JPS61126353A - Control method of electronic fuel injection in multi-cylinder internal-combustion engine - Google Patents

Control method of electronic fuel injection in multi-cylinder internal-combustion engine

Info

Publication number
JPS61126353A
JPS61126353A JP24619984A JP24619984A JPS61126353A JP S61126353 A JPS61126353 A JP S61126353A JP 24619984 A JP24619984 A JP 24619984A JP 24619984 A JP24619984 A JP 24619984A JP S61126353 A JPS61126353 A JP S61126353A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
fuel injection
engine
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24619984A
Other languages
Japanese (ja)
Inventor
Akimasa Yasuoka
安岡 章雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24619984A priority Critical patent/JPS61126353A/en
Publication of JPS61126353A publication Critical patent/JPS61126353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve a mass production effect in an electronic fuel injection control device and promote its cost down, by driving six injectors in a six- cylinder engine by four injector driving circuits. CONSTITUTION:A rear-row cylinder group is constituted by three cylinders #1-#3, while a front-row cylinder group is formed by three cylinders #4-#6. The first driving circuit 11 simultaneously drives two injectors of the cylinder #1, #2. A control device drives an injector of the cylinder #3 by the third driving circuit 13 and an injector of the cylinder #4 by the fourth driving circuit 14. In this way, the electronic fuel injection control device, driving the six injectors by the four driving circuits, enables a mass production effect of the device to be improved while its cost down to be promoted.

Description

【発明の詳細な説明】 (技術分野) 本発明は4気筒エンジン用の電子式燃料噴射制御装置の
4個のインジェクタ駆動回路により6気筒エンジンの6
個のクンジェクタを駆動するようにした多気筒内燃エン
ジンの電子式燃料噴射制御方法に関する。
Detailed Description of the Invention (Technical Field) The present invention provides an electronic fuel injection control device for a 4-cylinder engine that uses four injector drive circuits to inject six injectors in a six-cylinder engine.
The present invention relates to an electronic fuel injection control method for a multi-cylinder internal combustion engine in which multiple cylinder injectors are driven.

(従来技術) 内燃エンジンの電子式燃料噴射制御装置は燃料噴射装置
の開弁時間を、エンジン回転数と吸気管内の絶対圧とに
応じた基準値に、エンジンの作動状態を表す諸元、例え
ばエンジン回転数、吸気管内の絶対圧、エンジン水温、
スロットル弁開度、排気濃度(酸素濃度)等に応じた定
数および/または係数を電子的手段により加算および/
または乗算することにより決定して燃料噴射量を制御し
、もってエンジンに供給される混合気の空燃比を制御す
るものである。
(Prior Art) An electronic fuel injection control device for an internal combustion engine sets the valve opening time of the fuel injection device to a reference value depending on the engine speed and the absolute pressure in the intake pipe, and specifies specifications representing the operating state of the engine, such as Engine speed, absolute pressure in the intake pipe, engine water temperature,
Constants and/or coefficients depending on throttle valve opening, exhaust gas concentration (oxygen concentration), etc. are added and/or
Alternatively, the fuel injection amount is determined by multiplication and the fuel injection amount is controlled, thereby controlling the air-fuel ratio of the air-fuel mixture supplied to the engine.

一般に4気筒のエンジンはその構造上各気筒の排気系は
1つの排気管に接続されており、かかるエンジンにおい
ては前記排気濃度例えば排気ガス成分中の酸素濃度を検
出する02センサは前記排気管内所定箇所に1個配没す
ればよい。また、6気筒エンジンにおいても直列型のエ
ンジンのように各気筒の排気系が1つの排気管に接続さ
れる場合には前述と同様に02センサを1(Il配没す
れば十分である。
Generally, in a four-cylinder engine, the exhaust system of each cylinder is connected to one exhaust pipe due to its structure, and in such an engine, the 02 sensor that detects the exhaust concentration, for example, the oxygen concentration in the exhaust gas component, is located within the exhaust pipe. All you have to do is place one in each location. Further, even in a 6-cylinder engine, when the exhaust system of each cylinder is connected to one exhaust pipe like an in-line engine, it is sufficient to install 1 (Il) 02 sensor as described above.

