JPS61126158A - Acetylene polymer having improved oxidation stability and production thereof - Google Patents

Acetylene polymer having improved oxidation stability and production thereof

Info

Publication number
JPS61126158A
JPS61126158A JP24746984A JP24746984A JPS61126158A JP S61126158 A JPS61126158 A JP S61126158A JP 24746984 A JP24746984 A JP 24746984A JP 24746984 A JP24746984 A JP 24746984A JP S61126158 A JPS61126158 A JP S61126158A
Authority
JP
Japan
Prior art keywords
acetylene polymer
fluorine
acetylene
polymer
fluorine gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24746984A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Shiro Osada
長田 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP24746984A priority Critical patent/JPS61126158A/en
Publication of JPS61126158A publication Critical patent/JPS61126158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve oxidation stability without detriment to characteristics inherent in acetylene polymer, by treating an acetylene polymer with fluorine gas at low concn. CONSTITUTION:An acetylene polymer is treated in a fluorine gas atmosphere under fluorine partial pressure of 20mmHg (pref. the remainder being helium gas). By this treatment, 0.1-10mol% of fluorine per mol of CH repeating unit of acetylene polymer is introduced into the acetylene polymer. Pref. this treatment in the fluorine gas atmosphere is carried out at 30 deg.C or below. The treating time is pref. 10min to 20hr from the viewpoint of workability. The resulting acetylene polymer contg. a small quantity of fluorine may be used as such. Alternatively, the polymer is doped with a donor or an acceptor to bring its electrical conductivity into a desired value, and processed to use it as a material for electrical and electronic elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化安定性の改良されたアセチレンq′ 重合体およびその製法間する。[Detailed description of the invention] [Industrial application field] The present invention provides acetylene q' with improved oxidative stability. Polymers and their manufacturing methods.

〔従来の技術〕[Conventional technology]

アセチレン重合体はその電気伝導度が半導体領域1cあ
ることによシ、電気・電子素子材料として有用である。
Acetylene polymers are useful as electrical/electronic device materials because of their electrical conductivity in the semiconductor region 1c.

特に該アセチレン重合体は工2、(A、Br2、BFs
、Bc13、BB r3、SOs、等の電子受容性化合
物(アクセプター)またはNa%に、Li。
In particular, the acetylene polymer is
, Bc13, BB r3, SOs, etc. or to Na%, Li.

アンモニア等の電子供与性化合物(ドナー)で処理する
ことによシミ気侭導度が広い範囲にわたって自白にコン
トロールでき電導性材料として種々の用途が嘱望されて
いる。
By treating with an electron-donating compound (donor) such as ammonia, the stain conductivity can be easily controlled over a wide range, and it is expected to have various uses as an electrically conductive material.

しかしながら、このように有用なアセチレン重合体は酸
素によって容易に酸化劣化を受けるという欠点を有して
おり、その取シ扱いについて多大の労力を必要とするの
みならず、各櫨材料としての耐久性に欠けるという欠点
があった。
However, such useful acetylene polymers have the disadvantage of being easily oxidized and deteriorated by oxygen, and not only do they require a great deal of effort to handle, but their durability as a material is limited. It had the disadvantage of lacking in.

従来、アセチレン重合体の酸化安定性を改良する試みも
しばしば行なわれている。例えばアセチレン重合体にフ
ッ素イオン(F”)t−イオン打ち込みすることによっ
てアセチレン重合体の酸化安定性を向上させる方法がJ
、Phys、Chea】982、旦、3364−336
7に開示されている。
Heretofore, attempts have often been made to improve the oxidative stability of acetylene polymers. For example, there is a method to improve the oxidation stability of acetylene polymers by implanting fluorine ions (F”) t-ions into the polymers.
, Phys, Chea] 982, Dan, 3364-336
7.

