JPS61126791A - Manufacture of surface heat generating body - Google Patents

Manufacture of surface heat generating body

Info

Publication number
JPS61126791A
JPS61126791A JP24657484A JP24657484A JPS61126791A JP S61126791 A JPS61126791 A JP S61126791A JP 24657484 A JP24657484 A JP 24657484A JP 24657484 A JP24657484 A JP 24657484A JP S61126791 A JPS61126791 A JP S61126791A
Authority
JP
Japan
Prior art keywords
paste
temperature
heating element
resistance
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24657484A
Other languages
Japanese (ja)
Inventor
一郎 矢沢
中村 淳次
悟朗 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP24657484A priority Critical patent/JPS61126791A/en
Publication of JPS61126791A publication Critical patent/JPS61126791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、面状発熱体の製造方法に関するものである。[Detailed description of the invention] (Technical field of invention) The present invention relates to a method for manufacturing a planar heating element.

(発明の技術的背景とその間桓点) 従来の面状発熱体は、一般的なものとして、プラスティ
ック製の基板を用いるものがあり、こhは、プラスティ
ックシート上に、発熱体としてカーボン等の導電性物?
印刷したり、ニクロム線?張りつけて、上からプラステ
ィックシートを張り、サンドイッチ構造にしたものであ
る。このプラスティック製の面状発熱体は、フレキシブ
ルで加工性に富み、大面積にできること、安価なことが
あげられるが、プラスティックの耐用温度以下で。
(Technical Background of the Invention and Key Points) Conventional planar heating elements generally use a plastic substrate. Conductive material?
Print or nichrome wire? It is pasted together and a plastic sheet is placed on top to create a sandwich structure. This sheet heating element made of plastic is flexible, highly workable, can be made into a large area, and is inexpensive, but it can be used at temperatures below the serviceable temperature of plastic.

通常700程度にしか加温できず、高温にできないこと
が欠点である。また、耐熱温度が限られるために急加熱
ができないという欠点もある。
The disadvantage is that it can usually only be heated to about 700℃, and cannot be heated to high temperatures. Another disadvantage is that rapid heating is not possible due to the limited heat resistance temperature.

もう1つは、前述のような原料でセラミックス(のプリ
ンシートを作成し、これに導電体や抵抗体の発熱体な塗
布もしくは印I11し、一体暁成する方法である。この
場合には、セラミックスが焼成する@度が1.300〜
1.800 Cであるため、この温度に耐える導電ペー
スト、抵抗ペーストが必要になるが、特に、酸化雰囲気
で焼成できるものがない。使用できるペーストは、Au
、pd、Pt 、 Mo 、 Wのような高価なペース
トで、それも還元雰囲気で焼成するという難しさがある
。このために、費用が非常に高くなって(る。
The other method is to create a printed sheet of ceramics from the raw materials mentioned above, coat it with a heating element such as a conductor or a resistor, or apply a mark I11 on it, and then assemble it. In this case, Ceramics are fired @ degree is 1.300 ~
Since the temperature is 1.800 C, conductive pastes and resistive pastes that can withstand this temperature are required, but there are none that can be fired in an oxidizing atmosphere. The paste that can be used is Au
, PD, Pt, Mo, and W, which also have the difficulty of firing in a reducing atmosphere. This makes costs very high.

また、アルミナ基板な用いた場合には、アルミナの熱膨
張係数が60〜70 X 10−’ 1/[と犬きく、
熱衝撃に弱いという欠点もある。
In addition, when an alumina substrate is used, the thermal expansion coefficient of alumina is 60 to 70 x 10-' 1/[,
It also has the disadvantage of being vulnerable to thermal shock.

また、セラミックグリンシート上に、亀に抵抗ペースト
?印刷し、700〜900Cの低温で焼成17て得る発
熱体は、その基板の焼結が不完全な為、基板表面に気孔
が残り、その気孔に抵抗ベーストが通電時に浸み込み、
一定の抵抗値が得られないという欠点があった。
Also, tortoise-resistant paste on the ceramic green sheet? The heating element obtained by printing and firing at a low temperature of 700 to 900C has pores left on the surface of the substrate due to incomplete sintering of the substrate, and the resistor base permeates into the pores when electricity is applied.
The drawback was that a constant resistance value could not be obtained.

