JPS6112605B2 - - Google Patents

Info

Publication number
JPS6112605B2
JPS6112605B2 JP54089680A JP8968079A JPS6112605B2 JP S6112605 B2 JPS6112605 B2 JP S6112605B2 JP 54089680 A JP54089680 A JP 54089680A JP 8968079 A JP8968079 A JP 8968079A JP S6112605 B2 JPS6112605 B2 JP S6112605B2
Authority
JP
Japan
Prior art keywords
capacitance
water tank
deviation
extruder
movable water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54089680A
Other languages
Japanese (ja)
Other versions
JPS5613614A (en
Inventor
Seisuke Nakamura
Yoichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8968079A priority Critical patent/JPS5613614A/en
Publication of JPS5613614A publication Critical patent/JPS5613614A/en
Publication of JPS6112605B2 publication Critical patent/JPS6112605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone

Description

【発明の詳細な説明】 本発明は発泡プラスチツク絶縁電線の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing foamed plastic insulated wire.

従来、導体上に押出機により発泡剤を含むプラ
スチツクを押出し被覆するに際し、発泡プラスチ
ツク絶縁体の発泡度を制御するため、冷却水槽中
又は後において発泡プラスチツク絶縁体の静電容
量即ち導体と絶縁体周囲間の静電容量を適当な手
段で検出し、その値の基準設定値からのずれ即ち
静電容量偏差によつて下記のような静電容量変化
に影響を及ぼす要因を制御し静電容量偏差を零に
収歛させる方法がとられている。
Conventionally, when extruding plastic containing a foaming agent onto a conductor using an extruder, in order to control the degree of foaming of the foamed plastic insulator, the capacitance of the foamed plastic insulator, that is, the capacitance between the conductor and the insulator, is measured in a cooling water bath or afterward. The capacitance between the surroundings is detected by an appropriate means, and the deviation of the value from the reference setting value, that is, the capacitance deviation, is used to control the factors that affect the capacitance change as described below. A method is used to converge the deviation to zero.

上記の方法の制御対象となるものとしては、次
のようなものがある。
The objects to be controlled by the above method include the following.

(A) 押出機スクリユウの回転数を変化させ絶縁体
の厚さを変化させる。
(A) Change the rotation speed of the extruder screw to change the thickness of the insulator.

(B) 線速を変化させ絶縁体の厚さを変化させる。(B) Change the line speed and change the thickness of the insulator.

(C) 押出機シリンダ温度を変化させ絶縁体の発泡
度をかえる。
(C) Change the degree of foaming of the insulator by changing the extruder cylinder temperature.

(D) 導体の予熱温度を変化させ絶縁体の導体近傍
の発泡度をかえる。
(D) Change the degree of foaming of the insulator near the conductor by changing the preheating temperature of the conductor.

(E) 押出機を出た後の冷却水槽を一部可動形にし
押出機のクロスヘツドに近づけたり遠ざけたり
して押出直後の発泡プラスチツク絶縁体の発泡
形成を調整する。
(E) The cooling water tank after exiting the extruder is made partially movable and moved closer or further away from the crosshead of the extruder to adjust the foam formation of the foamed plastic insulation immediately after extrusion.

これらはいずれも一長一短あり、必ずしも一つ
の制御で品質のよい発泡プラスチツク絶縁電線が
得られない。
Each of these methods has advantages and disadvantages, and it is not necessarily possible to obtain high-quality foamed plastic insulated wires with just one control.

(A)あるいは(B)の方法では絶縁体の厚さが微少で
はあるが、変化するため高品質を要求される場合
は問題があるし、(C)の方法は温度の変化に時間が
かかるため応答速度が遅い。又(D)、(E)の方法は応
答速度は早いがこれによつて変化させうる静電容
量の変化巾が小さく、これだけで静電容量偏差を
零にするのは困難な場合がある。
With method (A) or (B), the thickness of the insulator changes, although it is minute, which is a problem if high quality is required, and method (C) takes time to change the temperature. Therefore, the response speed is slow. Furthermore, although methods (D) and (E) have a fast response speed, the range of change in capacitance that can be changed by this method is small, and it may be difficult to reduce the capacitance deviation to zero using only this method.