またアセチレン重合体を酸化防止作用を有する面をコー
ティングすることにより該アセチレン重合体の酸化安定
性を向上させる方法が特開昭58−42625号により
提案されている。
Furthermore, JP-A-58-42625 proposes a method of improving the oxidative stability of an acetylene polymer by coating the surface thereof with an antioxidant effect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに前者のフッ素イオン打ち込みによる方法で処理
されたアセチレン重合体はF+イオン導入部がフィルム
表層部のみに限られしかも非平衡的な反応であるため、
全体として酸化安定性の効果は十分ではない。また、一
般的に、イオン注入によって多量の照射損傷が発生する
事が知られており、(応用物理、Vo153.700(
1984))、イオン注入による表面改質技術は高エネ
ルギービーム特有の問題を有する。又該方法は極めて高
価な装置を必要とするため経済は次の理由で好ましい方
法ではない。本方法で使用されている嚢中参響呻誘導体
はトルエン等体でコーティングされたアセチレン重合体
は、アセチレン重合体の実用上の用途の1つである導体
によって、ドーパントとアセチレン重合体の接触が妨げ
られるためである。
However, in the case of acetylene polymers treated by the former method of implanting fluorine ions, the F+ ion introduced region is limited to only the surface layer of the film, and the reaction is non-equilibrium.
Overall, the effect of oxidation stability is not sufficient. In addition, it is generally known that ion implantation causes a large amount of radiation damage.
(1984)), surface modification techniques by ion implantation have problems specific to high-energy beams. Moreover, this method requires very expensive equipment, and therefore is not economically preferred for the following reasons. The acetylene polymer coated with toluene or the like is used in this method, and the dopant and the acetylene polymer can be brought into contact with each other by a conductor, which is one of the practical uses of the acetylene polymer. This is because they are hindered.

而して本発明の目的はアセチレン重合体の本来有する特
性を低下させないで一層酸化安定性の改良されたアセチ
レン重合体を提供することである。本発明の他の目的は
該酸化安定性の改良されたアセチレン重合体の効率的な
製法を提供することである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an acetylene polymer which has further improved oxidation stability without degrading the inherent properties of the acetylene polymer. Another object of the present invention is to provide an efficient process for preparing the acetylene polymers with improved oxidative stability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の目的に鑑みて鋭意研究したところ、
極めて低濃度のフッ素ガスで処理したアセチレン重合体
は著しく酸化安定性が向上することを認め本発明に至っ
た。
The present inventors conducted extensive research in view of the above objectives, and found that
The present invention was achieved by recognizing that acetylene polymers treated with extremely low concentration of fluorine gas have significantly improved oxidation stability.

即ち本発明はフッ素ガス処理に基づくフッ素の含有量が
アセチレン重合体のCH繰り返し単位14−/L/当シ
0.141v%以上、10−f:/I/%以下のアセチ
レン重合体およびフッ素ガス分圧20+mHg以下のフ
ッ素ガス雰囲気下にアセチレン重合体を放置し、アセチ
レン重合体のCH繰り返し単位1モル当、90.1モA
/96以上、10七p%以下のフッ素をアセチレン重合
体に含有せしめることを特徴とする酸化安定性の改良さ
れたアセチレン重合体の製法である。
That is, the present invention provides an acetylene polymer and a fluorine gas in which the fluorine content based on fluorine gas treatment is 0.141v% or more and 10-f:/I/% or less of CH repeating units of the acetylene polymer. An acetylene polymer is left in a fluorine gas atmosphere with a partial pressure of 20+mHg or less, and 90.1 moA per mole of CH repeating unit of the acetylene polymer.
This is a method for producing an acetylene polymer with improved oxidation stability, characterized by containing fluorine in the acetylene polymer in an amount of 96 to 107 p%.

本発明において用いられるアセチレン重合体とはヨウ素
でドーピング処理を行った場合に電気伝導度が二指以上
上昇する程度に共役系が延びている重合体であシ、従来
公知の方法によ)得られたアセチレン重合体がそのまま
の形で、或は各種ドーピング等の前処理や所望の形態へ
の二次加工して用いられる。また形状も粉末状、繊維状
、フィルム状、ゲル状、塊状等いずれの形状のものも使
用することができる。
The acetylene polymer used in the present invention is a polymer in which the conjugated system extends to such an extent that the electrical conductivity increases by two or more fingers when doped with iodine. The obtained acetylene polymer is used as it is, or after pretreatment such as various doping or secondary processing into a desired form. Furthermore, any shape such as powder, fiber, film, gel, or lump can be used.

本発明においてアセチレン重合体の処理剤がフッ素ガス
(F2)であることは重要である。イオン打込みによる
処理では十分な酸化安定化効果は得られない、 本発明においてアセチレン重合体中に含有されるフッ素
ガス処理に基づくフッ素の含有量はアセチレン重合体の
CH繰り返し単位1モル当り0.1〜10モル%の範囲
と比較的少量に保持することは重要である。該フッ素含
有量が該範囲内にない場合にはいずれも十分な酸化安定
化効果が得られない。特忙該フッ素含有量が10モル%
を越えて大きくなると急激に到達電気伝導度も低下し、
アセチレン重合体の本来有する特性が低下する。一般に
好ましい酸化安定化効果が得られるフッ素の含有量は1
〜6七〜%である。
In the present invention, it is important that the treating agent for the acetylene polymer is fluorine gas (F2). In the present invention, the fluorine content in the acetylene polymer based on the fluorine gas treatment is 0.1 per mole of CH repeating unit of the acetylene polymer. It is important to maintain a relatively small amount in the range of ~10 mol%. If the fluorine content is not within this range, a sufficient oxidation stabilizing effect cannot be obtained. The fluorine content is 10 mol%
When it becomes larger than
The inherent properties of the acetylene polymer are degraded. In general, the fluorine content that provides a favorable oxidation stabilizing effect is 1
~67~%.

