、ドラム加熱機にて処理し、合成パルプを熱融
着して耐水、耐圧、耐久性の強化を計る。しかる
後に、0.1重量%ポリエチレンイミンのメタノー
ル溶液を、含浸率100重量%対シートの割合でシ
ートに添着させ、油水分離層の定着処理をした。 次に、N−メチロールアクリルアミド15gr、
フツ素系ポリマー(“アサヒガード”AG−
530、15重量%液、旭硝子製)100gr、過硫酸ア
ンモニウム0.5gr、塩化アンモニウム1.5grを
水500mlに添加した液を、含有率100重量%対シー
トの割合で、前記シートに添着せしめる。しかる
後、100℃で乾燥し、110℃×2分間のドラム加熱
を施して水不溶性吸水ゲル層を形成せしめた。得
られる処理済シートの特性を下記第1表に示す。
The present invention relates to an oil-water separation filter, and more particularly, to an improved oil-water separation filter for efficiently separating oil from oil-containing water. Conventionally, regarding the removal of water from oil, oil refining,
It is being widely studied in fields such as edible oil refining, various solvent production, and paint production. In addition, for oil-containing wastewater treatment or large-scale oil recovery from dispersed oil-containing water, gravity type, oil collection agent, collection material, oil gelling agent, or sedimentation agent is used in oil refining, tanker ballast, marine oil spill countermeasures, etc. Treatment methods such as oil fences and oil fences are being considered. Furthermore, regarding small-scale wastewater treatment, foam method, electrolytic method, adsorption method,
Various measures have been proposed, including legal restrictions. Then,
The effectiveness of the method using a filter, which is relatively inexpensive and simple, has been pointed out for quite some time and has a long history. However, cloth, nonwoven fabric, foam, etc. that have been considered as conventional filters have serious problems such as rapid deterioration of overefficiency due to oil adhesion and oil leakage due to this. In other words, synthetic fibers such as polyolefin, polyester, acrylic, and polyamide as filter materials are mostly used as collection materials in a broad sense, and when used as filters for oil/water separation, they tend to cause oil adhesion and overefficiency. This causes a rapid decline in As a result of various studies and examinations based on recognition of the above-mentioned problems, the present inventor has developed a specific oil-water separation method that has a water-permeable water-absorbing function mainly based on a water-insoluble hydrogel layer and an oil-repellent function due to occluded water. It has been found that the object can be smoothly and advantageously achieved by forming a function on the surface of the porous sheet and/or the surface of the liquid passage. That is, water-soluble water absorption (water content)
Focusing on the phenomenon that oil does not easily adhere to gel bodies such as konnyaku and agar, and even if oil does adhere to them, the oil will come off by itself when immersed in water. By providing
It has been discovered that it is possible to create a filter that causes less oil adhesion during oil-water separation and is capable of removing oil by itself even if it does adhere. Thus, the present invention has been completed based on the above findings, and includes an oil/water separation filter made of a porous sheet in which water is applied to the surface portion of the porous sheet that is to be brought into contact with oil and water and/or the surface portion of the liquid passage. The present invention provides a novel oil-water separation filter characterized by forming an oil-water separation functional layer having a water-permeable water-absorbing function mainly composed of an insoluble water-absorbing gel layer and an oil-repellent function due to occluded water. According to the present invention, various synthetic fibers, inorganic fibers, natural fibers, natural pulp, synthetic pulp, etc. can be used as filter materials. As mentioned above, such materials have a tendency to absorb oil, but due to the formation of a water-insoluble water-absorbing gel layer that has no affinity for oil,
The foothold for oil to adhere to the filter is coated,
Even if oil adheres to the exposed part of the filter material, as the oil droplets grow, they will be affected by the detachment of the water-containing gel layer, and if the filter is in water, the grown oil droplets will be absorbed by their own buoyancy. It detaches from the filter surface. Thus, according to the filter of the present invention, there is no oil adhesion and no decrease in overefficiency is observed in oil/water separation. In addition, the specific water-absorbing gel layer improves the selective permeation of water from oil and water, making it possible to efficiently separate oil and water. In the present invention, in specific parts of the porous sheet,
It is important that a water-insoluble water-absorbing gel layer is formed. The type or formation means of the water-insoluble water-absorbing gel layer is not particularly limited and can be exemplified in a wide variety of ways. For example, as a means for forming a water-absorbing gel layer, (1) add ammonium persulfate, persulfate, Adding a polymerization catalyst such as soda, potassium persulfate, and hydrogen peroxide, and a condensation catalyst such as ammonium chloride and primary ammonium phosphate, impregnating the porous sheet with such aqueous solution,
A method in which a water-insoluble water-absorbing gel layer is formed by a polycondensation reaction by applying it by coating, spraying, etc., and then heating and drying it at a temperature of about 80 to 110°C. (2) Ionic charge An aqueous solution of a substance with a charge (a compound with a cationic charge such as a pyridine group or a quaternary ammonium group) is added to the porous sheet, and then an aqueous solution of a substance with a charge (a compound with an anion charge such as an aboxyl group or a sulfone group) is added to the porous sheet. A method of impregnating an aqueous solution of a compound) and ionically bonding it on or inside a porous sheet to form a desired ion complex; A method in which a gel compound is formed by a coupling reaction between a polymer compound and a polyvalent metal salt such as magnesium sulfate or calcium chloride, that is, a porous sheet containing an aqueous solution of a polyvalent metal salt in advance, coating, spraying, etc. (4) a method of impregnating a hydrophilic natural or synthetic polymer compound with a hydrophilic natural or synthetic polymer compound; A method of insolubilizing water without losing water absorption, i.e., adding chromium alum, potassium alum, etc. to a porous sheet.