本発明はこれら従来の方法の欠点を解消した新
しい方法を提供するもので、第1図の如く導体1
に導体予熱機2にて予熱した後、押出機3にて発
泡剤の入つたプラスチツクを押出被覆し可動形水
槽4及び固定形水槽5によつて冷却し静電容量検
出器6を経て引取機7によつて引取る。静電容量
検出器は水槽内に設けられることもある。この静
電容量検出器の出力は静電容量の基準設定値と比
較し、差を静電容量偏差として取出し制御器8を
経て可動形水槽を押出機のクロスヘツドに近づけ
たり遠ざけたりさせて制御する。押出機のクロス
ヘツドと可動水槽の間隔Lと静電容量Cは押出機
温度、心線温度、線速等の他の条件が一定なら、
ある相関関係にあり、条件がかわればその相関関
係もかわるが短時間に他の条件がかわらないとす
ると第2図の,あるいはのような曲線とな
る。従つてLを変化させることによつてCを変化
させ静電容量を所望の値即ち基準設定値Coにも
つていくことができるわけであるが実際の可動水
槽の可動範囲Lwは水槽設備の設計によつて限定
されるので、他の条件が変動してのように相関
関係がなつているならば、Lwの間で可動水槽を
移動させるだけで静電容量偏差を零に収歛、すな
わちCをCoに近づけることができるが、ある
いはのような相関関係を与えるように他の条件
がなつていると可動水槽をLwの間でいかに動か
そうと静電容量偏差を零に収歛させることができ
ない。そこでLwの間に適当な点Loを設定し可動
水槽のLoからの変位△Lを出力としてとり出
し、予熱温度制御器9を経て導体予熱機2の予熱
電流を変化させる。
The present invention provides a new method that eliminates the drawbacks of these conventional methods.
After being preheated in a conductor preheating machine 2, the plastic containing a foaming agent is extruded and coated in an extruder 3, cooled in a movable water tank 4 and a fixed water tank 5, and passed through a capacitance detector 6 to a take-up machine. Pick up by 7. A capacitance detector may also be installed within the aquarium. The output of this capacitance detector is compared with the capacitance reference setting value, and the difference is taken out as a capacitance deviation and is controlled by moving the movable water tank closer to or away from the crosshead of the extruder via the controller 8. . The distance L between the crosshead of the extruder and the movable water tank and the capacitance C are as follows, assuming that other conditions such as extruder temperature, core wire temperature, and linear speed are constant:
If there is a certain correlation, and the correlation changes as conditions change, but other conditions do not change in a short period of time, the curves shown in FIG. Therefore, by changing L, C can be changed and the capacitance can be brought to the desired value, that is, the reference setting value Co. However, the actual movable range L of the movable aquarium depends on the aquarium equipment. Since it is limited by the design, if other conditions vary and there is a correlation, the capacitance deviation can be brought to zero by simply moving the movable water tank between L and W. In other words, C can be brought close to Co, but if other conditions are met to give a correlation such as I can't do it. Therefore, an appropriate point Lo is set between Lw , the displacement ΔL of the movable water tank from Lo is taken out as an output, and the preheating current of the conductor preheater 2 is changed via the preheating temperature controller 9.

この場合予熱電流によつて予熱温度がかわり第
3図の如き静電容量Cと予熱電流i関係を示すの
で静電容量が基準値からずれている間は可動水槽
が移動し、可動水槽の移動分に相当して予熱電流
がかわるので可動水槽のみで制御する場合に比べ
て応答速度も早くなる。しかし可動水槽と予熱電
流のみでは応答し得る制御範囲が限られるため、
予熱電流iの基準設定(io)値からのずれ△iに
よつてシリンダ温度制御器10を経て押出機のシ
リンダ温度を上下させる。△iが正の場合はシリ
ンダ温度が上昇する方向へ、△iが負の場合はシ
リンダ温度が下降する方向へ制御すればよい。
In this case, the preheating temperature changes depending on the preheating current, and the relationship between the capacitance C and the preheating current i is shown in Figure 3. Therefore, while the capacitance deviates from the reference value, the movable water tank moves, and the movable water tank moves. Since the preheating current changes corresponding to the number of minutes, the response speed is faster than when controlling only with a movable water tank. However, since the control range that can be responded to with only a movable water tank and preheating current is limited,
Depending on the deviation Δi of the preheating current i from the standard setting (io) value, the cylinder temperature of the extruder is increased or decreased via the cylinder temperature controller 10. If Δi is positive, the cylinder temperature may be increased, and if Δi is negative, the cylinder temperature may be decreased.