本発明において、フッ素処理に基づくフッ素をアセチレ
ン重合体に含有せしめる方法としてはアセチレン重合体
をフッ素ガス雰囲気下に放置する方法がある1、しかる
に一般に行なわれているようにフッ素ガス分圧40rE
InHg以上のフツ素ガス雰囲気下にアセチレン重合体
を放置すると極めて短時間でも多量(アセチレン重合体
のCH繰返し単位1七μ当り20モル%以上)のフッ素
が含有されてしまう。本発明で規定するように低含有量
にフッ素、をアセチレン重合体に含有せしめるKは、フ
ッ素ガスの極めて低濃度雰囲気下にアセチレン重合体を
放置するのがよい。
In the present invention, as a method for incorporating fluorine into the acetylene polymer based on fluorine treatment, there is a method of leaving the acetylene polymer in a fluorine gas atmosphere.
If an acetylene polymer is left in a fluorine gas atmosphere of InHg or higher, it will contain a large amount of fluorine (20 mol % or more per 17 μm of CH repeating unit of the acetylene polymer) even for a very short time. In order to make the acetylene polymer contain a low amount of fluorine as specified in the present invention, it is preferable to leave the acetylene polymer in an atmosphere of extremely low concentration of fluorine gas.

本発明者らの研究によればアセチレン重合体の酸化安定
性はフッ素ガスの処理条件によっても影響を受けること
が認められた2即ち、より温和な条件でフッ素ガスでア
セチレン重合体を処理すると一段と優れた酸化安定性が
得られる。
According to the research conducted by the present inventors, it was found that the oxidative stability of acetylene polymers was also affected by the treatment conditions of fluorine gas.2 In other words, treating acetylene polymers with fluorine gas under milder conditions further improved Excellent oxidation stability is obtained.

一般にフッ素ガス分圧を20mHg以下好ましくは0.
1〜10mHg、特に0.2〜5mHHの範囲に保ち8
0℃以下、好ましくは30℃以下にて処理するのがよい
。処理時間は作業性を考慮して10分〜20時間から選
択される。フッ素の含有量はフッ素ガスの分圧や処理温
度、処理時間を調節することによシコントロールされる
。フッ素ガス分圧が上記範囲を越えて高い場合、処理時
間を極端に短くすることにより目的とする含有量のアセ
チレン重合体を得ることができるが、一般に該操作条件
は作業性が悪いのみならず得られたアセチレン重合体の
酸化安定性も劣る。また処理温度が高い場合も同様な欠
点を生ずることがある。
Generally, the fluorine gas partial pressure is 20 mHg or less, preferably 0.
Keep it within the range of 1 to 10 mHg, especially 0.2 to 5 mHH8
The treatment is preferably carried out at a temperature of 0°C or lower, preferably 30°C or lower. The processing time is selected from 10 minutes to 20 hours in consideration of workability. The fluorine content is controlled by adjusting the partial pressure of fluorine gas, treatment temperature, and treatment time. If the fluorine gas partial pressure is higher than the above range, it is possible to obtain an acetylene polymer with the desired content by extremely shortening the treatment time, but in general, such operating conditions not only have poor workability but also The oxidative stability of the obtained acetylene polymer is also poor. Similar drawbacks may also occur if the processing temperature is high.

フッ素ガスの低分圧雰囲気を得る方法は任意でよく、真
空系内に直接フッ素ガスを所望の分圧に導入することで
よいが、ヘリウムガスにより数回に分割して希釈するの
が操作が容易なのでよい。
Any method can be used to obtain a low partial pressure atmosphere of fluorine gas, such as directly introducing fluorine gas into the vacuum system to the desired partial pressure, but it is easier to dilute the fluorine gas in several portions with helium gas. It's good because it's easy.

所望のフッ素含有量に到達した後は、余剰のフッ素ガス
は減圧排気等の方法によプ除去される。かぐしてアセチ
レン重合体の有用な特性を損うことなく、酸化安定化効
果の改良されたアセチレン重合体が得られる。
After reaching the desired fluorine content, excess fluorine gas is removed by a method such as vacuum evacuation. Acetylene polymers with improved oxidative stabilization effects are obtained without sacrificing the useful properties of the acetylene polymers.