A method in which a crosslinking agent such as formalin, zinc chloride, boric acid, or magnesium chloride is impregnated, and a gel forming agent such as gelatin, polyvinyl alcohol, alginic acid, mannan, or cellulose compound is added to form a gel compound through a chemical crosslinking reaction. , (5) A method using a substance that absorbs water and swells to form a water-insoluble gel, such as impregnating and coating a porous sheet with a cross-linked product of polyethylene oxide (soluble in organic solvents);
Various methods may be used, such as attaching by spraying, or adding collagen fibers, low-substituted carboxymethylated cellulose, polyvinyl fibers, etc. into the porous sheet in advance by mixing paper, blending, etc. In the present invention, the water-insoluble water-absorbing gel layer as described above is formed on the surface of the porous sheet that is to be brought into contact with oil and water and/or on the surface of the liquid passage. It is important that the porosity is not compromised. To form a water-absorbing gel layer, the desired filtering method (natural gravity, pressurization method, etc.) can be selected by selecting a filter material that takes into account the reduction in porosity (materials that can have sufficient porosity and their combinations), etc. It is desirable to design according to the If the water permeation amount is too large, the efficiency of oil-water separation will decrease and the tendency for oil and water to seep will increase, and if the water permeation amount is too small, the oil-water separation rate will be extremely reduced. In the present invention, in addition to forming the water-absorbing gel layer as described above, a treatment is further performed to enhance and sustain the effects of oil-repellent, oil-resistant, oil-separating functions such as oil collection and coarsening of oil droplets. is desirable. For example, oil repellents such as fluorine compounds, chromium-fluorine compounds, lipophilic agents or oil scavengers such as stearic acid compounds, silicone compounds, wax compounds, higher alkyl alcohols, silicone alkylene oxides, fluorine compounds, etc. Surface tension lowering agents such as surfactants or oil collectors may be added to the water-insoluble water-absorbing gel layer, or such effects may be applied, impregnated, sprayed, etc. before or after the formation of the water-absorbing gel layer. processing of porous sheets, etc. Furthermore, the porous sheet can have a lipophilic portion formed together with a water-absorbing gel layer. For example, by mixing polyolefin fibers, pulp, synthetic fibers, glass fibers, etc. by blending, blending, etc. to form a filter material, the separation effect through oil collection, growth, and desorption of oil droplets can be improved. I can do it. In the present invention, the porous sheet has characteristics that can sufficiently withstand use as a filter, that is,
A wide range of materials can be used without particular limitation as long as they have water permeability, water resistance, pressure resistance, durability, etc. For example, cloth, non-woven fabric,
There are paper, foam sheets, etc., pulp, cotton,
Non-woven fabrics such as paper and non-woven fabrics mainly made of cellulose fibers such as rayon and acetylcellulose are used after being imparted with water resistance, pressure resistance, durability, etc. by the reinforcement method described in Patent No. 659628. In addition, since porous sheets made of woven fabrics such as cloth already have properties as filters such as water resistance and pressure resistance, the strengthening method described above may be omitted, but of course the strengthening treatment is applied. You can also. In addition, a method of mixing heat-melting synthetic pulp (polyolefin, nylon, polystyrene, etc.) to form a non-woven perforated sheet and fusing the synthetic pulp by heat treatment, urea-formalin condensate, melamine - Applying crosslinking compounds such as formalin condensates, epichlorohydrin compounds, methylol group-containing compounds, divinyl sulfone compounds to porous sheets, impregnation, spraying, etc. to strengthen the filter without losing its function. It is possible. In addition, porous sheets in the present invention include those made of synthetic fibers such as polyethylene, polypropylene, phenolic resin, polyester, and polyamide, as well as glass fibers,
Of course, materials made of ceramic fibers, inorganic fibers such as asbestos, or composites of the above-mentioned fibers may also be used. Therefore, in the present invention, it is a preferred embodiment to perform a fixing treatment so that the specific water-absorbing gel layer does not come off from the porous sheet. For example, depending on the type of water-absorbing gel layer or porous sheet, a cationic fixing agent such as polyethyleneimine, epichlorohydrin polyamine, dicyandiamide-formalin condensate, or anionic fixing agent such as urea-formalin condensate or melamine-formalin condensate may be used. It can be carried out by coating, impregnating, spraying, etc. on a porous sheet before or after forming the water-absorbing gel layer, or by mixing it into the water-absorbing gel layer. Next, embodiments of the present invention will be described in more detail, but it goes without saying that the present invention is not limited by such explanations. Examples 1 to 5 Polyolefin-based synthetic valves (polyethylene,
A two-component porous sheet consisting of Mitsui Zerapack's SWP) and Kotton pulp is formed using a normal wet papermaking method. This sheet is treated in a drum heating machine at 170°C for 2 to 3 minutes to heat-seal the synthetic pulp and strengthen its water resistance, pressure resistance, and durability. Thereafter, a methanol solution of 0.1% by weight polyethyleneimine was applied to the sheet at an impregnation rate of 100% by weight to the sheet to fix the oil/water separation layer. Next, 15 gr of N-methylol acrylamide,
Fluorinated polymer (“Asahi Guard” AG-
530, 15% by weight liquid, manufactured by Asahi Glass Co., Ltd.), 0.5g of ammonium persulfate, and 1.5g of ammonium chloride in 500ml of water, and the solution was applied to the sheet at a content ratio of 100% by weight to the sheet. Thereafter, it was dried at 100°C and heated with a drum at 110°C for 2 minutes to form a water-insoluble water-absorbing gel layer. The properties of the resulting treated sheet are shown in Table 1 below.

