JPS61126776A - Manufacturing fuel cell - Google Patents

Manufacturing fuel cell

Info

Publication number
JPS61126776A
JPS61126776A JP59247358A JP24735884A JPS61126776A JP S61126776 A JPS61126776 A JP S61126776A JP 59247358 A JP59247358 A JP 59247358A JP 24735884 A JP24735884 A JP 24735884A JP S61126776 A JPS61126776 A JP S61126776A
Authority
JP
Japan
Prior art keywords
fuel cell
fluororubber
gasket
unvulcanized fluororubber
unvulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59247358A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Umiga
信好 海賀
Setsu Ichijo
一條 節
Akio Koyama
明男 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59247358A priority Critical patent/JPS61126776A/en
Publication of JPS61126776A publication Critical patent/JPS61126776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain good workability at the time of mounting, excellent heat resistance and phosphoric acid resistance and besides good air-tightness by filling unvulcanized fluororubber composed of defoamed unvulcanized fluororubber and putty-like unvulcanized fluororubber in between a gasket and the contacting face with the gasket on the side face of a cell main body, vulcanizing with heating and sealing both of them tightly. CONSTITUTION:The configuration is that fluororubber 12 which is composed of defoamed unvulcanized fluororubber and putty-like unvulcanized fluororubber attached just as putty on the face side of this defoamed unvulcanized fluororubber contacting with electrodes 2, 3, is filled in between a gasket 9 and the gasket contacting face 10 of the side face of a fuel cell main body 7 to form a filler layer and both of them are sealed. Fluororubber before vulcanization has good workability because of no elasticity and clay-like property, and besides foaming occurs at the time of vulcanization with heating owing to flow by heating and a small amount of residual solvent in the putty-like unvulcanized fluororubber 12b part and rubber enters thoroughly in the uneven surface of the gasket contacting face 10. Thereby, perfect air-tightness can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池において、特に寛解質にすン酸を用い
たリン酸型の燃料電池およびその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and particularly to a phosphoric acid type fuel cell using phosphoric acid as a toner and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換する装置として燃料電池が知られている。こ
の燃料電池は通常、電解質を挾んで一対の多孔質電極を
配置するとともに、一方の電極の背面に水素等の流体燃
料を接触させ、また他方の電極の背面に酸素等の流体酸
化剤を接触させ、このとき起こる電気料学的反応を利用
して、上記電極間から電気エネルギーを取)出すように
したものであシ、前記燃料と酸化剤が供給されている限
シ高い変換効率で電気エネルギーを取シ出すことができ
るものである。
2. Description of the Related Art Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and a fluid fuel such as hydrogen is brought into contact with the back surface of one electrode, and a fluid oxidizer such as oxygen is brought into contact with the back surface of the other electrode. The system uses the electrochemical reaction that occurs at this time to extract electrical energy from between the electrodes, and as long as the fuel and oxidizer are supplied, electricity can be generated with high conversion efficiency. It is something that can extract energy.

第4図は、上記原理に基づく特にリン酸を電解質とした
、リプ付電極型の燃料電池の構成例を断面斜視図にて示
したものである。図において、電解質としてリン酸を含
浸したマトリックス1を中央にして、その上下に多孔質
で形成され触媒が付与された一対の電極つまシ、炭素材
で作られている正極(アノード極)2と負極(カソード
億)3によりサンドイッチ状に挾んで素電池が形成され
る。またこの素電池の両電極2,3の背面には、流体燃
料および流体酸化剤の流通婢4,5が形成されたグラフ
ァイトと熱硬化性樹脂の混合結着体から成る溝付きイン
ターコネクター6が配置される。この場合インターコネ
クター60溝加工は、両面に互いに直交する形で施され
ている。そして、この素電池とインターコネクター6よ
構成る単位セルを複数個積層して燃料電池本体が構成さ
れる。
FIG. 4 is a cross-sectional perspective view showing an example of the construction of a lip-equipped electrode type fuel cell based on the above principle and using phosphoric acid as an electrolyte. In the figure, a matrix 1 impregnated with phosphoric acid as an electrolyte is placed in the center, and above and below it are a pair of porous electrode tabs coated with a catalyst, and a positive electrode (anode) 2 made of carbon material. A unit cell is formed by sandwiching the negative electrode (cathode) 3 together. Further, on the back side of both electrodes 2 and 3 of this unit cell, there is a grooved interconnector 6 made of a mixed composite of graphite and thermosetting resin in which flow channels 4 and 5 for fluid fuel and fluid oxidizer are formed. Placed. In this case, the interconnector 60 grooves are formed on both surfaces in a manner perpendicular to each other. Then, a fuel cell main body is constructed by stacking a plurality of unit cells constituted by this unit cell and the interconnector 6.