しかしながら、近年大型車に採用されつつあるV型6気
筒エンジンは6個の気筒を3気筒づつ2組の気筒群に分
け、各組の気筒群毎に各別に排気管を設ける構造となっ
ており、かかるV型エンジンにおいては各排気管毎に0
2センサを配設する必要があり、更に、前記各排気管の
端末を集合して1つの排気管に接続した場合においても
、車輌への搭載上のレイアウト等により前記各排気管の
形状、経路長等が異なるために各排気管毎に02センサ
を配設することが必要であること、及び4気筒用エンジ
ンと6気筒用エンジンとではインジェクタの数が異なる
こと等により4気筒用エンジンの電子式燃料噴射制御装
置を6気筒用エンジンに適用することができない。この
ため、4気筒用、6気筒用の2種類の電子式燃料噴射制
御装置を生産することが必要となり、量産効果が低くな
り、これに伴い製造コストの低廉化を図ることが困難と
なるという問題がある。              
 ;(発明の目的) 本発明は上述の点に鑑みてなされたもので、4気筒エン
ジン用の電子式燃料噴射制御装置の4個のインジェクタ
駆動回路により6気筒エンジンの6個のインジェクタを
駆動するようにし、前記4気筒用エンジンの電子式燃料
噴射制御装置を6気筒エンジンに適用可能とすることを
目的とする6(発明の概要) 上記目的を達成するために本発明においては、排気系を
3気筒づつ2組の気筒群に分け各組に排気ガス成分濃度
センサを設けた6気筒内燃エンジンの各気筒のインジェ
クタを当該エンジンの運転状態を表すパラメータ及び前
記各排気ガス成分のんどセンサの出力に基づいて設定す
る時間信号により駆動するようにた多気筒内燃エンジン
の電子式燃料噴射制御方法において、第1の駆動回路に
より前記2組の気筒群のうちの一万気筒群の所定の2気
筒の各インジェクタを同時に駆動し、第2の駆動回路に
より前記2組の気筒群のうちの他方の気筒群の所定の2
気筒の各インジェクタを同時に駆動し、第3の駆動回路
により前記一方の気筒群の残余の気筒のインジェクタを
駆動し、第4の駆動回路により前記他方の駆動群の残余
の気筒のインジェクタを駆動し、前記第1及び第3の駆
動回路に供給する前記時間信号は前記一方の気筒計測に
設けた一方の排気ガス成分濃度センナの出力に基づいて
設定し、前記第2及び第4の駆動回路に供給擦る前記時
間信号は前記他方の気筒計測に設けた他方の排気ガス成
分濃度センサの出力に基づいて設定すると共に、前記エ
ンジンのクランク角度の120度毎に発生するパルス信
号に基ついて、前記第1及び第2の駆動回路を夫々が対
応する前記2気筒のいずれか一方の気筒の吸気行程に応
じた前記パルス信号に同期して駆動させ、前記第3及び
第4の駆動回路を夫々が対応ず気筒の吸気行程に応じた
前記パルス信号に同期して駆動させ、前記第3及び第4
の駆動回路を夫々が対応する気筒の吸気行程に応じた前
記パルス信号に同期して駆動させるようにし、4気筒エ
ンジン用の電子式燃料噴射制御装置を6気筒用エンジン
に適用し得るようにした多気筒内燃エンジンの電子式燃
料噴射制御方法を提供するものである。
However, in recent years, V-type 6-cylinder engines that have been adopted in large vehicles have a structure in which the six cylinders are divided into two cylinder groups of three cylinders each, and each cylinder group is provided with its own exhaust pipe. , in such a V-type engine, 0 for each exhaust pipe.
It is necessary to install two sensors, and furthermore, even if the terminals of each exhaust pipe are connected to one exhaust pipe, the shape and route of each exhaust pipe may vary depending on the layout of mounting on the vehicle, etc. Due to the difference in length, etc., it is necessary to install an 02 sensor for each exhaust pipe, and the number of injectors is different between a 4-cylinder engine and a 6-cylinder engine. The type fuel injection control device cannot be applied to a six-cylinder engine. For this reason, it is necessary to produce two types of electronic fuel injection control devices, one for 4 cylinders and one for 6 cylinders, which reduces the effectiveness of mass production and makes it difficult to reduce manufacturing costs. There's a problem.
(Objective of the Invention) The present invention has been made in view of the above points, and provides a method for driving six injectors of a six-cylinder engine by four injector drive circuits of an electronic fuel injection control device for a four-cylinder engine. It is an object of the present invention to make the electronic fuel injection control device for a 4-cylinder engine applicable to a 6-cylinder engine. The injector of each cylinder of a six-cylinder internal combustion engine is divided into two sets of three cylinders each and each set is equipped with an exhaust gas component concentration sensor. In an electronic fuel injection control method for a multi-cylinder internal combustion engine that is driven by a time signal set based on output, a first drive circuit controls a predetermined number of cylinders in a group of 10,000 cylinders among the two groups of cylinders. Each injector of the cylinder is driven simultaneously, and a predetermined two injectors of the other cylinder group of the two sets of cylinder groups are driven by the second drive circuit.
The injectors of the cylinders are simultaneously driven, a third drive circuit drives the injectors of the remaining cylinders in the one cylinder group, and a fourth drive circuit drives the injectors of the remaining cylinders of the other drive group. , the time signal supplied to the first and third drive circuits is set based on the output of one exhaust gas component concentration sensor provided for measuring the one cylinder, and the time signal is supplied to the second and fourth drive circuits. The time signal to be supplied is set based on the output of the other exhaust gas component concentration sensor provided in the other cylinder measurement, and the time signal is set based on the output of the other exhaust gas component concentration sensor provided in the other cylinder measurement, and the time signal is set based on the pulse signal generated every 120 degrees of the crank angle of the engine. The first and second drive circuits are driven in synchronization with the pulse signal corresponding to the intake stroke of one of the two cylinders, and the third and fourth drive circuits are respectively driven. The third and fourth cylinders are driven in synchronization with the pulse signal corresponding to the intake stroke of the first cylinder.
The drive circuit is driven in synchronization with the pulse signal corresponding to the intake stroke of the corresponding cylinder, so that an electronic fuel injection control device for a four-cylinder engine can be applied to a six-cylinder engine. An electronic fuel injection control method for a multi-cylinder internal combustion engine is provided.