【表】 尚、前記各特性の測定は、TAPPI及びJIS法に
よつて実施した。 前記の各シートについて、次の如き試験を実施
し、その結果を下記第2表及び第3表に示した。
以下の各実施例においても同様の試験を実施す
る。 (A) 供試体を水で濡らし、その上に0.5mlのスピ
ンドル油を滴下し、乾燥紙上にこの供試体を
置く。このとき供試体の水が紙に移ると共に
油が吸収される。この油滴が消失するまでの時
間を測定する。この数値が大きい程、油水分離
能が優れている。 (B) 供試体を紙上に置き、スピンドル油0.5ml
を滴下、及び水1mlを滴下する。しかる後に、
30分毎に水1mlを滴下する。4時間後に紙を
取り出し、風乾して紙面の油跡を紫外線下で
確認し、水の浸透円の半径aと油の浸透円の半
径bの比b/aを測定する。この数値が小さい
程、油水分離能が優れている。 (C) 水槽から受け槽に向つて60度の傾斜角で下降
するホルダーを設置し、該ホルダー上面に供試
体を置き、水がサイホン現象で供試体内を常に
移動するようにし、スピンドル油の1滴を供試
体の傾斜上方に滴下する。この時油滴は膜状に
広がるか油滴状で落下するかの現象を示す。油
の滴下より30分後に供試体を風乾し、紫外線下
で油跡を確認し、油の滴下位置より3cm下の油
跡巾を測定する。この数値が小さい程、油水分
離能が優れている。 (D) マシンオイル1000ppmを含む500〜300rpmで
分散混合された含油水を、供試体フイルター2
枚を1cm間隔で装置した過装置に過圧0.2
Kg/cm〜0.5Kg/cm2で通す。過面積は6×11
×2cm2である。この場合の、過圧、全通水
量、平均過速度、過水の含有量、過減率
を測定する。尚、過減率は、通水量1毎の
過時間を測定し、過能力の減少カーブをグ
ラフ化し、それから平均過勾配(過時間/
1毎の過水量)を求める。通水初期、中
期、後期の三点で測定し平均値を求める。
[Table] The above characteristics were measured by TAPPI and JIS methods. The following tests were conducted on each of the sheets described above, and the results are shown in Tables 2 and 3 below.
Similar tests are conducted in each of the following Examples. (A) Wet the specimen with water, drop 0.5 ml of spindle oil onto it, and place the specimen on dry paper. At this time, the water in the specimen is transferred to the paper and the oil is absorbed. Measure the time until the oil droplets disappear. The larger this value is, the better the oil-water separation ability is. (B) Place the specimen on paper and add 0.5ml of spindle oil.
and 1 ml of water. After that,
Drop 1 ml of water every 30 minutes. After 4 hours, the paper is taken out, air-dried, and oil marks on the paper surface are checked under ultraviolet light, and the ratio b/a of the radius a of the water penetration circle to the radius b of the oil penetration circle is measured. The smaller this value is, the better the oil-water separation ability is. (C) A holder that descends from the water tank to the receiving tank at an angle of 60 degrees is installed, the specimen is placed on the top of the holder, and the water is constantly moved inside the specimen by a siphon effect. Place one drop on the slope of the specimen. At this time, the oil droplets either spread out in the form of a film or fall down in the form of oil droplets. 30 minutes after the oil drop, the specimen is air-dried, the oil mark is confirmed under ultraviolet light, and the oil mark width is measured 3 cm below the oil drop position. The smaller this value is, the better the oil-water separation ability is. (D) Oil-impregnated water containing 1000 ppm of machine oil dispersed and mixed at 500 to 300 rpm was passed through the specimen filter 2.
An overpressure of 0.2
Pass through at Kg/cm~0.5Kg/ cm2 . The over area is 6×11
×2 cm 2 . In this case, measure the overpressure, total water flow rate, average overspeed, overwater content, and overloss rate. In addition, the over-reduction rate is determined by measuring the elapsed time for each water flow rate, graphing the overcapacity reduction curve, and then calculating the average over-gradient (elapsed time/
1). Measure at three points: early, middle, and late water flow, and calculate the average value.