また、従来の厚嘆印−11技術に於ては、ペーストによ
り形成1.た絶縁1−と、導電あるいは抵抗パターンと
な同時焼成すると、両ペースト中のガラスフリットが互
いに溶けあい、得られる導体の抵抗値が一定せず、従っ
て、このような多ノー印刷に於ては21iの焼成が必要
であった。
In addition, in the conventional Atsuki-in-11 technique, 1. When the insulation 1- and the conductive or resistive pattern are simultaneously fired, the glass frits in both pastes melt into each other, and the resistance value of the resulting conductor is not constant. 21i firing was required.

(発明の目的) 本発明では、前記のような欠点を除去、あるいはこれら
の欠点を補えるよう700〜900Cで一度焼成でき、
赤外放射特性に優れ、安価で簡単なプロセスによる面状
発熱体の製造方法な提供するものである。
(Objective of the invention) In the present invention, in order to eliminate or compensate for the above-mentioned defects, it is possible to bake once at 700 to 900C,
The present invention provides a method for manufacturing a planar heating element that has excellent infrared radiation characteristics and is inexpensive and easy to process.

(発明の構成) すなわち、本発明は、抄紙技術を用いて作成1゜たセラ
ミックグリンシート上に、結晶化ガラスな主成分とする
絶縁性塗布層を介在させて、導電抵抗ベース)Ii’に
設けてなるものな700〜900C程度の低置で一体焼
成することな特徴とする面状発熱体の製造方法である。
(Structure of the Invention) That is, the present invention provides a conductive resistance base (Ii') by interposing an insulating coating layer mainly composed of crystallized glass on a ceramic green sheet made using papermaking technology. This is a method for producing a planar heating element characterized by integral firing at a low temperature of about 700 to 900C.

(発明の作用) 本発明によれば、低温焼結性であるが表面が多孔質とな
りがちである基板と、導電抵抗ペーストの間に結晶化ガ
ラス@な介在させる面状発熱体の製造法であり、結晶化
ガラスf−は、焼成@度である700〜900Cより低
い温度で部分的に結晶化が起こり、緻密な中間層となる
。加えて、結晶化1.たガラスの中間I−は、焼成中お
よび通電時にも上層の導電抵抗層とは相溶しにくい性質
があり、導電抵抗層が、多孔質の基板に浸透することな
く、結晶化ガラス層と溶は合うこともなくなる。
(Function of the Invention) According to the present invention, a method for manufacturing a planar heating element in which a crystallized glass @ is interposed between a substrate that can be sintered at low temperature but whose surface tends to be porous and a conductive resistor paste. In the case of crystallized glass f-, partial crystallization occurs at a temperature lower than the firing temperature of 700 to 900 C, forming a dense intermediate layer. In addition, crystallization 1. The intermediate I- of the glass has a property that it is difficult to mix with the upper conductive resistance layer during firing and when electricity is applied, and the conductive resistance layer does not penetrate into the porous substrate and melts with the crystallized glass layer. will no longer match.

(発明の詳細な 説明では、セラミックスのグリンシートが700〜90
0Cで焼成できるように、また、焼成した基板が熱衝撃
によって割れないよう熱膨張係数が30〜40X10−
’ 1 /C程度になるような原料を選定、配合を行う
。これな繊維質とともに水中で凝集、抄紙12、シート
化する。このシートを5〜15MPa、  110Cで
加熱脱水プレスしてセラミックスのグリンシートナ作る
(In the detailed description of the invention, the ceramic green sheet is 700 to 90%
The thermal expansion coefficient is 30 to 40X10- so that it can be fired at 0C, and so that the fired substrate will not crack due to thermal shock.
' Select and mix raw materials to achieve a ratio of about 1/C. The fibers are coagulated in water and made into paper 12 and sheets. This sheet is heated and dehydrated and pressed at 5 to 15 MPa and 110 C to produce a ceramic green sheet toner.