上述の方法により得られたフッ素を少量含有したアセチ
レン重合体はそのままで或は電気伝導度を所望の値にす
るために各種のドナーやアクセプターをドー1した後必
要な後加工を施すととくより種々の電気・電子素子とし
て有用であるばかシでなく、リチウム電池の正極活物質
、二次電池の電極活物質、太陽電池材料としても非常に
有用である。また本発明の方法で得られるアセチレン重
合体は、その後のドーピング処理によってP型またはn
型の半導体にすることができる。そしてP型半導体とn
型半導体とを組み合わせて容易にp−n接合を作ること
も可能である。
The acetylene polymer containing a small amount of fluorine obtained by the above method may be used as it is or may be subjected to necessary post-processing after adding various donors and acceptors to achieve the desired electrical conductivity. Not only is it useful as a variety of electrical and electronic devices, but it is also very useful as a positive electrode active material for lithium batteries, an electrode active material for secondary batteries, and a solar cell material. Furthermore, the acetylene polymer obtained by the method of the present invention can be made into P-type or n-type by the subsequent doping treatment.
It can be made into a type of semiconductor. And P-type semiconductor and n
It is also possible to easily create a pn junction by combining it with a type semiconductor.

〔作用〕[Effect]

アセチレン重合体は直径約zooAのフィブリルの集合
体であることが明らかにされている( J、 Poly
m、 Sei、、 Polym、 Chem、 Ed、
 I 2.11(1974))。フィブリル間には多く
の空隙を含み、かさ密度は真密度の1/2程度しかない
。アセチレン重合体のこのような構造は、気体状態のド
ーピング剤の均一な吸着には極め′て適している。
It has been revealed that acetylene polymers are aggregates of fibrils with a diameter of approximately zooA (J, Poly
m, Sei, Polym, Chem, Ed.
I 2.11 (1974)). There are many voids between the fibrils, and the bulk density is only about 1/2 of the true density. This structure of the acetylene polymer is extremely suitable for homogeneous adsorption of gaseous doping agents.

〔実施例〕 以下実施例によシ本発明をより具体的に説明する。〔Example〕 The present invention will be explained in more detail by way of Examples below.

参考例1 〔アセチレン重合体膜の合成〕 高純度アルゴン雰囲気下で2004のガラス製反応容器
に20.0−のトルエンに溶解させた3、4ml (1
0−0ミリモlv)のチタニウムテトラブトキサイドを
加え一78℃に冷却した後に攪拌しながら3.8,1/
(28,1ミリモ/I/)のトリエチルアルミニウムを
加えて反応させた。反応容器を室温において1時間放置
することによって触媒溶液  ゛を熟成させた。次いで
この反応容器をドライアイヌ−メタノール寒剤で一78
℃に冷却し、系中の高純度アルゴンガスを真空ボ、ンデ
で排気した。
Reference Example 1 [Synthesis of acetylene polymer film] 3.4 ml (1
After adding 0-0 mmol lv of titanium tetrabutoxide and cooling to -78°C, 3.8,1/
(28.1 mm/I/) of triethylaluminum was added to react. The catalyst solution was aged by leaving the reaction vessel at room temperature for 1 hour. The reaction vessel was then cooled with dry ice-methanol cryogen.
The system was cooled to ℃ and the high purity argon gas in the system was evacuated using a vacuum cylinder.

私 反応容器を強く口軽させて触媒溶液を反応容器の内壁に
均一に付着させた後、反応容器を一78℃の温度に保ち
静止させた状態で直ちに1気圧の圧力の精製アセチレン
ガスを導入して重合を開始した。重合開始と同時に反応
容器の内壁に金属光沢を有するアセチレン重合体が析出
した。その後アセチレン圧力をおよそ1気圧に保ちつつ
10分間重合を行った後未反応のアセチレンを真空ポン
プで排気し重合を停止した。
After shaking the reaction vessel strongly to make the catalyst solution adhere uniformly to the inner wall of the reaction vessel, purified acetylene gas at a pressure of 1 atm was immediately introduced while keeping the reaction vessel at a temperature of -78°C and stationary. Polymerization was started. Simultaneously with the initiation of polymerization, an acetylene polymer with metallic luster was deposited on the inner wall of the reaction vessel. Thereafter, polymerization was carried out for 10 minutes while maintaining the acetylene pressure at about 1 atm, and then unreacted acetylene was evacuated with a vacuum pump to stop the polymerization.