上記説明では静電容量偏差にもとづき可動水槽
を可動水槽の基準点からの変位にもとづき、導体
予熱機の予熱電流を、予熱電流の基準値からの偏
差にもとづき押出機のシリンダ温度を制御する例
を述べたが、シリンダ温度は応答可能範囲即ち静
電容量を変化させうる範囲が広いが応答速度がお
そいのに対し、導体予熱及び可動水槽は応答可能
範囲がせまいが応答速度が早いので上述の制御順
位を少し入替え静電容量偏差にもとづき導体予熱
機の予熱電流を、予熱電流の基準値からの偏差に
もとづき可動水槽を可動水槽の基準点からの変位
にもとづき押出機のシリンダ温度を制御すること
も可能である。
In the above explanation, the movable water tank is controlled based on the capacitance deviation, the preheating current of the conductor preheater is controlled based on the displacement of the movable water tank from the reference point, and the cylinder temperature of the extruder is controlled based on the deviation of the preheating current from the reference value. As mentioned above, the cylinder temperature has a wide response range, that is, a range in which capacitance can be changed, but the response speed is slow, whereas conductor preheating and movable water tanks have a narrow response range but a fast response speed, so the above-mentioned A slight change in the control order controls the preheating current of the conductor preheater based on the capacitance deviation, the movable water tank based on the deviation of the preheating current from the reference value, and the cylinder temperature of the extruder based on the displacement of the movable water tank from the reference point. It is also possible.

本発明においては静電容量偏差をもとに可動水
槽の変位、導体予熱機の予熱電流の変化、押出機
のシリンダ温度の変化を組合わせ制御するもので
あつてそれぞれ単独では応答速度あるいは応答範
囲に欠点があつても、それを組合わせることによ
り応答速度が早くて応答範囲の広い制御方法とし
て無駄なく品質のよい発泡プラスチツク絶縁電線
の製造に適用しうるものである。
In the present invention, the displacement of the movable water tank, the change in the preheating current of the conductor preheater, and the change in the cylinder temperature of the extruder are controlled in combination based on the capacitance deviation. Even if there are drawbacks, by combining them, the control method has a fast response speed and a wide response range, and can be applied to the production of high-quality foamed plastic insulated wires without waste.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発泡プラスチツク絶縁の押出
被覆工程制御実施例の説明図、第2図は静電容量
と可動水槽とクロスヘツド距離の相関図、第3図
は静電容量と導体予熱機の予熱電流との相関図を
示す。 なお図中、1は導体、2は導体予熱機、3は押
出機、4は可動水槽、5は固定水槽、6は静電容
量検出器、7は引取機、8は可動水槽位置制御
器、9は予熱電流制御器、10はシリンダ温度制
御器を示す。
Fig. 1 is an explanatory diagram of an example of controlling the extrusion coating process of foamed plastic insulation of the present invention, Fig. 2 is a correlation diagram of capacitance, movable water tank, and crosshead distance, and Fig. 3 is a diagram of the relationship between capacitance and conductor preheater. A correlation diagram with preheating current is shown. In the figure, 1 is a conductor, 2 is a conductor preheater, 3 is an extruder, 4 is a movable water tank, 5 is a fixed water tank, 6 is a capacitance detector, 7 is a take-up machine, 8 is a movable water tank position controller, 9 indicates a preheating current controller, and 10 indicates a cylinder temperature controller.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に発泡プラスチツクを押出被覆し、絶
縁体の静電容量を検出して基準設定値からの静電
容量偏差によつて押出条件を制御して発泡プラス
チツク絶縁電線を製造する方法において、上記静
電容量偏差によつて押出機クロスヘツドと固定水
槽間に設けた可動水槽の位置あるいは、導体予熱
機の予熱温度のいずれか一方を変化させて、更に
上記可動水槽あるいは予熱温度の基準からの偏位
量に応じて更にもう一方を変化させ、後で変化さ
せた方の基準からの偏位量によつて押出機のシリ
ンダ温度を制御することを特徴とする発泡プラス
チツク絶縁電線の製造方法。
1. A method of manufacturing a foamed plastic insulated wire by extrusion coating a conductor with foamed plastic, detecting the capacitance of the insulator, and controlling extrusion conditions according to the capacitance deviation from a reference setting value, Depending on the capacitance deviation, either the position of the movable water tank provided between the extruder crosshead and the fixed water tank or the preheating temperature of the conductor preheater can be changed, and the deviation of the movable water tank or preheating temperature from the standard can be further reduced. A method for manufacturing a foamed plastic insulated wire, characterized in that the temperature of a cylinder of an extruder is controlled according to the amount of deviation from the reference value of the later changed value.
JP8968079A 1979-07-13 1979-07-13 Method of manufacturing foamed plastic insulated wire Granted JPS5613614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8968079A JPS5613614A (en) 1979-07-13 1979-07-13 Method of manufacturing foamed plastic insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8968079A JPS5613614A (en) 1979-07-13 1979-07-13 Method of manufacturing foamed plastic insulated wire