つぎに、第5図に示すように素電池とインターコネクタ
ー6から成る上記燃料電池本体1を、その上下に図示し
ない集電板絶縁スペーサを挿入して押し板8により押え
る。その後ガスヶ。
Next, as shown in FIG. 5, the fuel cell main body 1 consisting of the unit cells and the interconnector 6 is pressed by a push plate 8 with current collector plate insulating spacers (not shown) inserted above and below. Then gas.

ト9を介して流体供給、排出用マニホールド11を、上
記燃料電池本体7の前後左右の四側面に夫々固定配設し
て燃料電池が構成される。
A fuel cell is constructed by fixing fluid supply and discharge manifolds 11 to the front, rear, left, and right sides of the fuel cell main body 7 via gates 9, respectively.

なおこの場合、例えば図示前面から流体燃料が供給され
て後面へ残ガスが排出され、左面から流体酸化剤が供給
されて右面へ残ガスが排出されるように操作される。
In this case, the operation is performed so that, for example, fluid fuel is supplied from the front side in the figure and residual gas is discharged to the rear side, and fluid oxidizer is supplied from the left side and residual gas is discharged to the right side.

ところで、上記のようにして構成された従来の燃料電池
においては、特にガスケット9接触面10の加工につい
て棟々の問題がある。つまシ、素電池、インターコネク
ター6の製作寸法を精度よく決めていても、組立時に積
層するとわずかにずれが生じて、燃料電池本体7側面に
数n程度の凹凸が生じてしまう。しかし乍ら、この面は
素電池を形成している炭素材おLびり ゛ン酸を含浸し
たマトリックス1.インターコネクター6、さらには図
示しないシール材等の各種材料の断面部が露出してお)
、かつ各々その物性値が異なるため、この面を機械的に
削って平滑化することは困難である。
By the way, in the conventional fuel cell configured as described above, there are various problems, particularly regarding the processing of the contact surface 10 of the gasket 9. Even if the manufacturing dimensions of the pick, the unit cell, and the interconnector 6 are precisely determined, when they are stacked during assembly, slight misalignment occurs, resulting in unevenness of about several nanometers on the side surface of the fuel cell main body 7. However, this surface is the same as the carbon material forming the unit cell and the matrix 1. impregnated with acid. Cross sections of the interconnector 6 and various materials such as sealing material (not shown) are exposed)
, and each has different physical property values, so it is difficult to mechanically scrape and smooth this surface.

そこで、この凹凸面を平滑化するため一つの手段として
、ゴム材料、プラスチック材料を塗布する方法がとられ
ている。また、燃料電池は通常200℃前後の温度で運
転されるため、リン酸を含浸したマトリックス1に接す
る、部分では耐熱耐リン酸性の材料が要求されている。
Therefore, one method of smoothing this uneven surface is to apply a rubber material or a plastic material. Further, since fuel cells are normally operated at a temperature of around 200° C., materials that are heat-resistant and resistant to phosphoric acid are required for the portions that are in contact with the matrix 1 impregnated with phosphoric acid.