高純度アルゴン雰囲気下で残存触媒溶液を注射器で除去
した後精製トμエン30−で20回洗浄を繰シ返し、次
いで室温で真空乾燥した。
After removing the residual catalyst solution with a syringe under a high-purity argon atmosphere, washing was repeated 20 times with 30 μm of purified toene, and then vacuum drying was performed at room temperature.

触媒溶液がガラス製の反応器内壁に付着した部分にその
部分と面積が等しく厚さが150μmでシス含量が98
%のアセチレン重合体膜が得られた。
The part where the catalyst solution adhered to the inner wall of the glass reactor has an area equal to that part and a thickness of 150 μm and a cis content of 98
% acetylene polymer film was obtained.

このアセチレン重合体膜の電気伝導度をアセチレン重合
体膜の表・裏画面に金属金を蒸清することによって電極
を取り付け、測定した。電気伝導度は25℃の温度にお
いてlXl0 Q備であった。
The electrical conductivity of this acetylene polymer film was measured by attaching electrodes to the front and back surfaces of the acetylene polymer film by steaming metallic gold. The electrical conductivity was 1X10Q at a temperature of 25°C.

実施例! 〔フッ素処理〕 参考例1で合成したアセチレン重合体膜よシ、幅が3C
III長さが5CIKの小片を切り出した。この小片の
重量は0.1229gであった。
Example! [Fluorine treatment] The width of the acetylene polymer film synthesized in Reference Example 1 was 3C.
A small piece with a length of 5 CIK was cut out. The weight of this piece was 0.1229g.

その小片を密閉反応容器に入れ、容器内部を真空ボンデ
によって排気しその後容器内部にヘリウムガスを1気圧
まで入れその後さらに真空ボンデによって排気した。こ
の操作を3回繰り返しアセチレン重合体膜の洗浄を行つ
た。そして容器内部を真空にした後にあらかじめ調製し
た0、05モル%(99,95モ/I/%ヘリウムガヌ
)のフッ素ガス(フッ素ガス分圧0.38 mHg )
を入れ室温にて5時間放置した。
The small piece was placed in a closed reaction container, and the inside of the container was evacuated using a vacuum bonder, and then helium gas was introduced into the container to a pressure of 1 atmosphere, and then further evacuated using a vacuum bonder. This operation was repeated three times to wash the acetylene polymer membrane. After evacuating the inside of the container, 0.05 mol% (99.95 mol/I/% helium) fluorine gas (fluorine gas partial pressure 0.38 mHg) was prepared in advance.
and left at room temperature for 5 hours.

5時間のフッ素処理の後に反応容器内部を十分にヘリウ
ムガスによる置換を行った。そしてアセチレン重合体膜
を取り出したところその重量は0.1271yK増加し
ていた。この重量増加分より算定したアセチレン重合体
膜へのフッ素の導入量はアセチレン重合体のCH繰り返
し単位1モル当夛2.3モル%であり元素分析の結果か
らも同様に確認された。またこの膜の電気伝導度をアセ
チレン重合体膜の表・M両面に金属   金を蒸着し電
極を取り付けることによって測定したところ25℃にお
いてlXl0Ω備でろつた。
After 5 hours of fluorine treatment, the interior of the reaction vessel was sufficiently replaced with helium gas. When the acetylene polymer film was taken out, its weight had increased by 0.1271yK. The amount of fluorine introduced into the acetylene polymer film calculated from this weight increase was 2.3 mol % per mol of CH repeating unit of the acetylene polymer, and this was also confirmed from the results of elemental analysis. Further, the electrical conductivity of this film was measured by vapor depositing metal gold on both the front and M sides of the acetylene polymer film and attaching electrodes, and it was measured at 25°C using a lXl0Ω equipment.

この膜の表面反射赤外スペクトルを測定し結果を図1に
示した。フッ素処理によって14001.1330C1
l、900aRにフッ素による新たなピークが出現して
いた。
The surface reflection infrared spectrum of this film was measured and the results are shown in FIG. 14001.1330C1 by fluorine treatment
A new peak due to fluorine appeared at 1 and 900aR.

フッ素濃度及びフッ素処理時間を変更した以外は上記と
同様にして種々のフッ素含有量のアセチレン重合体膜を
得た。この結果を併せて表IK示した。
Acetylene polymer films with various fluorine contents were obtained in the same manner as above except that the fluorine concentration and fluorine treatment time were changed. The results are also shown in Table IK.