Publications (2)

Publication Number Publication Date
JPS5613614A JPS5613614A (en) 1981-02-10
JPS6112605B2 true JPS6112605B2 (en) 1986-04-09

Family

ID=13977465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8968079A Granted JPS5613614A (en) 1979-07-13 1979-07-13 Method of manufacturing foamed plastic insulated wire

Country Status (1)

Country Link
JP (1) JPS5613614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633602U (en) * 1992-07-03 1994-05-06 ワールド技研株式会社 Chuck joint for push rod

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157007A (en) * 1982-03-15 1983-09-19 古田 勝久 Extrusion line control system for highly foamable insulated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633602U (en) * 1992-07-03 1994-05-06 ワールド技研株式会社 Chuck joint for push rod

Also Published As

Publication number Publication date
JPS5613614A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
GB1442031A (en) Manufacture of insulating materials
JPS6112605B2 (en)
US5468543A (en) Process for producing a ski coating strip made of ultra high molecular-weight polyethylene
US4359436A (en) Methods of and systems for controlling the expansion of cellular plastic insulation in the manufacture of insulated conductors
US4592881A (en) Method for controlling a foam resin cable coating extrusion process
US3119150A (en) Apparatus for producing smooth, flat rolls of film
US5494624A (en) Control system and method for wire insulating line
CN104723581A (en) Preparation method of fluorine layer-containing polyimide composite material and equipment for method
JP3631636B2 (en) Film winding method
GB2130763A (en) Method and apparatus for controlling a cellular foam cable coating extrusion process
US4182734A (en) Method for producing foamed plastic insulated wires
JPH03236120A (en) Controller for metallic wire covering equipment
JPS6112604B2 (en)
JPH0737456A (en) Control system of outer diameter of electric wire by fuzzy control
EP1271565B1 (en) Capacitance controlling process
CN204526188U (en) For the preparation of the equipment of fluorine-containing layer composite polyimide material
JPS58189912A (en) Method of producing high foamable insulated wire and apparatus therefor
JPH07320572A (en) Method and device for manufacturing foaming insulated wire
JPS60107217A (en) Method of producing foamable plastic insulated wire
JP3252036B2 (en) Plastic film profile control method
SU1030862A1 (en) Process for applying rib coating on lengthy article
JPS5839050B2 (en) How to adjust the thickness of thermoimageable resin film
JP3476018B2 (en) Wound-shaped thermoplastic resin film and method for producing the same
JP2001030340A (en) Apparatus and method for controlling thickness of film
JP2000326392A (en) Method and apparatus for producing long molded object