【表】【table】

【表】 比較例 1〜5 実施例1〜5におけると同様の未処理の多孔質
シートを単に170℃×2〜3分間のドラム加熱処
理にかけたのみのフイルター特性を下記第4表に
示す。
[Table] Comparative Examples 1 to 5 Table 4 below shows filter properties obtained by simply subjecting untreated porous sheets similar to those in Examples 1 to 5 to a drum heat treatment at 170° C. for 2 to 3 minutes.

【表】 これらの加熱処理のみのシートについて、実施
例1〜5と同様の試験を実施し、その結果を下記
第5表及び第6表にまとめて示した。
[Table] The same tests as in Examples 1 to 5 were conducted on these heat-treated sheets, and the results are summarized in Tables 5 and 6 below.

【表】【table】

【表】【table】

【表】 実施例 6 実施例5と同様にして定着処理までを行なつた
シートフイルターに更に次の処理を施した。即
ち、N−メチロールアクリルアミド5gr、アク
リルアミド20gr、メチレンビスアクリルアミド
0.5gr、ジメチルアミノプロピオニトリル2
ml、フツ素系化合物(“アサヒガード、AG−
530 15重量%液、旭硝子製)50gr、フツ素系界
面活性剤(旭電化製“アデカフロー”
FK1006)2.5mr、同(FK1005)1grを水500
mlに添加した液20重量部に、過硫酸アンモニウム
5gr、塩化アンモニウム5grを水100mlに添
加した液1重量部の割合で、前記フイルターに接
触混合スプレー法で塗布し、吸水ゲル層を形成す
る。塗布液80〜90℃で乾燥し、100〜110℃×2分
間加熱処理し、吸水ゲル層を水不溶化する。塗布
量は100重量%対シートである。 かくして得られる水不溶性吸水ゲル層を形成し
たフイルターについて、その特性、試験A〜Cの
結果及び試験Dの結果を夫々下記第7表、第8
表、第9表にまとめて示す。
[Table] Example 6 A sheet filter that had been subjected to the fixing treatment in the same manner as in Example 5 was further subjected to the following treatment. Namely, 5 gr of N-methylol acrylamide, 20 gr of acrylamide, and methylenebisacrylamide.
0.5gr, dimethylaminopropionitrile 2
ml, fluorine-based compounds (“Asahi Guard, AG-
530 15% by weight liquid, manufactured by Asahi Glass) 50gr, fluorine-based surfactant (Adeka Flow manufactured by Asahi Denka)
FK1006) 2.5mr, same (FK1005) 1gr with water 500
20 parts by weight of the solution added to 100 ml of water, 5 gr of ammonium persulfate, and 5 gr of ammonium chloride to 1 part by weight of the solution added to 100 ml of water are applied to the filter using a contact mixing spray method to form a water-absorbing gel layer. The coating solution is dried at 80-90°C and heat-treated at 100-110°C for 2 minutes to make the water-absorbing gel layer insoluble in water. The coating amount is 100% by weight on sheet. The properties, results of tests A to C, and results of test D of the filter with the thus obtained water-insoluble water-absorbing gel layer are shown in Tables 7 and 8 below, respectively.
The results are summarized in Table 9.

【表】【table】

【表】【table】

【表】 実施例 7〜9 フエノール系合成繊維(“カイノール”日本
カイノール社製)、石綿繊維、ポリオレフイン系
合成パルプ(SWP)を7:2:1(重量比)の
配合比に調整し、全繊維分に対しポリビニルアル
コール系膨潤装着性パルプ(“フイブリボンド
”クラレ製)6重量%を添加し、通常の湿式抄
紙法で多孔質シートを形成する(実施例7で使
用)。 アクリル系合成繊維(“ボンネル”三菱レー
ヨン製)、石綿繊維、SWPを5:2:3の配合比
に調整し、全繊維分に対し“フイブリボンド”6
重量%を添加し、通常の湿式抄紙法で多孔質シー
トを形成する(実施例8で使用)。 “カイノール”、セラミツク繊維、SWPを4:
4:2の配合比に調整し、全繊維分に対し6重量
%相当の“フイブリボンド”を添加し、通常の湿
式抄紙法で多孔質シートを形成する(実施例9で
使用)。 前記の各シートを170℃×2〜3分間、ドラム
加熱機にて処理し、合成バルブを熱融着して耐
水、耐圧、耐久性の強化を計る。しかる後に、
0.05重量%ポリエチレンイミンのメタノール溶液
を、含有率100重量%対シートの割合でシートに
添着させ、油水分離層の定着処理をした。 次に、第1液として、N−メチロールアクリル
アミド25gr、アクリルアミド10gr、メチレン
ビスアクリルアミド0.5gr及びジメチルアミノ
プロピオニトリル2mlを水500mlに溶解したも
の、第2液として、過硫酸アンモニウム5gr及
び塩化アンモニウム5grを水100mlに溶解した
ものを用意する。第1液/第2液=20/1(容量
比)の割合で二つの液を接触混合スプレー法で、