〔酸化安定性試験〕[Oxidation stability test]

上記により得られた種々の含有量でフッ素処理されたア
セチレン重合体膜の酸化安定性の実験を次のよう〈行っ
た。フッ素処理されたアセチレン重合体膜をガラス容器
に入れ、脱気、真空にした後に純粋酸素1気圧を容器内
に入れた。
Experiments on the oxidation stability of the acetylene polymer membranes treated with fluorine at various concentrations obtained above were conducted as follows. The fluorine-treated acetylene polymer membrane was placed in a glass container, and after degassing and creating a vacuum, 1 atm of pure oxygen was introduced into the container.

そして25℃の温度で14時間あるいは20時間放置し
た後に試料を取り出し室温においてヨウ素ドープを行い
到達電気伝導度の測定を行った。なお到達電気伝導度の
測定は次のように行った。試料を密閉ガラス容器(真空
フィン)の中に入れ容器内をI X 10 gHg以上
の真空度になるまで排気した後容器内にヨウ素の蒸気を
導入しく25℃におけるヨウ素の蒸気圧fi O,3m
Hg)一定時間放置後のヨウ素ドープ試料の電気伝導度
を四探針法を用いて測定した。なおヨウ素の蒸気雰囲気
下における放置時間は’ME気伝導伝導度ぼ飽和に達す
る時間に設定された。この結果を表1に示した。
After leaving the sample at a temperature of 25° C. for 14 or 20 hours, the sample was taken out and doped with iodine at room temperature, and the achieved electrical conductivity was measured. Note that the measurement of the achieved electrical conductivity was performed as follows. After placing the sample in a sealed glass container (vacuum fin) and evacuating the inside of the container to a degree of vacuum of I x 10 gHg or more, iodine vapor was introduced into the container.
Hg) The electrical conductivity of the iodine-doped sample after being left for a certain period of time was measured using the four-probe method. The time for leaving the sample in the iodine vapor atmosphere was set at a time when the ME gas conductivity reached saturation. The results are shown in Table 1.

比較例1 参考例1で合成したアセチレン重合体膜(フッ素処理し
ないもの)の酸化安定性の実験を実施例1と同様な条件
で行った。結果を併せて表1に示した。
Comparative Example 1 An experiment on the oxidation stability of the acetylene polymer membrane synthesized in Reference Example 1 (not subjected to fluorine treatment) was conducted under the same conditions as in Example 1. The results are also shown in Table 1.

表1における酸化後の到達電気伝導度の大きさの比較に
よりアセチレン重合体の酸化安定性の度合を比較するこ
とができる。例えばヨウ素ドープを行った場合の到達電
気伝導度が240ΩG まで上昇したアセチレン重合体
(夾験査号8)は20Ωc/n  までしか上昇しない
アセチレン重合体(実験番号1の未処理アセチレン電合
体)よシ格段に酸化安定性が優れている。
The degree of oxidation stability of acetylene polymers can be compared by comparing the magnitude of the electrical conductivity achieved after oxidation in Table 1. For example, when doped with iodine, an acetylene polymer (Experiment No. 8) whose ultimate electrical conductivity increased to 240 ΩG was compared to an acetylene polymer whose electrical conductivity increased only to 20 Ωc/n (untreated acetylene electropolymer of Experiment No. 1). It has extremely good oxidation stability.

表1に示されるようにフッ素の含有量が本発明の範囲内
にある場合には酸化安定性試験におけるアセチレン重合
体の到達!気侭導度の低下の度合は少なく、いずれも優
れた酸化安定性を示した。またフッ素含有量が10モル
%を越えるとアセチレン重合体のヨウ素ドーグ到達電気
伝導度が急激に低下しアセチレン重合体そのものの特性
が変化していることが認められた。
As shown in Table 1, when the fluorine content is within the range of the present invention, the acetylene polymer reaches the oxidation stability test! The degree of decrease in air wandering conductivity was small, and all exhibited excellent oxidation stability. It was also found that when the fluorine content exceeded 10 mol %, the electrical conductivity of the acetylene polymer reached by iodine was rapidly reduced, and the properties of the acetylene polymer itself were changed.