(発明の実施例) 以下本発明の一実施例を添附図面に基づいて詳述する。(Example of the invention) An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明を通用するエンジンの概要を示し、エン
ジン1は措置型のV型6気筒エンジンで、前列(Fro
nt Bank)  I Fと後列(Rear Ban
k ) IRとの2組の気筒群に分けられ、後列IRの
気筒群は#1.#2.#3の3つの気筒により構成され
、前列IFの気筒群は#4.#5.#6の3つの気筒に
より構成される。後列IRの各気筒の排気系は排気管2
に、前列IFの各気筒の排気系は排気管3に接続され、
これらの2つの排気管2.3は一例において1つの排気
管4に集合される。各排気管2,3内の排出側所定箇所
には排気ガス成分濃度センサ5.6が配設されている。
FIG. 1 shows an outline of an engine to which the present invention can be applied. Engine 1 is a V-type 6-cylinder engine of the front row (Front row).
nt Bank) IF and rear row (Rear Bank)
k) It is divided into two cylinder groups with IR, and the rear row IR cylinder group is #1. #2. It is composed of three cylinders #3, and the front row IF cylinder group is #4. #5. It is composed of three cylinders #6. The exhaust system for each cylinder in the rear row IR is exhaust pipe 2.
The exhaust system of each cylinder of the front row IF is connected to the exhaust pipe 3,
These two exhaust pipes 2.3 are combined into one exhaust pipe 4 in one example. An exhaust gas component concentration sensor 5.6 is disposed at a predetermined location on the exhaust side of each exhaust pipe 2, 3.

これらの各センサ5,6は例えば排気ガス成分中の酸素
濃度を検出する02センサが使用される。
As each of these sensors 5 and 6, for example, an 02 sensor that detects the oxygen concentration in exhaust gas components is used.

このエンジン1の各気筒#l〜#6の吸入行程は例えば
第2図(blに示すように気筒#1−#4−#2→# 
5−# 3−# 6の順序で行われ、本発明を通用しな
いときの各気筒#1〜#6への燃料噴射は、第2図(a
lに示すようにクランク軸が2回転(720°)する1
エンジンサイクルの間の120毎に所定のクランク角度
位置で順次発生されるTDC信号Sal〜Sc6に同期
して同図(C1〜(hlに実線で示すように気筒# 1
−# 4−# 2−# 5−#3−#6の順序で行われ
るように構成されているものとする。
The intake stroke of each cylinder #l to #6 of this engine 1 is, for example, as shown in FIG.
5-#3-#6, and the fuel injection to each cylinder #1 to #6 when the present invention does not apply is shown in Fig. 2 (a).
The crankshaft rotates twice (720°) as shown in 1.
In synchronization with the TDC signals Sal~Sc6, which are generated sequentially at predetermined crank angle positions every 120 engine cycles, cylinder #1
It is assumed that the configuration is such that the operations are performed in the order of -#4-#2-#5-#3-#6.

この第2図において気筒#1.#5への各燃料噴射時期
は夫々気筒#2.#6の各吸入行程の開始前に位置して
いる。従って、気筒#2への燃料噴射時期を同図(el
に破線で示すように、T D C信号Sa1の発生時ま
で進めて気筒#1への燃料噴射時期と同一にしてもタイ
ミング的には充分間に合わせることが可能である。同様
に、気筒#6への燃料噴射時期を同図(hlに破線で示
すようにTDC堅 信号Sa5の発生時まで進めて気筒#5への燃料噴射時
期と同一にしてもタイミング的には充分間に合わせるこ
とが可能である。
In this FIG. 2, cylinder #1. Each fuel injection timing for #5 is for cylinder #2. #6 is located before the start of each inhalation stroke. Therefore, the timing of fuel injection to cylinder #2 is set in the same figure (el
As shown by the broken line in , even if the timing is advanced to the time when the TDC signal Sa1 is generated and the timing is set to be the same as the fuel injection timing for the cylinder #1, the timing can be set sufficiently in time. Similarly, it is sufficient in terms of timing to advance the fuel injection timing for cylinder #6 until the occurrence of the TDC solid signal Sa5, as shown by the broken line in the figure (hl), and make it the same as the fuel injection timing for cylinder #5. It is possible to make it in time.

即ち、1エンジンサイクルのクランク軸の前半の1回転
に寄与する2つの気筒#1.#2への各燃料噴射を気筒
#1のTDC信号Sa1に同期させて行い、後半の1回
転に寄与する2つの気筒#5゜#6への各燃料噴射を気
筒#5のTDC信号Sa5に同期させて行うことが可能
である。そこで、3つの気筒#1.#4.#2のうちの
後列の2つの気筒#1と#2の2つのインジェクタを1
つの駆動回路で同時に駆動し、前列の気筒#4を別の1
つの駆動回路で駆動し、3うの気筒#5.#3゜#6の
うちの前列の2つの気筒#5と#6の2つのインジェク
タを1つの駆動回路で同時に駆動し、後列の気筒#3を
別の1つの駆動回路で駆動することにより、4個の駆動
回路により6個の゛インジェクタを駆動することが可能
となる。
That is, the two cylinders #1, which contribute to one revolution in the first half of the crankshaft of one engine cycle. Each fuel injection to #2 is performed in synchronization with the TDC signal Sa1 of cylinder #1, and each fuel injection to the two cylinders #5 and #6, which contribute to one revolution in the second half, is performed in synchronization with the TDC signal Sa5 of cylinder #5. It is possible to do it synchronously. Therefore, three cylinders #1. #4. The two injectors of the rear row cylinders #1 and #2 of #2 are 1
Two drive circuits drive the cylinder #4 in the front row at the same time.
Driven by two drive circuits, three cylinders #5. By simultaneously driving the two injectors of the front row cylinders #5 and #6 of #3° #6 with one drive circuit, and driving the rear row cylinder #3 with another drive circuit, It is possible to drive six injectors with four drive circuits.