定着処理済シートに含浸率100重量%対シートで
塗布し、80〜90℃の乾燥、更に100〜110℃×2分
間の加熱処理を施して、水不溶性吸水ゲル層を形
成せしめた。 更に、カチオン系高分子化合物(AG−Fix、
明成化学製)5grを水200mlに溶解し、メタノ
ールにて全量を500mlにした液を、前記ゲル層含
有シートに添着率50重量%対シートでスプレー塗
布し、100℃にて乾燥して第2決定着処理を施し
た。しかる後に、実施例6と同様の方法で第2次
の水不溶性吸水ゲル層形成を行なつた。 かくして得られるフイルターについて、その特
性、試験A〜Cの結果、及び試験Dの結果を夫々
下記第10表、第11表、第12表にまとめて示す。
[Table] Examples 7 to 9 Phenol-based synthetic fibers (“Kynol” manufactured by Nippon Kynor Co., Ltd.), asbestos fibers, and polyolefin-based synthetic pulp (SWP) were adjusted to a blending ratio of 7:2:1 (weight ratio), and the total 6% by weight of polyvinyl alcohol-based swellable pulp ("Fibribond" manufactured by Kuraray) is added to the fiber content, and a porous sheet is formed by a normal wet papermaking method (used in Example 7). Acrylic synthetic fiber (“Bonnell” manufactured by Mitsubishi Rayon), asbestos fiber, and SWP are adjusted to a blending ratio of 5:2:3, and “Fibribond” 6 is added to the total fiber content.
% by weight and form a porous sheet using conventional wet papermaking methods (used in Example 8). “Kynol”, ceramic fiber, SWP 4:
The blending ratio was adjusted to 4:2, "Fibribond" was added in an amount equivalent to 6% by weight based on the total fiber content, and a porous sheet was formed by a normal wet papermaking method (used in Example 9). Each of the sheets described above is treated in a drum heating machine at 170°C for 2 to 3 minutes, and the composite valve is heat-sealed to enhance water resistance, pressure resistance, and durability. After that,
A methanol solution of 0.05% by weight polyethyleneimine was applied to the sheet at a content ratio of 100% by weight to the sheet, and an oil/water separation layer was fixed. Next, as the first liquid, 25 gr of N-methylolacrylamide, 10 gr of acrylamide, 0.5 gr of methylene bisacrylamide, and 2 ml of dimethylaminopropionitrile were dissolved in 500 ml of water, and as the second liquid, 5 gr of ammonium persulfate and 5 gr of ammonium chloride were added. Prepare a solution dissolved in 100ml of water. The two liquids are mixed at a ratio of 1st liquid/2nd liquid = 20/1 (volume ratio) using a contact mixing spray method.
The fixing-treated sheet was coated with an impregnation rate of 100% by weight, dried at 80-90°C, and further heated at 100-110°C for 2 minutes to form a water-insoluble water-absorbing gel layer. Furthermore, cationic polymer compounds (AG-Fix,
A solution of 5g (manufactured by Meisei Chemical) dissolved in 200ml of water and made up to 500ml with methanol was spray-coated onto the gel layer-containing sheet at an impregnation rate of 50% by weight, dried at 100°C, and dried at 100°C. Final treatment was applied. Thereafter, a second water-insoluble water-absorbing gel layer was formed in the same manner as in Example 6. The characteristics of the filter thus obtained, the results of Tests A to C, and the results of Test D are summarized in Tables 10, 11, and 12 below, respectively.