〔ヨウ素ドープ後の酸化安定性〕[Oxidation stability after iodine doping]

実施例1で得られたフッ素含有量Z 3 mole%の
アセチレン重合体膜を室温にて1時間ヨウ素ドーグを行
った後にさらに3時間試料を真空に引き余剰のヨウ素を
除去した。得られた膜はアセチレン重合体のCHjif
i返し単位1−1:A/あたり10−T:/L/%のヨ
ウ素でドープされていた。この膜の電気伝導度は290
0備であった、この試料を25℃の温度で、湿度O%の
条件で空気中において10日間放置した後に四探針法に
より電気伝導度を測定した。この時の電気伝導度は15
0Ωαであった。
The acetylene polymer film having a fluorine content of Z 3 mole % obtained in Example 1 was subjected to iodine doping at room temperature for 1 hour, and then the sample was evacuated for an additional 3 hours to remove excess iodine. The obtained film is made of acetylene polymer CHjif.
i-return unit 1-1: doped with 10-T:/L/% iodine per A/. The electrical conductivity of this membrane is 290
After this sample was left in the air at a temperature of 25° C. and a humidity of 0% for 10 days, the electrical conductivity was measured by the four-probe method. The electrical conductivity at this time is 15
It was 0Ωα.

比較のために参考例1で合成したアセチレン重合体膜(
フッ素処理を行わないもの)を上記の方法と同一の方法
で試験した。上記と同様な方法で10モ/L’%ヨウ素
ドープを行った時の電気伝導度は3000備であったが
、上記と同様な条件で10日間空気中に放置した後の電
気伝導度は1000cI+まで低下し丸。
For comparison, the acetylene polymer membrane synthesized in Reference Example 1 (
(without fluorine treatment) were tested in the same manner as above. When doping with 10M/L'% iodine in the same manner as above, the electrical conductivity was 3000 cI+, but after being left in the air for 10 days under the same conditions as above, the electrical conductivity was 1000 cI+. It drops to a circle.

使用例1 〔二次電池実験〕 実施例1で得られたフッ素含量が2.3七ル%のアセチ
レン重合体膜を用い、正負両極にアセチレン重合体膜を
用いた電池を試作した。2枚のアセチレン重合体膜はガ
ラスフィルターを介して両極に設置された。電解液には
プロピレンカーボネイトに過塩素酸リチウムを1規定溶
解させたものを用いた。集電用の電極として正負価とも
白金メツシュを用いた。使用したアセチレン重合体膜の
面積は1 cm X 1.5 anであって重量は0.
015gであった。
Usage Example 1 [Secondary Battery Experiment] Using the acetylene polymer membrane with a fluorine content of 2.37% obtained in Example 1, a battery was prototyped using the acetylene polymer membranes for both positive and negative electrodes. Two acetylene polymer membranes were placed on both poles via a glass filter. The electrolytic solution used was one in which 1N of lithium perchlorate was dissolved in propylene carbonate. Platinum mesh was used for both positive and negative electrodes for current collection. The acetylene polymer membrane used had an area of 1 cm x 1.5 an and a weight of 0.
It was 0.15g.

この2次電池の充放電サイクル特性を測定したつ1rr
LA定電流充電を10分間行った後に(0,5モル%ド
ープ)1fiAの定電流放電を10分間行った。充放電
サイクル数が250回を越えた後に徐々に充電電圧が高
くなった。
We measured the charge/discharge cycle characteristics of this secondary battery.
After performing LA constant current charging for 10 minutes (0.5 mol % doping), constant current discharging at 1 fiA was performed for 10 minutes. After the number of charge/discharge cycles exceeded 250, the charging voltage gradually increased.

比較のために参考例1で合成したアセチレン重合体膜(
フッ素処理を行わないもの)について上記と同様な二次
電池を組み立て充放電サイり/L’数を試験した。充放
電サイクル数が120回を越えた後に徐々に充電電圧が
高くなった。
For comparison, the acetylene polymer membrane synthesized in Reference Example 1 (
A secondary battery similar to the above was assembled (without fluorine treatment) and the number of charge/discharge cycles/L' was tested. After the number of charge/discharge cycles exceeded 120, the charging voltage gradually increased.

〔発明の効果〕〔Effect of the invention〕

本発明に従えば、アセチレン重合体の本来保有する特性
を損うことなく、酸化安定性の改良されたアセチレン重
合体が提供される。また本発明のアセチレン重合体は該
酸化安定化効果に耐久性がちシ、有機溶剤等での洗浄や
各種ドープ処理によっては容易に効果が低下しない。ま
た本発明に従えば該アセチレン重合体が従来公知のアセ
チレン重合体を低濃度フッ素ガスで処理するという単純
な操作で極めて容易に達成される。更に、本発明により
得られた酸化安定性の向上されたアセチレン重合体は従
来のアセチレン東金、体と全く同様に取シ扱うことがで
きる。
According to the present invention, an acetylene polymer with improved oxidative stability is provided without impairing the properties originally possessed by the acetylene polymer. Furthermore, the acetylene polymer of the present invention tends to be durable in terms of its oxidation stabilizing effect, and the effect does not easily deteriorate due to washing with organic solvents or various doping treatments. Furthermore, according to the present invention, the acetylene polymer can be produced very easily by a simple operation of treating a conventionally known acetylene polymer with low concentration fluorine gas. Furthermore, the acetylene polymer with improved oxidation stability obtained by the present invention can be handled in exactly the same manner as conventional acetylene polymers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアセチレン重合体の表面反射赤外吸収
スペクトμを示す。 第1 図 (%) Wavenumbers
FIG. 1 shows the surface reflection infrared absorption spectrum μ of the acetylene polymer of the present invention. Figure 1 (%) Wavenumbers