一方、フッ素ゴムに関して調査したところ、I′F−オ
キサイド加硫のゴムは耐リン酸性に優れてお9、未加硫
状態で溶剤によってノ臂テ状とすれば燃料電池本体側面
の平滑化に対する加工性もよいことがわかった。しかし
、微量残る溶剤、未加硫ゴムに含まれている空気が、加
熱加硫時に発泡してスポンジ状に流れ出るため、パテ状
ゴムの使用部分を限定する必要があった。
On the other hand, a study on fluororubber revealed that I'F-oxide vulcanized rubber has excellent phosphoric acid resistance9, and that if it is made into a knot shape with a solvent in the unvulcanized state, it is effective in smoothing the side surface of the fuel cell body. It was found that the processability was also good. However, because a small amount of remaining solvent and air contained in the unvulcanized rubber foam and flow out in a spongy manner during heat vulcanization, it was necessary to limit the areas where the putty-like rubber was used.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題を解消するために成されたも
ので、その目的は素電池、インターコネクターの寸法精
度を上げることなく、組立時の加工性がよく耐熱耐リン
酸性に優れかつ気密性に富み長時間にわ尼って安定した
性能を発揮させることが可能な燃料電池およびその製造
方法を提供することにある。
The present invention was made in order to solve the above-mentioned problems, and its purpose is to improve processability during assembly, have excellent heat resistance, phosphoric acid resistance, and airtightness without increasing the dimensional accuracy of unit cells and interconnectors. An object of the present invention is to provide a fuel cell that is highly flexible and capable of exhibiting stable performance over a long period of time, and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、前述した燃料電
池における燃料電池本体の側面のガスクット接触面とガ
スケットとの間に、脱泡未加硫フッ素ゴムとi4テ状未
加流フッ素ゴムとからなる未加硫フッ素ゴムを充填して
充填層を形成し、その後加熱加硫して両者間を密着する
ようにしたことを特徴とする。
In order to achieve the above object, the present invention provides a structure in which defoamed unvulcanized fluororubber and i4 tape-shaped uncured fluororubber are used between the gasket contact surface on the side surface of the fuel cell main body and the gasket in the fuel cell described above. It is characterized in that a filled layer is formed by filling unvulcanized fluororubber, and then heated and vulcanized to bring the two into close contact.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明によるり/酸型の燃料電池における要
部断面構成例を示したもので、図において第4図、第5
図と同一部分には同一符号を付してその説明を省略し、
ここでは異なる部分についてのみ述べる。
FIG. 1 shows an example of a cross-sectional configuration of main parts in a phosphor/acid fuel cell according to the present invention.
Parts that are the same as those in the figures are given the same reference numerals and their explanations are omitted.
Only the different parts will be described here.

つまシ、第1図は第4図および第5図における燃料電池
本体7の側面のガスケット接触面10とがスケット9と
の間に、脱泡未加硫7゜素ゴムと、この脱泡未加硫フッ
素ゴムの前記電極2.3との接触面となる面倒にパテ状
にしてつけられた・9テ状未加硫フツ素ゴムとからなる
フッ素ゴム12を充填して充填層を形成し、両者間を密
着させて構成するようにしたものである。
1 shows a gap between the gasket contact surface 10 on the side surface of the fuel cell main body 7 in FIGS. 4 and 5 and the sket 9, and the defoamed unvulcanized 7° bare rubber and the defoamed unvulcanized rubber. A filling layer is formed by filling a fluororubber 12 made of unvulcanized fluororubber in the shape of 9 tapes, which is putty-like and applied to the surface of the vulcanized fluororubber in contact with the electrode 2.3. , the two are arranged in close contact with each other.