【表】【table】

【表】【table】

【表】 実施例 10 市販紙(東洋紙製No.26)を用いる。N−メ
チロールアクリルアミド25gr、過硫酸アンモニ
ウム2.5gr、塩化アンモニウム2.5grを水500
mlに溶解した液を、対紙100重量%の含浸率で
前記紙に添着し、80〜90℃で乾燥し、110〜120
℃で加熱処理することにより、紙の耐水性、耐
圧性を強化する。 次に、カチオン系高分子化合物(明成化学製
AG−Fix)5grを水200mlに溶解し、メタノー
ルにて全量500mlにした溶液を含浸率100重量%と
なるように、前記強化処理済の紙にスプレー塗
布する。 次に、第1液として、N−メチロールアクリル
アミド5gr、アクリルアミド20gr、メチレン
ビスアクリルアミド0.5gr、ジメチルアミノプ
ロピオニトリル2ml、フツ素系撥油剤(“アサヒ
ガード”AG530の15重量%液、旭硝子製)50g
r、フツ素系集油剤(旭電化製の“アデカフロー
”FK1006)2gr、及び“アデカフロー”
FK1005の1grを水500mlに溶解したもの、第2
液として、過硫酸アンモニウム5gr及び塩化ア
ンモニウム5grを水500mlに溶解したものを用
意する。第1液/第2液=20/1(容量比)の割
合で二つの液を接触混合スプレー法で前記処理済
の紙に塗布し、塗布後に80〜90℃で乾燥、100
〜110℃×2分。 かくして得られたフイルターについて、その特
性及び試験の結果を夫々下記第13表、第14表、第
15表にまとめて示す。
[Table] Example 10 Commercially available paper (No. 26 manufactured by Toyo Paper Co., Ltd.) was used. 25g of N-methylolacrylamide, 2.5g of ammonium persulfate, 2.5g of ammonium chloride and 500g of water
ml of the solution was applied to the paper at an impregnation rate of 100% by weight, dried at 80-90℃,
Heat treatment at ℃ strengthens paper's water resistance and pressure resistance. Next, a cationic polymer compound (manufactured by Meisei Chemical Co., Ltd.)
A solution prepared by dissolving 5g of AG-Fix) in 200ml of water and bringing the total volume to 500ml with methanol is spray applied to the reinforced paper so that the impregnation rate is 100% by weight. Next, as a first liquid, 5 gr of N-methylolacrylamide, 20 gr of acrylamide, 0.5 gr of methylenebisacrylamide, 2 ml of dimethylaminopropionitrile, and a fluorine-based oil repellent (15% by weight liquid of "Asahi Guard" AG530, manufactured by Asahi Glass) 50g
r, fluorine-based oil collecting agent (“ADEKA FLOW” FK1006 manufactured by Asahi Denka) 2gr, and “ADEKA FLOW”
1g of FK1005 dissolved in 500ml of water, 2nd
Prepare a solution in which 5 gr of ammonium persulfate and 5 gr of ammonium chloride are dissolved in 500 ml of water. The two liquids were applied to the treated paper using a contact mixing spray method at a ratio of 1st liquid/2nd liquid = 20/1 (volume ratio), dried at 80 to 90°C after coating,
~110℃×2 minutes. The characteristics and test results of the filter thus obtained are shown in Tables 13, 14, and 14 below, respectively.
They are summarized in Table 15.