Claims (1)

【特許請求の範囲】 1)フッ素ガス処理に基づくフッ素の含有量がアセチレ
ン重合体のCH繰り返し単位1モル当り01モル%以上
10モル%以下であることを特徴とするアセチレン重合
体。 2)フッ素ガス分圧20mmHg以下のフッ素ガス雰囲
気下にアセチレン重合体を放置し、アセチレン重合体の
CH繰返し単位1モル当り0.1モル%以上、10モル
%以下のフッ素をアセチレン重合体に含有せしめること
を特徴とするアセチレン重合体の製法。
[Scope of Claims] 1) An acetylene polymer characterized in that the fluorine content based on fluorine gas treatment is from 0.1 mol % to 10 mol % per mol of CH repeating unit of the acetylene polymer. 2) The acetylene polymer is left in a fluorine gas atmosphere with a fluorine gas partial pressure of 20 mmHg or less, and the acetylene polymer contains 0.1 mol% or more and 10 mol% or less of fluorine per mol of CH repeating unit of the acetylene polymer. A method for producing an acetylene polymer characterized by:
JP24746984A 1984-11-22 1984-11-22 Acetylene polymer having improved oxidation stability and production thereof Pending JPS61126158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24746984A JPS61126158A (en) 1984-11-22 1984-11-22 Acetylene polymer having improved oxidation stability and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24746984A JPS61126158A (en) 1984-11-22 1984-11-22 Acetylene polymer having improved oxidation stability and production thereof

Publications (1)

Publication Number Publication Date
JPS61126158A true JPS61126158A (en) 1986-06-13

Family

ID=17163911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24746984A Pending JPS61126158A (en) 1984-11-22 1984-11-22 Acetylene polymer having improved oxidation stability and production thereof

Country Status (1)

Country Link
JP (1) JPS61126158A (en)

Similar Documents

Publication Publication Date Title
US9735427B2 (en) Method of producing triazine-based graphitic carbon nitride films
US5916516A (en) Fluoridated electrode materials and associated process for fabrication
EP0026234A1 (en) Process for preparing highly conductive acetylene high polymer
Basha et al. Spectroscopic properties of pvp based composite polymer electrolyte films for solid state battery application
CN113481485A (en) Tin oxide film and preparation method thereof, and solar cell and preparation method thereof
Pang et al. UV–O 3 treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells
CN112928387B (en) Boron-containing modified diaphragm, preparation method and application thereof, and battery containing diaphragm
Naoi et al. Modification of the lithium metal surface by nonionic polyether surfactants. Ii. Investigations with microelectrode voltammetry and in situ quartz crystal microbalance
Ran et al. Multifunctional artificial solid electrolyte interphase layer for lithium metal anode in carbonate electrolyte
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
CN116646593A (en) All-solid-state polymer electrolyte and preparation method and application thereof
JPS61126158A (en) Acetylene polymer having improved oxidation stability and production thereof
CN114583132B (en) Fast-charging energy storage material and preparation method and application thereof
EP0145843A2 (en) Electrically conductive composites comprising p-doped acetylene having conductive coatings and conjugated aromatic polymers and process therefor
Uchimoto et al. Ionically Conductive Thin Polymer Films Prepared by Plasma Polymerization: V. Preparation and Characterization of Solid Polymer Electrolyte Composed of Plasma Polymerized Complex
JPS5840781A (en) Secondary battery
JP3324136B2 (en) Method for manufacturing solid electrolyte and solid electrolyte secondary battery
CN116253308B (en) Bowl-shaped carbon network anode material and preparation method thereof
JPH05325631A (en) Solid electrolyte
Ogumi et al. Preparation and characterization of a thin film of polymer electrolyte by plasma CVD part IV. All-solid-state lithium batteries
JPS6097570A (en) Secondary battery
JPS5842625A (en) Acetylene high polymer having improved oxidation stability
JPS61261343A (en) Acetylene polymer having good oxidation stability
JPH0330994B2 (en)
JPS60173846A (en) P-n homogeneous junction element