また上記において、未加硫フッ素ゴム12よりなる充填
層は以下のようにして形成する。つt’)、7y素ゴム
は通常生ゴムに各種配合剤を加えて混練シを行ない、そ
の後加熱加硫してゴム弾性を与えられるが、本実施例で
は上記混練夛しノ4−オキサイドの加硫剤が添加された
加硫前(未加硫)のものを、第2図のように形成して燃
料電池本体の側面に取付ける。つまり第2図で、12a
は未加硫フッ素ゴムをシート状にして混練時に含有され
る空気を加硫温度以下で脱泡した脱泡未加硫フッ素ゴム
であり、12bは当咳泡未加硫7ツ累ゴム12gの側面
つまプ素電池の両電極2,3と接触する部分に、同未加
硫フ、素ゴムをケトン、エステル類の溶剤によりてパテ
状にしてつけたノ譬テ状未加硫フッ素ゴムである。そし
て、この未加硫フッ素ゴム12を燃料電池本体の側面の
ガスケット接触面10につけ、その上からガスケット9
を介して固定し、その後加熱加硫してゴム弾性を持たせ
一体化して気密構造とする。
Further, in the above, the filling layer made of unvulcanized fluororubber 12 is formed as follows. t'), 7y Raw rubber is usually made by adding various compounding agents to raw rubber, kneading it, and then heating and vulcanizing it to give it rubber elasticity. A pre-vulcanized (unvulcanized) product to which a curing agent has been added is formed as shown in Figure 2 and attached to the side of the fuel cell main body. In other words, in Figure 2, 12a
12b is a defoamed unvulcanized fluororubber obtained by forming a sheet of unvulcanized fluororubber and defoaming the air contained during kneading at a temperature below the vulcanization temperature. The parts of the side tab unit battery that come into contact with both electrodes 2 and 3 are coated with unvulcanized fluororubber in the form of a putty made from the same unvulcanized fluorine rubber with a ketone or ester solvent. be. Then, apply this unvulcanized fluororubber 12 to the gasket contact surface 10 on the side surface of the fuel cell main body, and then apply the gasket 9 from above.
After that, they are fixed by heating and vulcanizing to give them rubber elasticity and are integrated into an airtight structure.

上述した方法により製造した構成のリン酸型の燃料電池
においては、燃料電池本体7の側面のガスケット接触面
10をノ々−オキサイドの加硫剤が添加された未加硫フ
ッ素ゴムを用いて加工するようにしているので、加硫前
のフッ素ゴム物性はゴム弾性がなく粘土状であるため加
工性がよく、ガスケット9を介して固定した場合、上記
燃料電池本体7の側面のガスケット接触面10の凹凸を
埋めることができる。さらに加熱加硫時には、加熱によ
る流動とパテ状未加硫フッ素コ゛ムJ、 2 b部分に
おける残留した少量の溶剤による発泡が起シ、ガスケッ
ト接触面10の凹凸の隅々までゴムが入シ込み気密性の
完全なものを得ることができる。また加硫によって、脱
泡未加硫フッ素ゴム12&とパテ状未加硫フッ素ゴムJ
obとが一体化することは言うまでもない。
In the phosphoric acid fuel cell constructed by the method described above, the gasket contact surface 10 on the side surface of the fuel cell body 7 is processed using unvulcanized fluororubber to which a vulcanizing agent of NONO-OXIDE is added. Since the physical properties of the fluororubber before vulcanization are clay-like without rubber elasticity, it has good workability, and when fixed through the gasket 9, the gasket contact surface 10 on the side surface of the fuel cell main body 7 It can fill in the unevenness of the surface. Furthermore, during heating and vulcanization, foaming occurs due to fluidization due to heating and a small amount of solvent remaining in the putty-like uncured fluorine comb J, 2b, and the rubber infiltrates into every corner of the unevenness of the gasket contact surface 10, creating an airtight seal. You can have sexual perfection. In addition, by vulcanization, defoamed unvulcanized fluororubber 12 & putty-like unvulcanized fluororubber J
Needless to say, it is integrated with ob.