このような低温焼結性で、かつ低い熱膨張率の焼結基板
を得る無機゛物質の配合例について説明する。ひとつの
例としては、通常用いるセラミック原料を用い、かつ原
料組成が、コーディエライト組成(2Mg0・2人t2
0.・55i02 )に近似するように、アルミナ、シ
リカ、マグネシアの割合を調整することがあげられる。
An example of blending an inorganic material to obtain a sintered substrate having such low temperature sinterability and a low coefficient of thermal expansion will be described. As an example, a commonly used ceramic raw material is used, and the raw material composition is cordierite composition (2Mg0, 2t2
0.・55i02) The proportions of alumina, silica, and magnesia may be adjusted so as to approximate it.

この点につき、さらに具体的に説明すると、通常用いら
れるセラミック原料、例えば、蛙目粘土。
To explain this point more specifically, commonly used ceramic raw materials, such as frog's eye clay.

暁タルク、カオリン等は、純粋なAt206.5iOz
、MgOからなるものではなく、その他に水(H2O)
やアルカリ金@酸化物(Na2O、に20 など)やア
ルカリ土類金属酸化物(CaOなど)のほか、残留鉄分
としての酸化鉄(Fe20Bなど)という化学量論式で
IIJEできる不純物な含むものである。これらH2O
,Na2O,Fe2O3等の不純物は熱膨張率を上昇さ
せる害があるが、一方において、少量含むだけで焼結温
度な下降させるーきもある。本発明では、これら不純物
な重量比にl、て3〜12%の範囲に押さえ、主成分た
るAt205、S i O2、mOの配合比率をコージ
ェライト組成になるよう原料な調合するものである。こ
うすること罠よって、低い焼成温度での焼結を可能とし
、あわせて熱l膨張率の低い焼結基板を得るものである
Akatsuki talc, kaolin, etc. are pure At206.5iOz
, does not consist of MgO, but also contains water (H2O)
In addition to alkali gold@oxides (Na2O, Ni20, etc.), alkaline earth metal oxides (CaO, etc.), and iron oxides (Fe20B, etc.) as residual iron, which are impurities that can be subjected to IIJE in a stoichiometric formula. These H2O
, Na2O, Fe2O3, etc., have the disadvantage of increasing the coefficient of thermal expansion, but on the other hand, even a small amount of impurities may lower the sintering temperature. In the present invention, the weight ratio of these impurities is kept within the range of 3 to 12%, and the blending ratio of the main components At205, SiO2, and mO is blended as raw materials so as to have a cordierite composition. By doing this, it is possible to perform sintering at a low firing temperature, and at the same time, it is possible to obtain a sintered substrate with a low coefficient of thermal expansion.

参考までに、通常用いられるセラミック原料の四種につ
き、その主成分たるNb2O2、SiO□、MgOの重
量6分率な示す。残部が上記1−た不純物に相当する。
For reference, the weight percentages of Nb2O2, SiO□, and MgO, which are the main components, of four types of commonly used ceramic raw materials are shown. The remainder corresponds to the above impurity.

上述のような通常の窯業原料を用いろとすると。If we use ordinary ceramic raw materials as mentioned above.

MgO成分が不足気味であり、主成分をコーディエライ
ト組成に近ずけるためには、用いる原料の選択にもよる
が、MgOk外から添加することが行なわれる。
The MgO component is lacking, and in order to bring the main component closer to the cordierite composition, it is added from outside MgOk, depending on the selection of raw materials used.

上述のような配合例のほか、高温焼結性の原料組成に融
剤となるようなガラス71Jツトな添加することで低融
焼結性の無機材料とすることもできる。
In addition to the above-mentioned formulation examples, an inorganic material with low melting sinterability can be obtained by adding a glass 71J as a flux to the raw material composition with high temperature sinterability.