第3図は本発明を実行する場合の電子式燃料噴射制御装
置の一実施例を示すブロック図で、4気筒用エンジンの
電子制御ユニット(以下ECRという)10により駆動
される4個の駆動回路11〜14に前記エンジン1の6
つの気筒#1〜#6の各インジェクタのソレノイド21
〜26を接続する場合の接続態様を示す。各駆動回路1
1〜14は例えばトランジスタQ1〜Q4で構成され、
第1の駆動回路11のトランジスタQ1のコレクタと電
源接続線30との間には気筒#1.#2のインジェクタ
の各ソレノイド21.22が並列に接続され、第3の駆
動回路13のトランジスタQ3のコレクタと線30との
間には気筒#3のインジェクタのソレノイド23が、第
4の駆動回路14のトランジスタQ4のコレクタと線3
0との間には気筒#4のインジェクタのソレノイド24
が接続され、第2の駆動回路12のトランジスタQ2の
コレクタと線30との間には気筒#5.#6のインジェ
クタの各ツルイド25.26が並列に接続され、これら
の各トランジスタQ1〜Q4のエミッタは接地され、ベ
ースはECUIOに接続される。
FIG. 3 is a block diagram showing an embodiment of an electronic fuel injection control device for implementing the present invention, in which four drive circuits are driven by an electronic control unit (hereinafter referred to as ECR) 10 for a four-cylinder engine. 11 to 14, the engine 1-6
Solenoid 21 of each injector for cylinders #1 to #6
The connection mode when connecting 26 to 26 is shown. Each drive circuit 1
1 to 14 are composed of transistors Q1 to Q4, for example,
Between the collector of the transistor Q1 of the first drive circuit 11 and the power supply connection line 30, the cylinder #1. The solenoids 21 and 22 of the injector #2 are connected in parallel, and the solenoid 23 of the injector of cylinder #3 is connected between the collector of the transistor Q3 of the third drive circuit 13 and the line 30, and the solenoid 23 of the injector of cylinder #3 is connected in parallel. 14 collector of transistor Q4 and line 3
between cylinder #4 injector solenoid 24 and
is connected between the collector of the transistor Q2 of the second drive circuit 12 and the line 30, and the cylinder #5. Each of the truids 25 and 26 of the #6 injector is connected in parallel, and the emitter of each of these transistors Q1 to Q4 is grounded and the base is connected to ECUIO.

ECUIOはエンジン回転数センサ、絶対圧センサ、水
温センサ及びスロットル弁開度センサ(いずれも図示せ
ず)等から入力される信号Ne、PB。
ECUIO is a signal Ne, PB inputted from an engine speed sensor, absolute pressure sensor, water temperature sensor, throttle valve opening sensor (all not shown), etc.

Tw及びθth、o2センサ5,6から入力される信号
02,02 “等を波形成形し、電圧レベルを所定レベ
ルに修正し、アナログ信号値をデジタル信号値に変換す
る機能等ををする入力回路、該入力回路から出力される
前記各信号に基づいて燃料供給量(開弁時間)を演算す
る中央演算処理装置(以下CPUという)、該CPUで
実行される各種プログラム及び演算結果等を記憶する記
憶手段、及び前記CPUの演算結果に基づいて各駆動回
路11〜14に駆動信号を出力する出力回路(いずれも
図示せず)等から構成される。
An input circuit that performs waveform shaping of the signals 02, 02'' etc. input from Tw and θth, O2 sensors 5 and 6, corrects the voltage level to a predetermined level, and converts analog signal values into digital signal values. , a central processing unit (hereinafter referred to as CPU) that calculates the fuel supply amount (valve opening time) based on the respective signals output from the input circuit, and stores various programs executed by the CPU, calculation results, etc. It is comprised of a storage means, an output circuit (none of which is shown), etc. that outputs a drive signal to each of the drive circuits 11 to 14 based on the calculation result of the CPU.

ECUloはエンジン1が基本(通常)モード(例えば
300Orpm以下)にあるときと、高速モード(30
00rpm以上)にあるときとでは燃料噴射時間(燃料
供給量)TouTの演算の仕方を異にする。
ECUlo is set when engine 1 is in basic (normal) mode (for example, 300 rpm or less) and when engine 1 is in high speed mode (30 rpm or less).
00 rpm or more), the calculation method of the fuel injection time (fuel supply amount) Tout is different.

エンジン1が基本モードにあるときには、ECUIOは
第4図(a)に示すように後列IRの各気筒#1.#2
.#3の各TDC信号Sad、Sc2゜5b3に同期し
て夫々エンジンの運転状態を表す前記パラメータNe、
Paに基づいて基本燃料供給量を演算して対応する噴射
時間(開弁時間)Tiを算出すると共に、02センサ5
からの入力信号02により補正係数Ko2を設定し、こ
れらの各種TiとKo2とにより次式(1)に従って各
気筒#1.#2.#3への燃料噴射時間Tourを演算
する。
When the engine 1 is in the basic mode, the ECUIO controls each cylinder #1 of the rear row IR as shown in FIG. 4(a). #2
.. The above-mentioned parameter Ne, which represents the operating state of the engine, is synchronized with each TDC signal Sad, Sc2°5b3 of #3.
The basic fuel supply amount is calculated based on Pa and the corresponding injection time (valve opening time) Ti is calculated, and the 02 sensor 5
A correction coefficient Ko2 is set based on the input signal 02 from the input signal 02, and each cylinder #1. #2. Calculate the fuel injection time Tour to #3.

Touv=TixKo2 XKI  +に2− (1)
ここに、値に+ 、に2は前記エンジンパラメータTw
、θthその他のエタンジン運転状態を表すパラメータ
値によって設定される補正係数または補正変数であって
、始動特性、排気ガス特性、加速特性等が最適となるよ
うに設定される。
Touv=TixKo2 XKI +2- (1)
Here, the value + and 2 are the engine parameters Tw
, θth and other parameter values representing the etangine operating state, and are set to optimize starting characteristics, exhaust gas characteristics, acceleration characteristics, etc.