【表】【table】

【表】【table】

【表】【table】

【表】 以上詳細に説明したように、本発明によれば吸
水ゲルが油水からの水の透過性を選択的に向上さ
せる透水吸水機能と、観油性を有する多孔質シー
トによつて集油された油滴が生長して粗粒化され
ると、吸水ゲル体内部に吸蔵された水により撥油
されて多孔質シートから速かに脱離される撥油機
能とを併せ有することにより、油付着が極めて少
なく、濾過効率のすぐれた油水分離フイルターを
提供することができる。
[Table] As explained in detail above, according to the present invention, the water-absorbing gel has a water-permeable and water-absorbing function that selectively improves the permeability of water from oily water, and a porous sheet that has oil viewing properties to collect oil. When the oil droplets grow and become coarse particles, they are repelled by the water stored inside the water-absorbing gel body and quickly released from the porous sheet. It is possible to provide an oil/water separation filter with extremely low filtration efficiency and excellent filtration efficiency.

Claims (1)

【特許請求の範囲】 1 水不溶性吸水ゲル層を主体とした、透水吸水
機能と吸蔵された水による撥油機能を有する油水
分離機能層を、多孔質シートの油水と接触させる
べき表面部及び/又は液通路表面部に形成したこ
とを特徴とする油水分離用フイルター。 2 多孔質シートが、耐水性、耐圧力性、耐久性
等のフイルターとして耐え得る特性を有すること
を特徴とする特許請求の範囲第1項記載の油水分
離用フイルター。
[Scope of Claims] 1. An oil/water separation functional layer mainly composed of a water-insoluble water-absorbing gel layer and having a water-permeable water-absorbing function and an oil-repellent function due to occluded water, the surface portion of the porous sheet that is to be brought into contact with oil/water, and/or Or an oil/water separation filter, characterized in that it is formed on the surface of the liquid passage. 2. The oil-water separation filter according to claim 1, wherein the porous sheet has characteristics that can withstand the filter, such as water resistance, pressure resistance, and durability.
JP12641377A 1977-10-21 1977-10-21 Filter for separation of oil and water Granted JPS5461362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12641377A JPS5461362A (en) 1977-10-21 1977-10-21 Filter for separation of oil and water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12641377A JPS5461362A (en) 1977-10-21 1977-10-21 Filter for separation of oil and water

Publications (2)

Publication Number Publication Date
JPS5461362A JPS5461362A (en) 1979-05-17
JPS6112729B2 true JPS6112729B2 (en) 1986-04-09

Family

ID=14934540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12641377A Granted JPS5461362A (en) 1977-10-21 1977-10-21 Filter for separation of oil and water

Country Status (1)