いずれにせよ、抄造技術な用いて得られたグリンシート
に対して、結晶化ガラスフリットなテルピネオール等の
有機溶剤にて混練l、た塗布用組成物?印刷・塗布等の
手段にて施し、絶縁性塗布層を設ける。施すパターンは
、グリンシート表面上へのベタ塗りでも、導電ペースト
層のパターンに合わせたものでも良い。
In any case, a coating composition is prepared by kneading a green sheet obtained using a paper-making technique with an organic solvent such as terpineol, which is a crystallized glass frit. It is applied by means such as printing or coating to provide an insulating coating layer. The pattern to be applied may be a solid coating on the surface of the green sheet or may be a pattern that matches the pattern of the conductive paste layer.

この絶縁性塗布層の乾燥後、金属クロム、酸化ルテニウ
ム(Ru02)等を主成分とする導電抵抗ペーストな用
い毛、スクリーン印刷等の手段により所望の抵抗値?得
るよ5な櫛歯状あるいは縞状の抵抗パターン?作成する
After drying this insulating coating layer, a desired resistance value is obtained by using a conductive resistive paste containing metal chromium, ruthenium oxide (Ru02), etc. as the main component, or by screen printing or other means. Do you get a comb-like or striped resistance pattern? create.

この印刷l−たグリンシートは、酸化雰囲気の電気炉に
おいて、繊維質、有機物’f fr:途中で・焼失気化
させる。その後、加熱な続け、800C程度で基板と抵
抗ペースドナ一体焼結させる。このようにして面状発熱
体ができる。
This printed green sheet is burnt and vaporized in the middle of fibrous and organic matter in an electric furnace in an oxidizing atmosphere. Thereafter, heating is continued to sinter the substrate and the resistor paste donor together at about 800C. In this way, a planar heating element is produced.

本発明に於て、絶*+*iに用いたペーストが結晶化ガ
ラスからなるものであり、焼成の際に上層の抵抗ペース
ト中のフリットとの相互作用が少なく、一定の抵抗値な
持つ発熱抵抗体が得ら比る。そして、この絶111−が
焼成時に基板表面上の気孔?塞ぐ為、800C程度の低
温焼成で、安価な面状発熱体が得られる。
In the present invention, the paste used for absolute *+*i is made of crystallized glass, and during firing, there is little interaction with the frit in the upper layer of resistance paste, and the heat generation that has a constant resistance value is low. Compare the resistor obtained. And is this 111- the pores on the substrate surface during firing? In order to seal the hole, an inexpensive planar heating element can be obtained by firing at a low temperature of about 800C.

以下に本発明の具体的実施例を述べる。組成は全て重量
比である。
Specific examples of the present invention will be described below. All compositions are by weight.

〈実施例1〉 [F])凝集剤 (Q 絶縁性塗布組成物 絶縁ペースト(460B−N伯東■#)04鑞抵抗ペー
スト Crペースト (伯東・、構製、#2560 ) 先ず、2I3fflltの容器に水y 1. o o 
o部と木材パルプ10部を入れ、20分はど攪拌して、
パルプな水に十分分散叩解させ、そこへ原蛙目粘±18
0部と酸化マグネシウム20部を加えて1分はど攪拌し
、水性スラリー?作る。
<Example 1> [F]) Flocculant (Q Insulating coating composition Insulating paste (460B-N Hakuto #) 04 Resistance paste Cr paste (Hakuto, Construction, #2560) First, put it in a 2I3ffllt container. Water 1. o o
Add o parts and 10 parts of wood pulp, stir for 20 minutes,
Thoroughly disperse and beat in pulpy water and add 18%
Add 0 parts and 20 parts of magnesium oxide and stir for 1 minute to form an aqueous slurry. make.