同様にECUIOは第4図(alに示すように前列IF
の各気筒#4.#5.#6の各TDC信号Sb4゜Sa
5.Sc6に同期して夫々エンジンの運転状態を表す前
記パラメータNe、Psに基づいて基本燃料供給量を演
算して対応する噴射時間(開弁時間)Tiを演算すると
共に、02センサ6から    )の入力信号02 “
により補正係数K O2+を設定し、これらの各種Ti
とKO2°とにより次式(2)に従って各気筒#4.#
5.#6への燃料噴射時間T o u T’を演算する
Similarly, the ECUIO is located at the front row IF as shown in Figure 4 (al).
Each cylinder #4. #5. Each TDC signal Sb4°Sa of #6
5. In synchronization with Sc6, the basic fuel supply amount is calculated based on the parameters Ne and Ps representing the operating state of the engine, and the corresponding injection time (valve opening time) Ti is calculated, and the input from the 02 sensor 6) Signal 02 “
The correction coefficient K O2+ is set by
and KO2°, each cylinder #4. #
5. Calculate the fuel injection time T o u T' for #6.

TouT’=TixKo2  ’XK+ +に2− (
2)即ち、ECUIOは各気筒#1〜#6の各TDC信
号Sal 〜5C6(第4図(a))に同期して夫々曲
成(1)又は(2)の演算を実行する。そして、当該E
CUIOは気筒#1のTDC信号Sa1に同期して曲成
(1)で算出した噴射時間TouTに対応する駆動信号
を第1駆動回路11に、気筒#4のTDC信号Stzに
同期して曲成(2)で算出した噴射時間Tour’に対
応する駆動信号を第4駆動回路14に、気筒#5のTD
C信号Sa5に同期して曲成(2)で算出した噴射時間
’[’ou7’に対応する駆動信号を第2駆動回路工2
に、気筒#3のTDC信号5bつに同期して曲成(1)
で算出した噴射時間TouTに対応する駆動信号を第3
駆動回路13に出力する。
TouT'=TixKo2 'XK+ +2- (
2) That is, the ECUIO executes the computation of curve formation (1) or (2), respectively, in synchronization with the TDC signals Sal to 5C6 for each cylinder #1 to #6 (FIG. 4(a)). And the E
The CUIO generates a drive signal corresponding to the injection time ToutT calculated in curve formation (1) in synchronization with the TDC signal Sa1 of cylinder #1 to the first drive circuit 11, and generates a drive signal in synchronization with the TDC signal Stz of cylinder #4. The drive signal corresponding to the injection time Tour' calculated in (2) is sent to the fourth drive circuit 14 at the TD of cylinder #5.
In synchronization with the C signal Sa5, the drive signal corresponding to the injection time '['ou7' calculated in curve formation (2)] is sent to the second drive circuit engineer 2.
Then, the curve is created in synchronization with the TDC signal 5b of cylinder #3 (1)
The drive signal corresponding to the injection time ToutT calculated in the third
Output to the drive circuit 13.

このように基本モードにあるときには、ECUloは各
TDC信号Sa1〜SC6(第4図(a))に同期して
夫々曲成(1)又は(2)の演算を行うが、気筒#2及
び#6の各TDC信号Sc2及びSc6では駆動回路1
1及び12には駆動信号を出力しない。その理由は、既
に気筒#1及び#5の各TDC信号Sa1及びSb3に
同期してこれらの駆動回路11及び12を駆動している
からである。
In this way, when in the basic mode, ECUlo performs the calculation of curve formation (1) or (2), respectively, in synchronization with each TDC signal Sa1 to SC6 (Fig. 4 (a)), but the calculations for cylinders #2 and # For each TDC signal Sc2 and Sc6 of 6, the drive circuit 1
No drive signal is output to 1 and 12. The reason for this is that these drive circuits 11 and 12 have already been driven in synchronization with the TDC signals Sa1 and Sb3 for cylinders #1 and #5.

エンジン1が高速モードにあるときには、E、CUIO
は気筒#lのTDC信号5a1に同期して前記各パラメ
ータを読み込み且つ曲成(1)に従って噴射時間Tou
rを算出する。同様に気筒#5のTDC信号Sa5に同
期して前記各パサメータを読み込み且つ曲成(2)に従
って噴射時間T、our’を算出する。また、気筒#4
のTDC信号Stzが発生したタイミングにおいては、
既に気筒#1のTDC信号Sa1に同期して算出されて
いる基本燃料噴射時間Tt及びKl 、に2をそのまま
使用し、補正係数KO2“のみの演算即ち、曲成(2)
の演算のみを実行し演算の簡略化を図る。同様に、気筒
#3のTDC信号sb3が発生したタイミングにおいて
は、既に気筒#5のTDC信号Sa5に同期して算出さ
れている基本燃料噴射時間Ti及びに+ 、に2をその
まま使用し、補正係数Ko2のみの演算即ち、曲成(1
)の演算のみを実行して演算の簡略化を図る。この結果
、ECUIOの演算時間が節約され、バックグラウンド
処理時間を多くとることができる。
When engine 1 is in high speed mode, E, CUIO
reads each of the above parameters in synchronization with the TDC signal 5a1 of cylinder #l, and sets the injection time Tou according to the curve (1).
Calculate r. Similarly, each parameter is read in synchronization with the TDC signal Sa5 of cylinder #5, and the injection time T, our' is calculated according to curve formation (2). Also, cylinder #4
At the timing when the TDC signal Stz of
2 is used as is for the basic fuel injection time Tt and Kl, which have already been calculated in synchronization with the TDC signal Sa1 of cylinder #1, and only the correction coefficient KO2 is calculated, that is, curve formation (2).
The calculations are simplified by executing only the calculations of . Similarly, at the timing when the TDC signal sb3 of cylinder #3 is generated, the basic fuel injection time Ti, which has already been calculated in synchronization with the TDC signal Sa5 of cylinder #5, and 2 are used as they are and corrected. Calculation of only the coefficient Ko2, that is, curve formation (1
) to simplify the calculation. As a result, ECUIO calculation time is saved and background processing time can be increased.