以上のことから燃料電池本体7の側面とガスケット9と
流体供給、排出用マニホールド11相互間の気密性を長
時間にわたって確保して、流体燃料、流体酸化剤のもれ
およびこれに基づく混合をなくして事故の発生を防止し
、長時間にわたって安定した電池性能を発揮することが
可能な燃料電池を得ることができるものである。
From the above, airtightness between the side surface of the fuel cell main body 7, the gasket 9, and the fluid supply/discharge manifold 11 can be ensured for a long period of time, thereby eliminating leakage of fluid fuel and fluid oxidizer and the resulting mixing thereof. Therefore, it is possible to obtain a fuel cell that can prevent accidents from occurring and exhibit stable cell performance over a long period of time.

上述したように本実施例によれば、素電池。As described above, according to this embodiment, a unit cell.

インターコネクター6の積層寸法梢度を現状以上に上げ
ることなく、パーオキサイドの加硫剤が添加された耐−
耐リン酸性の未加硫フッ素ゴム12t−燃料電池本体7
側面のガスケット接触面10につけ、加工後加熱加硫を
行なってゴム弾性を生じさせるため組立時の作業性金一
段と向上させることができ、長時間安定した電池性能を
発揮することが可能なリン酸型の燃料電池が得られる。
A peroxide vulcanizing agent is added to the interconnector 6 without increasing the laminated size of the interconnector 6 beyond the current level.
Phosphoric acid resistant unvulcanized fluororubber 12t - fuel cell main body 7
Phosphoric acid is applied to the gasket contact surface 10 on the side and is heated and vulcanized after processing to create rubber elasticity, which further improves workability during assembly and enables stable battery performance for a long time. type fuel cell is obtained.

尚、上記において未加硫フッ素ゴム12の形状としては
第2図のものに限らず、例えば第3図(、) (b)の
ように形成することも可能である。同図(a)は脱泡未
加硫フッ素ゴム12aを2枚用い、必要部分にのみ溶剤
を含む/IPテ状未加硫フッ素ゴム12bを入れて形成
したものであり、また同図(b)は1枚の脱泡未加硫7
ツ索ゴム12aの必要部分をグラインダーやカッター等
によって削り取り、その部分を・母テ状未加硫フッ素ゴ
ム12bで補習して形成したものである。一方この場合
の材料としては、例えばパーオキサイド加硫の7ツ累ゴ
ムとしてダイエルG−902(ダイキン工業(株):商
品名)を用い、また溶剤としてはアセトン、メチル、エ
チル、ケトン等を使用することができる。
In the above, the shape of the unvulcanized fluororubber 12 is not limited to that shown in FIG. 2, but can also be formed, for example, as shown in FIG. 3(, ) (b). The same figure (a) is formed by using two sheets of defoamed unvulcanized fluororubber 12a and inserting a solvent-containing/IP tape-like unvulcanized fluororubber 12b only in necessary parts, and the same figure (b). ) is one sheet of defoamed unvulcanized 7
It is formed by scraping off a necessary part of the string rubber 12a with a grinder, cutter, etc., and then supplementing that part with a matrix-like unvulcanized fluororubber 12b. On the other hand, as the material in this case, for example, Daiel G-902 (Daikin Industries, Ltd.: trade name) is used as a peroxide-cured seven-layer rubber, and acetone, methyl, ethyl, ketone, etc. are used as the solvent. can do.

また本発明は、多孔質の電解質リン酸の保持量を多くす
るために、改良された傷付電極を用いた燃料電池へも適
用できることは百うまでもない。
It goes without saying that the present invention can also be applied to fuel cells using improved damaged electrodes in order to increase the amount of phosphoric acid retained in the porous electrolyte.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、素電池インターコ
ネクターの寸法精度を上げることなく、組立時の加工性
がよく耐熱耐リン酸性に優れかつ気密性に富み長時間に
わたり−て安定した性能を発揮させることが可能な燃料
電池およびその製造方法が提供できる。
As explained above, according to the present invention, without increasing the dimensional accuracy of the cell interconnector, it has good workability during assembly, is excellent in heat resistance and phosphoric acid resistance, is highly airtight, and has stable performance over a long period of time. It is possible to provide a fuel cell that can achieve the desired performance and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