この水性スラリーに、あらかじめ作っておいた硫酸アル
ミニウム60部を加えて攪拌L、pH試噴紙でpHが3
〜4になったの?確かめて、ここへ、こルもあらかじめ
作っておいたポリアクリルアミド系高分子凝集剤120
部を加え′C30秒はど攪拌して凝集させる。以上のよ
うにして凝集した試料は、抄造機で抄紙し、300−角
で1.5〜2.2飄厚のシート状にする。このシート状
物なプレス機で、110Cで10 MPaの圧力を掛け
て脱水、乾燥し、セラミックスのグリンシートヲ作る。
Add 60 parts of aluminum sulfate prepared in advance to this aqueous slurry and stir until the pH reaches 3 using pH test paper.
~Did it become 4? Check this and add the polyacrylamide polymer flocculant 120 that you made in advance.
Add 50% of the mixture and stir for 30 seconds to coagulate. The agglomerated sample as described above is made into a paper using a paper making machine to form a sheet having a thickness of 1.5 to 2.2 mm by 300 mm. Using this sheet press, the material is dehydrated and dried under a pressure of 10 MPa at 110C to produce a green ceramic sheet.

このグリンシートに結晶化ガラスよりなる絶縁ペースト
により30〜50μの絶lR+@+1形成する。
On this green sheet, an insulating paste of 30 to 50 μm is formed using an insulating paste made of crystallized glass.

このグリンシートにCrペーストv焼成後の抵抗で50
〜100Ωになるように、スクリーン印刷隈で@歯状に
印刷する。
Cr paste on this green sheet v resistance after firing is 50
Print in a tooth shape with screen printing so that the resistance is ~100Ω.

抵抗ペーストを印刷したグリンシートは電気炉で、酸素
雰囲気下で焼成する。
The green sheet printed with the resistance paste is fired in an oxygen atmosphere in an electric furnace.

焼成は、常温から4000までは、2tZ’/minで
昇温し、400Cで1時間保持して、有機バインダー、
パルプ?焼失気化させる。そのff1. ao。
For firing, the temperature was raised from room temperature to 4000C at a rate of 2tZ'/min, held at 400C for 1 hour, and the organic binder,
pulp? Burn and vaporize. That ff1. ao.

Cまで4C/minで昇温し、800Cで30分保持し
て、セラミックスの焼結とペーストの焼成を行い、以後
、室温まで炉内放冷な行うと面状発熱体が製造される。
The temperature was raised to C at 4 C/min, held at 800 C for 30 minutes to sinter the ceramics and fire the paste, and then allowed to cool in the furnace to room temperature to produce a sheet heating element.

〈実施例2〉 (ん 試料の調整 IBI  凝集剤と界面活性剤 (0導電抵抗ペースト C「ペースト (伯東■碩、#:25(50)    。<Example 2> (Sample preparation IBI flocculant and surfactant (0 conductive resistance paste C "Paste" (Hakuto ■ Seki, #: 25 (50).

以上のような組成fA)、FB+、(0を用いて、以下
は実施例1と同様にして、セラミックスの面状発熱。
Using the above compositions fA), FB+, and (0), the following procedure was performed in the same manner as in Example 1 to measure sheet heating of ceramics.

体が得られた。I got a body.

(発明の効果) このようにして得られた面状発熱体は導電抵抗層の抵抗
値が安定し、家庭用のサウナ、コタツ、ヒーター等ある
いは、医療、食品産業用機械等の分野に用いられ、耐高
温性能に−れ、耐久性にも優れたものである。
(Effect of the invention) The sheet heating element thus obtained has a stable resistance value of the conductive resistance layer, and can be used in fields such as home saunas, kotatsu, heaters, etc., as well as medical and food industry machines. It has excellent high temperature resistance and durability.

本発明によれば、薄型で、良好な加工性により、任意な
形状の面状発熱体が製造でき、従来のプラスティック面
状発熱体に比べて高温に耐えられる長所がある。
According to the present invention, a planar heating element of any shape can be manufactured due to its thinness and good workability, and has the advantage of being able to withstand high temperatures compared to conventional plastic planar heating elements.