各駆動回路11〜14を駆動するタイミングは前述した
基本モードの時と同様であり、その説明は省略する。
The timing for driving each of the drive circuits 11 to 14 is the same as in the basic mode described above, and the explanation thereof will be omitted.

以下第4図のタイムチャートを参照しつつ作動を説明す
る。
The operation will be explained below with reference to the time chart shown in FIG.

ECUIOは気筒#1のTDC信号Sa+  (第4図
(a))に同期して曲成(1)の演算を実行して噴射時
間TouTを算出し、対応する駆動信号を第1駆動回路
11に供給する。駆動回路11は該駆動信号が入力され
ている時間Tou7の開作動してソレノイド21.22
を同時に付勢し、気筒#1.#2の各インジェクタを同
時に開弁してこれらの各気筒#1.#2の各吸気マニホ
ールドに燃料を噴射供給するく第4図(C1,(el)
。次Gこ、ECUIOは気筒#4のTDC信号Stzに
同期して曲成(2)の演算を実行して噴射時間”[’o
uT“を算出し対応する駆動信号を第4駆動回路14に
供給する。駆動回路14は該駆動信号が入力されている
時間TouT’の間ソレノイド24を付勢し、気筒#4
のインジェクタを開弁し当該気筒#4の吸気マニホール
ドに燃料を噴射供給する(第4図(d))。次の気筒#
2のTDC信号Sc2では、ECUIOは曲成(1)の
演算を実行するが既に当該気筒#2には気筒#1のTD
C信号Sa+のタイミングで燃料噴射をしているので駆
動信号を出力しない。
The ECUIO calculates the injection time Tout by executing the calculation of curve formation (1) in synchronization with the TDC signal Sa+ of cylinder #1 (FIG. 4(a)), and sends the corresponding drive signal to the first drive circuit 11. supply The drive circuit 11 is opened during the time Tou7 when the drive signal is input, and the solenoids 21 and 22 are opened.
are energized at the same time, cylinder #1. Each injector of #2 is opened at the same time, and each of these cylinders #1. Figure 4 (C1, (el)
. Next, the ECUIO executes the calculation of curve formation (2) in synchronization with the TDC signal Stz of cylinder #4 and determines the injection time.
uT" and supplies a corresponding drive signal to the fourth drive circuit 14. The drive circuit 14 energizes the solenoid 24 during the time ToutT' during which the drive signal is input, and
The injector is opened and fuel is injected and supplied to the intake manifold of the cylinder #4 (FIG. 4(d)). Next cylinder #
2 TDC signal Sc2, the ECUIO executes the calculation of curve formation (1), but the TD of cylinder #1 has already been applied to the cylinder #2.
Since fuel is injected at the timing of the C signal Sa+, no drive signal is output.

同様にECUIOは気筒#5のTDC信号5as(第4
図(a))に同期して曲成(2)の演算を実行して噴射
時間Tour’算出し、対応する駆動信号を第2駆動回
路12に供給する。駆動回路12は該駆動信号が入力さ
れている時間TouT“の開作動してソレノイド25.
26を同時に付勢し、気筒#5.#6の各インジーフタ
を同時Gこ開弁し      ;てこれらの各気筒#5
.#6の各吸気マニホールドに燃料を噴射供給する(第
4図(f)、 (hl)。次にECUIOは気筒#3の
TDC信号sb3に同期して曲成(1)の演算を実行し
て噴射時間To u7を算出し対応する駆動信号を第3
駆動回路13に供給する。駆動回路13は該駆動信号が
入力されている時間TouTの間ソレノイド23を付勢
し、気筒#3のインジェクタを開弁し当該気筒#3の吸
気マニホールドに燃料を噴射供給する(第4図(g))
。次の気筒#6のTDC信号Sc6では、ECUIOは
曲成(2)の演算を実行するが既に当該気筒#6には気
筒#5のTDC信号Sa5のタイミングで燃料噴射をし
ているので駆動信号を出力しない。
Similarly, the ECUIO outputs the TDC signal 5as (4th
The calculation of curve formation (2) is executed in synchronization with FIG. The drive circuit 12 opens the solenoid 25 .
26 at the same time, cylinder #5. Simultaneously open the intake lids of #6; then open each of these cylinders #5.
.. Fuel is injected and supplied to each intake manifold of #6 (Fig. 4 (f), (hl). Next, the ECUIO executes the calculation of curve formation (1) in synchronization with the TDC signal sb3 of cylinder #3. Calculate the injection time To u7 and apply the corresponding drive signal to the third
It is supplied to the drive circuit 13. The drive circuit 13 energizes the solenoid 23 during the time Tout during which the drive signal is input, opens the injector of the cylinder #3, and injects fuel to the intake manifold of the cylinder #3 (see FIG. 4). g))
. At the next TDC signal Sc6 of cylinder #6, the ECUIO executes the calculation of curve formation (2), but since fuel has already been injected into the cylinder #6 at the timing of the TDC signal Sa5 of cylinder #5, the drive signal is is not output.