Country Link
JP (1) JPS5461362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329136U (en) * 1986-08-08 1988-02-25

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154864A (en) * 1978-05-26 1979-12-06 Maruchi Koken Kk Filter body used for disposing water containing oil
JPS5841083B2 (en) * 1978-10-05 1983-09-09 日産自動車株式会社 How to recycle water-soluble cutting fluid
WO2016017754A1 (en) 2014-07-30 2016-02-04 三菱マテリアル株式会社 Filter medium, method for producing filter medium, water treatment module, and water treatment device
EP3176236A4 (en) 2014-07-30 2018-05-16 Mitsubishi Materials Corporation Surface-coating material, coated film, and hydrophilic/oil-repellent material
JP6461573B2 (en) 2014-07-30 2019-01-30 三菱マテリアル株式会社 Oil / water separator / collector
EP3176237A4 (en) 2014-07-30 2018-02-07 Mitsubishi Materials Corporation Hydrophilic oil repellent agent and method for manufacturing same, and surface covering material, coating film, resin composition, oil-water separation filter medium, and porous body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033550A (en) * 1973-07-28 1975-03-31
JPS5112030A (en) * 1974-07-18 1976-01-30 Toyo Denso Kk Nainenkikanno tenkajikikensasochi
JPS5354176A (en) * 1976-10-27 1978-05-17 Nisshinbo Ind Inc Cloth for separation of oil and water and separating method for oil and wate r

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033550A (en) * 1973-07-28 1975-03-31
JPS5112030A (en) * 1974-07-18 1976-01-30 Toyo Denso Kk Nainenkikanno tenkajikikensasochi
JPS5354176A (en) * 1976-10-27 1978-05-17 Nisshinbo Ind Inc Cloth for separation of oil and water and separating method for oil and wate r

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329136U (en) * 1986-08-08 1988-02-25

Also Published As

Publication number Publication date
JPS5461362A (en) 1979-05-17

Similar Documents

Publication Publication Date Title
Kordjazi et al. Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter
CN111992191B (en) Rapid high-capacity intelligent cellulose-based oil absorption material and preparation method and application thereof
Wang et al. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency
Chen et al. Fabrication of Cellulosic Paper Containing Zeolitic Imidazolate Framework and Its Application in Removal of Anionic Dye from Aqueous Solution.
CN106975371A (en) A kind of composite nanometer filtering film of polyolefin micropore substrate based on hydrophilic modifying and preparation method thereof
JP2013253948A (en) Cesium collection sheet and sea water purification material
WO2001045820A1 (en) Cationically charged coating on glass or polymer fibers
JPS6112729B2 (en)
Hu et al. Fabrication of special wettability functionalized Mg (OH) 2@ cotton fabric for oil/water mixtures and emulsions separation
Zhang et al. An l-cystine/l-cysteine impregnated nanofiltration membrane with the superior performance of an anchoring heavy metal in wastewater
KR101380839B1 (en) Oil collecting structure, and the preparation method thereof
US4358380A (en) Method of reproducing water-soluble cutting agents
CA1160201A (en) Oil spill absorbing peat
US20050218068A1 (en) Filter cartridge
Alince et al. Effects of surface topography, pH and salt on the adsorption of polydisperse polyethylenimine onto pulp fibers
RU2492905C1 (en) Method of separation of two immiscible fluids, for example, oil in water
Ejeromedoghene et al. Insights on smart and stimuli-responsive hydrogel membranes for oil/water separation: A sustainable tool for oily pollutant remediation
US20130284674A1 (en) Organic compound adsorbing material and process for making the same
Xiao et al. Polyether sulfone assisted shape construction of Calotropis gigantea fiber for preparing a sustainable and reusable oil sorbent
EP3423415A1 (en) Reusable sorbent sponges, their method of production and their use for the in-situ remediation of oil spills
JPS5934404B2 (en) How to separate water and oil
DE19834916A1 (en) Filter paper for water purification
Huo et al. Preparation and humic acid fouling resistance of poly (vinylidene fluoride)–fabric composite membranes for membrane distillation
RU2166362C2 (en) Oil- and oil derivative-gathering sorption material and method of manufacture thereof
CN110124533A (en) A kind of anti-polluting oil-water separation ultra-filtration membrane and preparation method thereof that gel micro-ball is modified