WJ1図および第2図は本発明の燃料電池の一実施例を
示す要部断面図および斜視図、第3図(a) (b)は
本発明の他の実施例を示す側面図、第4図は従来のリン
酸qfPr電池の構成を示す断面斜視図、第5図は従来
のリン酸trjイ電池の組立状態を示す部分斜視図であ
る。 1・・・マトリ、クス、2,3・・・電極、6・・・イ
ンターコネクター、7・・・燃料電池本体、9・・・ガ
スケット、10・・・ガスケット接触面、11・・・流
体供給、排出用マニホールド、12・・・未加硫7゜素
ゴム、12bm脱泡末加硫フッ素ゴム、12b・・・ノ
臂テ状未加硫フッ素ゴム。 出願人代理人  弁理士 鈴 江 武 彦第 1図 第2図    第3図 t4rA り 第5図
Figures WJ1 and 2 are a sectional view and a perspective view of essential parts showing one embodiment of the fuel cell of the present invention, Figures 3(a) and 3(b) are side views showing another embodiment of the present invention, and Figures 4 and 4 are The figure is a cross-sectional perspective view showing the structure of a conventional phosphoric acid QFPr battery, and FIG. 5 is a partial perspective view showing the assembled state of a conventional phosphoric acid TRJ battery. DESCRIPTION OF SYMBOLS 1... Matrix, box, 2, 3... Electrode, 6... Interconnector, 7... Fuel cell main body, 9... Gasket, 10... Gasket contact surface, 11... Fluid Supply and discharge manifold, 12...Unvulcanized 7° raw rubber, 12bm defoamed vulcanized fluororubber, 12b...arm-shaped unvulcanized fluororubber. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 t4rA Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)電解質としてリン酸を含浸したマトリックスを介
して一対の電極を配置した素電池、および前記各電極の
背面側に配置され流体燃料、流体酸化剤の流通溝を有す
るインターコネクターより成る単位セルを複数個積層し
た燃料電池本体の側面に、前記一対の電極に対する流体
の供給、排出用のマニホールドがガスケットを介して配
設されているリン酸型の燃料電池において、前記燃料電
池本体の側面のガスケット接触面とガスケットとの間に
、脱泡未加硫フッ素ゴム及びこの脱泡未加硫フッ素ゴム
の前記電極との接触面となる側にパテ状にしてつけられ
たパテ状未加硫フッ素ゴムからなる未加硫フッ素ゴムを
充填して充填層を形成するようにしたことを特徴とする
燃料電池。
(1) A unit cell consisting of a unit cell in which a pair of electrodes are arranged through a matrix impregnated with phosphoric acid as an electrolyte, and an interconnector arranged on the back side of each electrode and having flow grooves for fluid fuel and fluid oxidizer. In a phosphoric acid fuel cell, a manifold for supplying and discharging fluid to the pair of electrodes is disposed on the side surface of the fuel cell main body in which a plurality of the above-mentioned electrodes are laminated via a gasket. Between the gasket contact surface and the gasket, there is a defoamed unvulcanized fluororubber and a putty-like unvulcanized fluorine rubber applied to the side of the defoamed unvulcanized fluororubber that will be in contact with the electrode. A fuel cell characterized in that a packed layer is formed by filling unvulcanized fluororubber made of rubber.
(2)電解質としてリン酸を含浸したマトリックスを介
して一対の電極を配置した素電池、および前記各電極の
背面側に配置され流体燃料、流体酸化剤の流通溝を有す
るインターコネクターより成る単位セルを複数個積層し
た燃料電池本体の側面に、前記一対の電極に対する流体
の供給、排出用のマニホールドがガスケットを介して配
設されているリン酸型の燃料電池において、未加硫フッ
素ゴムを混練時に含有される空気を加硫温度以下で脱泡
して得られる脱泡未加硫フッ素ゴムの前記電極との接触
面となる側に、未加硫フッ素ゴムを溶剤によってパテ状
にしたパテ状未加硫フッ素ゴムをつけて未加硫フッ素ゴ
ムを成形し、その後当該未加硫フッ素ゴムを前記燃料電
池本体の側面につけガスケットを介して固定し、しかる
後に前記未加硫フッ素ゴムを加熱加硫することを特徴と
する燃料電池の製造方法。
(2) A unit cell consisting of a unit cell in which a pair of electrodes are arranged through a matrix impregnated with phosphoric acid as an electrolyte, and an interconnector arranged on the back side of each electrode and having flow grooves for fluid fuel and fluid oxidizer. In a phosphoric acid fuel cell, in which a manifold for supplying and discharging fluid to the pair of electrodes is disposed on the side of the fuel cell main body, which is made up of a plurality of laminated layers, a manifold for supplying and discharging fluid to the pair of electrodes is arranged via a gasket. A putty-like material made of unvulcanized fluororubber made into a putty with a solvent is placed on the side of the defoamed unvulcanized fluororubber obtained by defoaming the air contained in the fluorine rubber at a temperature below the vulcanization temperature, which will be in contact with the electrode. The unvulcanized fluororubber is applied to form the unvulcanized fluororubber, and then the unvulcanized fluororubber is applied to the side of the fuel cell main body and fixed via a gasket, and then the unvulcanized fluororubber is heated and cured. A method for manufacturing a fuel cell characterized by sulfurization.
JP59247358A 1984-11-22 1984-11-22 Manufacturing fuel cell Pending JPS61126776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247358A JPS61126776A (en) 1984-11-22 1984-11-22 Manufacturing fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247358A JPS61126776A (en) 1984-11-22 1984-11-22 Manufacturing fuel cell