斯くして、4気筒エンジン用の電子式燃料噴射制御装置
の4個のインジェクタ駆動回路11〜14により6気筒
エンジン1の6個のインジェクタを駆動することができ
る。
In this way, the six injectors of the six-cylinder engine 1 can be driven by the four injector drive circuits 11 to 14 of the electronic fuel injection control device for the four-cylinder engine.

(発明の効果) 以上説明したように本発明によれば、排気系を3気筒づ
つ2組の気筒群に分け各組に排気ガス成分濃度センサを
設けた6気筒内燃エンジンの各気筒のインジェクタを当
該エンジンの運転状態を表すパラメータ及び前記各排気
ガス成分濃度センサの出力に基づいて設定する時間信号
により駆動するようにした多気筒内燃エンジンの電子式
燃料噴射制御方法において、第1の□駆動回路により前
記2組の気筒群のうちの一方の気筒群の所定の2気筒の
各インジェクタを同時に駆動し、第2の駆動回路により
前記組の気筒群のうちの他方の気筒群の所定の2気筒の
各インジェクタを同時に駆動し、第3の駆動回路により
前記一方の気筒群の残余の気筒の身ンジエクタを駆動し
、第4の駆動回路により前記他方の気筒群の残余の気筒
のインジェクタを駆動し、前記第1及び第3の駆動回路
に供給する前記時間信号は前記一方の気筒計測に設けた
一方の排気ガス成分濃度センサの出力に基づいて設定し
、前記第2及び第4の駆動回路に供給する前記時間信号
は前記他方の気筒群に設けた他方の排気ガス成分濃度セ
ンサの出力に基づいて設定すると共に、前記エンジンの
クランク角度の120度毎に発生するパルス信号に基づ
いて、前記第1及び第2の駆動路を夫々対応する前記2
気筒のいずれか一方の気筒の吸気行程に応じた前記パル
ス信号に同期して駆動させ、前記第3及び第4の駆動回
路を夫々対応する気筒の吸気行程に応じた前記パルス信
号に同期して駆動させるようにして4個の駆動回路によ
り6個のインジェクタを駆動するようにしたので、4気
筒エンジン用の電子式燃料噴射制御装置を6気筒エンジ
ンに適用することが可能となり、この結果前記電子式燃
料噴射制御装置の量産効果が更に向上し、コストダウン
を図ることができるという効果を奏する。
(Effects of the Invention) As explained above, according to the present invention, the injector of each cylinder of a six-cylinder internal combustion engine is divided into two groups of three cylinders each, and each group is provided with an exhaust gas component concentration sensor. In an electronic fuel injection control method for a multi-cylinder internal combustion engine, the electronic fuel injection control method for a multi-cylinder internal combustion engine is driven by a time signal set based on a parameter representing the operating state of the engine and the output of each of the exhaust gas component concentration sensors. The injectors of two predetermined cylinders in one of the two cylinder groups are simultaneously driven, and the second drive circuit simultaneously drives the injectors of two predetermined cylinders in the other cylinder group of the two cylinder groups. simultaneously driving the injectors of the remaining cylinders of the one cylinder group, a third drive circuit driving the injectors of the remaining cylinders of the one cylinder group, and a fourth drive circuit driving the injectors of the remaining cylinders of the other cylinder group. , the time signal supplied to the first and third drive circuits is set based on the output of one exhaust gas component concentration sensor provided for measuring the one cylinder, and the time signal is supplied to the second and fourth drive circuits. The time signal to be supplied is set based on the output of the other exhaust gas component concentration sensor provided in the other cylinder group, and the time signal is set based on the output of the other exhaust gas component concentration sensor provided in the other cylinder group. 2 corresponding to the first and second drive paths, respectively.
Drive the third and fourth drive circuits in synchronization with the pulse signal corresponding to the intake stroke of one of the cylinders, and drive the third and fourth drive circuits in synchronization with the pulse signal corresponding to the intake stroke of the corresponding cylinder, respectively. Since the six injectors are driven by the four drive circuits, it is possible to apply the electronic fuel injection control device for the four-cylinder engine to the six-cylinder engine. The mass production effect of the type fuel injection control device is further improved, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する■型6気筒エンジンの概要図
、第2図は第1図に示すエンジンの作動順序を示すタイ
ムチャート、第3図は本発明を実行する場合の電子式燃
料噴射制御装置のブロック図、第4図は本発明に係る制
御方法による第1図のエンジン−の作動の一実施例を示
すタイムチャートである。 1・・・エンジン、#1〜#6・・・気W+、2. 3
. 4・・・排気管、5,6・・・02センサ、10・
・・ECU、11〜14・・・駆動回路、21〜26・
・・ソレノイド。 出願人  本田技研工業株式会社 代理人  弁理士 渡 部 敏 音 間 長門侃二 で ′;A1目 JA2図 系4閃
Fig. 1 is a schematic diagram of a type 6-cylinder engine to which the present invention is applied, Fig. 2 is a time chart showing the operating sequence of the engine shown in Fig. 1, and Fig. 3 is an electronic fuel when carrying out the present invention. FIG. 4 is a block diagram of the injection control device and is a time chart showing an example of the operation of the engine of FIG. 1 according to the control method according to the present invention. 1...Engine, #1 to #6...Ki W+, 2. 3
.. 4...Exhaust pipe, 5,6...02 sensor, 10.
...ECU, 11-14...Drive circuit, 21-26.
··solenoid. Applicant Honda Motor Co., Ltd. Agent Patent Attorney Satoshi Watanabe Otoma Kanji Nagato'; A1 Eye JA2 Diagram 4 Flash

Claims (1)