また、従来のセラミックス面状発熱体に比べて、低温で
1回で焼成できるために、工程が簡略化され、耐熱衝撃
性に優れており、その上書エネルギーに役立ち、安価に
供給できることが*aである。
In addition, compared to conventional ceramic planar heating elements, it can be fired in one step at a lower temperature, which simplifies the process, has excellent thermal shock resistance, helps with overwriting energy, and can be supplied at low cost. It is a.

Claims (1)

【特許請求の範囲】[Claims] (1)抄紙技術を用いて作成したセラミックグリンシー
ト上に、、結晶化ガラスを主成分とする絶縁性塗布層を
介在させて導電抵抗ペースト層を設けてなるものを70
0〜900℃程度の低温で一体焼成することを特徴とす
る面状発熱体の製造方法。
(1) A conductive resistive paste layer is provided on a ceramic green sheet made using papermaking technology with an insulating coating layer mainly composed of crystallized glass.
A method for manufacturing a planar heating element, characterized by integral firing at a low temperature of about 0 to 900°C.
JP24657484A 1984-11-21 1984-11-21 Manufacture of surface heat generating body Pending JPS61126791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24657484A JPS61126791A (en) 1984-11-21 1984-11-21 Manufacture of surface heat generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24657484A JPS61126791A (en) 1984-11-21 1984-11-21 Manufacture of surface heat generating body

Publications (1)

Publication Number Publication Date
JPS61126791A true JPS61126791A (en) 1986-06-14

Family

ID=17150438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24657484A Pending JPS61126791A (en) 1984-11-21 1984-11-21 Manufacture of surface heat generating body

Country Status (1)

Country Link
JP (1) JPS61126791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141285A (en) * 1986-12-01 1988-06-13 松下電器産業株式会社 Panel heater and manufacture of the same
JP2008132098A (en) * 2006-11-28 2008-06-12 Takumi:Kk Method of manufacturing exothermic eating utensil for microwave oven

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141285A (en) * 1986-12-01 1988-06-13 松下電器産業株式会社 Panel heater and manufacture of the same
JPH0682559B2 (en) * 1986-12-01 1994-10-19 松下電器産業株式会社 Surface heater manufacturing method
JP2008132098A (en) * 2006-11-28 2008-06-12 Takumi:Kk Method of manufacturing exothermic eating utensil for microwave oven

Similar Documents

Publication Publication Date Title
JPS61138486A (en) Planar ceramics heater
JPS61126791A (en) Manufacture of surface heat generating body
JPH0329742B2 (en)
US20030080313A1 (en) Microporous thermal insulation molding containing electric-arc silica
JPS5951716B2 (en) Manufacturing method of heating element
JPS62170185A (en) Ceramic heater
CN108682478A (en) A kind of composite oxides devitrified glass, dielectric slurry and its preparation method and application
US6636142B2 (en) Sensor element, in particular a temperature sensor
US4684543A (en) Starting mixture for an insulating composition comprising a lead glass, silk-screening ink comprising such a mixture, and the use of said ink for the protection of hybrid microcircuits on ceramic substrates
JPS6188483A (en) Manufacture of planar heat generating body
CN209731602U (en) A kind of planar metal low-temperature heating device
US4751205A (en) Thermally bonded fibrous product
JP3009166B2 (en) Surface treatment method for ceramics
RU12744U1 (en) HEATING ELEMENT
JPH08186049A (en) Composition of terminal electrode for multilayer capacitor
JP3618369B2 (en) Ceramic heating element
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
JPS59162169A (en) Ceramics and multilayer distribution panel
JPH0260236B2 (en)
KR101265944B1 (en) Composite for ceramic ware including oxide pigment and manufacturing method of ceramic ware using the pigment
KR100407661B1 (en) Fabrication method of complex-shape refractory material using aluminosilicate fiber
JPS5924753B2 (en) porcelain composition
JPH02212336A (en) Glass-ceramic composition and its use
JPS622406A (en) Insulating paste for multilayer substrate
JPH01265477A (en) Manufacture of ceramic heater