Publications (1)

Publication Number Publication Date
JPS61126776A true JPS61126776A (en) 1986-06-14

Family

ID=17162229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247358A Pending JPS61126776A (en) 1984-11-22 1984-11-22 Manufacturing fuel cell

Country Status (1)

Country Link
JP (1) JPS61126776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604300A1 (en) * 1986-09-22 1988-03-25 Int Fuel Cells Corp SEALING MATERIALS USED IN PARTICULAR IN FUEL CELLS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604300A1 (en) * 1986-09-22 1988-03-25 Int Fuel Cells Corp SEALING MATERIALS USED IN PARTICULAR IN FUEL CELLS
BE1000536A5 (en) * 1986-09-22 1989-01-24 Int Fuel Cells Corp Sealing materials used in particular in fuel cells.

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
US6159628A (en) Use of thermoplastic films to create seals and bond PEM cell components
US6387557B1 (en) Bonded fuel cell stack assemblies
US6670069B2 (en) Fuel cell stack assembly
US11431002B2 (en) Fuel cell microseal and a method of manufacture thereof
US20010055708A1 (en) Proton exchange membrane fuel cell external manifold seal
US6730426B2 (en) Integral sealing method for fuel cell separator plates
JP2004523060A (en) Fuel cell stack assembly with end seal
US20130089802A1 (en) Flow field plate with relief ducts for fuel cell stack
JP4331719B2 (en) Sealing structure of polymer electrolyte fuel cell
JPS61126776A (en) Manufacturing fuel cell
US20050181260A1 (en) Elastomeric separator plates and mehtod of fabrication
JP4676191B2 (en) Fuel cell separator
WO2000035038A1 (en) Proton exchange membrane fuel cell external manifold seal
JPS6380485A (en) Sealed laminated cell
JPS63205060A (en) Fuel cell
JP2010177009A (en) Cell of fuel cell
JPS5946767A (en) Phosphoric electrolyte fuel cell
CN114142058A (en) Fuel cell membrane electrode sealing frame
JPS61114476A (en) Fuel cell
JPH081802B2 (en) Composite electrode substrate having different rib heights and method for manufacturing the same
KR20220090626A (en) Separator for fuel cell with improved sealability and apparatus and method for manufacturing same
JPS61135061A (en) Fuel cell
JPS6095863A (en) Fuel cell
JPS5927468A (en) Fuel cell