【特許請求の範囲】[Claims] 1、排気系を3気筒づつ2組の気筒群に分け各組に排気
ガス成分濃度センサを設けた6気筒内燃エンジンの各気
筒のインジェクタを当該エンジンの運転状態を表すパラ
メータ及び前記各排気ガス成分濃度センサの出力に基づ
いて設定する時間信号により駆動するようにした多気筒
内燃エンジンの電子式燃料噴射制御方法において、第1
の駆動回路により前記2組の気筒群のうちの一方の気筒
群の所定の2気筒の各インジェクタを同時に駆動し、第
2の駆動回路により前記2組の気筒群のうちの他方の気
筒群の所定の2気筒の各インジェクタを同時に駆動し、
第3の駆動回路により前記一方の気筒群の残余の気筒の
インジェクタを駆動し、第4の駆動回路により前記他方
の気筒群の残余の気筒のインジェクタを駆動し、前記第
1及び第3の駆動回路に供給する前記時間信号は前記一
方の気筒群側に設けた一方の排気ガス成分濃度センサの
出力に基づいて設定し、前記第2及び第4の駆動回路に
供給する前記時間信号は前記他方の気筒群側に設けた他
方の排気ガス成分濃度センサの出力に基づいて設定する
と共に、前記エンジンのクランク角度の120度毎に発
生するパルス信号に基づいて、前記第1及び第2の駆動
回路を夫々が対応する前記2気筒のいずれか一方の気筒
の吸気行程に応じた前記パルス信号に同期して駆動させ
、前記第3及び第4の駆動回路を夫々が対応する気筒の
吸気行程に応じた前記パルス信号に同期して駆動させる
ようにしたことを特徴とする多気筒内燃エンジンの電子
式燃料噴射制御方法。
1. The injector of each cylinder of a 6-cylinder internal combustion engine is divided into two groups of cylinders each having three cylinders each and an exhaust gas component concentration sensor is installed in each group. In an electronic fuel injection control method for a multi-cylinder internal combustion engine, which is driven by a time signal set based on the output of a concentration sensor,
The drive circuit simultaneously drives each injector of two predetermined cylinders in one of the two cylinder groups, and the second drive circuit simultaneously drives the injectors of the other cylinder group of the two cylinder groups. Simultaneously drive each injector of two predetermined cylinders,
A third drive circuit drives the injectors of the remaining cylinders of the one cylinder group, a fourth drive circuit drives the injectors of the remaining cylinders of the other cylinder group, and the first and third drive circuits drive the injectors of the remaining cylinders of the other cylinder group. The time signal supplied to the circuit is set based on the output of one exhaust gas component concentration sensor provided on the one cylinder group side, and the time signal supplied to the second and fourth drive circuits is set based on the output of one exhaust gas component concentration sensor provided on the side of the one cylinder group. The first and second drive circuits are set based on the output of the other exhaust gas component concentration sensor provided on the side of the cylinder group, and based on a pulse signal generated every 120 degrees of the crank angle of the engine. is driven in synchronization with the pulse signal corresponding to the intake stroke of either one of the two cylinders to which it corresponds, and the third and fourth drive circuits are driven in accordance with the intake stroke of the cylinder to which they respectively correspond. An electronic fuel injection control method for a multi-cylinder internal combustion engine, characterized in that the electronic fuel injection is driven in synchronization with the pulse signal.
JP24619984A 1984-11-22 1984-11-22 Control method of electronic fuel injection in multi-cylinder internal-combustion engine Pending JPS61126353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24619984A JPS61126353A (en) 1984-11-22 1984-11-22 Control method of electronic fuel injection in multi-cylinder internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24619984A JPS61126353A (en) 1984-11-22 1984-11-22 Control method of electronic fuel injection in multi-cylinder internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61126353A true JPS61126353A (en) 1986-06-13

Family

ID=17144980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24619984A Pending JPS61126353A (en) 1984-11-22 1984-11-22 Control method of electronic fuel injection in multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61126353A (en)

Similar Documents

Publication Publication Date Title
US7448360B2 (en) Controller of internal combustion engine
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS60166735A (en) Fuel feed controlling method of multicylinder internal-combustion engine
US5983868A (en) Fuel injection controller apparatus in starting an internal combustion engine
ITMI20002238A1 (en) PROCEDURE AND DEVICE TO EQUATE AT LEAST TWO BANKS OF CYLINDERS OF AN ENDOTHERMAL ENGINE
JPS61126353A (en) Control method of electronic fuel injection in multi-cylinder internal-combustion engine
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JPS61178538A (en) Electronic fuel injection controlling method for multicylinder internal-combustion engine
JPS61126344A (en) Electronic fuel injection control method for multi-cylinder internal-combustion engine
JPS59108868A (en) Electronic control type fuel injection method for internal-combustion engine
JPH0674768B2 (en) Fuel injection control method for internal combustion engine
JPH11287148A (en) Fuel injector for internal combustion engine
JPH01211648A (en) Fuel injection controller of internal combustion engine
JPS6065249A (en) Fuel injection method of internal-combustion engine
JPS61258950A (en) Fuel injection controller for multi-cylinder internal-combustion engine
JPS61232343A (en) Electronic control fuel injection device
JPH0336142B2 (en)
JPS6098144A (en) Electronic fuel injector for multi-cylinder internal- combustion engine
JPS6043145A (en) Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine
JPH02536B2 (en)
JPS60116841A (en) Controller of fuel injection for multicylinder internal-combustion engine
JPH0799108B2 (en) Fuel injection control method for internal combustion engine
JPS61118544A (en) Fuel injection control for internal-combustion engine
JPS61138849A (en) Feed back controlling method for fuel supply of multi-cylinder internal-combustion engine