JPS61125966A - Capacitiy change-over device for vane pump - Google Patents
Capacitiy change-over device for vane pumpInfo
- Publication number
- JPS61125966A JPS61125966A JP59246864A JP24686484A JPS61125966A JP S61125966 A JPS61125966 A JP S61125966A JP 59246864 A JP59246864 A JP 59246864A JP 24686484 A JP24686484 A JP 24686484A JP S61125966 A JPS61125966 A JP S61125966A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- flow rate
- vane pump
- ports
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/24—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
- F04C14/26—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Power Steering Mechanism (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、動力舵取装置等に作動流体を供給するベーン
ポンプの容量切替装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a capacity switching device for a vane pump that supplies working fluid to a power steering device or the like.
従来この種のベーンポンプは、例えば第4図に示す如く
、ベーンポンプ10の2つの吐出・ポートOPI、OP
2を第1及び第2吐出通路1.2により動力舵取装置の
サーボ弁ならびにパワシリンダ等の流体圧応動装置57
に接続すると共に流量制御弁40を介して吸入ポートI
P1.IP2に接続し、両畦出通路1.2の合流点以後
に設けた絞り6の下流を制御管路44により流量制御弁
40に連通して流体圧応動装置57へ供給すべき制御流
量を制御している。すなわち、第5図に示す如く、ポン
プ回転数が小さい間は流体応動装置57への制御流量特
性Qはベーンポンプ10自身の吐出流量特性Pと一致し
ポンプ回転数に比例して増加するが、吐出流量が値q1
となるポンプ回転数n1を越えれば流量制御弁40のス
プール41を絞り56の前後に生ずる圧力差によりスプ
リング42に抗して移動させてポート43を開き、ベー
ンポンプ10より余分の吐出流量を戻し通路4を介して
吸入ボー)IPl、IF5への吸入通路3にバイパスし
て制御流量が一定の値q1となるように制御流量特性Q
を定めている。Conventionally, this type of vane pump has two discharge ports OPI and OP of the vane pump 10, as shown in FIG. 4, for example.
2 through the first and second discharge passages 1.2 to a fluid pressure responsive device 57 such as a servo valve of a power steering device and a power cylinder.
and the suction port I via the flow control valve 40.
P1. A flow control valve 40 is connected to the flow rate control valve 40 via a control pipe 44 to control the flow rate to be supplied to the fluid pressure response device 57 downstream of the throttle 6 that is connected to the IP2 and provided after the confluence of the two ridge passages 1.2. are doing. That is, as shown in FIG. 5, while the pump rotation speed is small, the controlled flow rate characteristic Q to the fluid response device 57 matches the discharge flow rate characteristic P of the vane pump 10 itself and increases in proportion to the pump rotation speed, but the discharge The flow rate is the value q1
When the pump rotation speed n1 is exceeded, the spool 41 of the flow rate control valve 40 is moved against the spring 42 due to the pressure difference generated before and after the throttle 56 to open the port 43, and the excess discharge flow from the vane pump 10 is returned to the passage. The control flow rate characteristic Q is bypassed to the suction passage 3 to IPl and IF5 to maintain the control flow rate at a constant value q1.
has been established.
上記従来技術においては、バイパス量は第5図の2つの
流量特性PとQの間の領域Xで示されるが、このバイパ
スされる作動流体はポート43において圧力損失を生ず
るので、ベーンポンプ10はその分だけ無駄なエネルギ
を消費することになる。この無駄なエネルギの消費はポ
ンプ回転数の増加と共に増大するので、吐出流量特性P
の勾配を小としてこれを減少させることも考えられるが
、ポンプ回転数が低い場合において吐出流量がq1以下
となる範囲が広(なり、この範囲内では流体圧応動装置
57は所定の性能を発揮しなくなるので好ましくない。In the above-mentioned prior art, the amount of bypass is indicated by the region X between the two flow characteristics P and Q in FIG. This will result in wasted energy consumption. This wasted energy consumption increases as the pump rotation speed increases, so the discharge flow rate characteristic P
It is possible to reduce this by reducing the slope of This is not desirable because it will not work.
本発明はベーンポンプの回転数が高く従って吐出流量が
必要以上に多い場合には一部の吐出ポートのみを使用し
、残りの吐出ポートは圧力損失なしに吸入ポートにバイ
パスするようにして、無駄なエネルギの消費を減少させ
るものである。The present invention uses only some of the discharge ports when the rotational speed of the vane pump is high and therefore the discharge flow rate is larger than necessary, and the remaining discharge ports are bypassed to the suction port without pressure loss, thereby eliminating waste. It reduces energy consumption.
本発明は、添付図面に示す如く、ポンプハウジング11
内に一体的に設けられかつ内周に複数のカム曲線CI、
C2よりなるカム面Cを有するカムリング13と、カム
リング13内に収納されポンプハウジング11に軸支さ
れた回転軸18に連結されたロータ16と、カム面CI
、C2とロータ16の間に複数個に区画されたポンプ室
を構成すべくロータ16に円周上等間隔で放射方向に摺
動可能に嵌装された複数のベーン17と、前記ポンプ室
に対して作動流体を吸入又は吐出すべく前記複数のカム
面C1,C2に対応して設けられた複数組の吸入ポート
IP1.IP2及び吐出ポートOPI、O’P2を有す
るベーンポンプ10の容量切替装置であり、その特徴は
、図示の実施例に示す如く、次の構成にある。すなわち
、複数の吐出ポートOP1.OP2の一部OPIは第1
吐出通路50を介して流体圧応動装置57に接続すると
共に残りの吐出ポートOP 2は第2吐出通路51を介
して容量切替弁20に接続し、この容量切替弁20は第
2吐出通路51を、吐出ポートOP1よりの吐出流量が
所定量より少い場合は流体圧応動装置57に、吐出ポー
トOP 1よりの吐出流量が所定量より多い場合は吸入
ポートIP1.IP2に選択的に接続するよう構成し、
更に第1吐出通路50にはベーンポンプ10より流体圧
応動装置57に供給される作動流体の量が所定の値を越
えれば同作動流体の一部を吸入ポートIPI。The present invention provides a pump housing 11 as shown in the accompanying drawings.
a plurality of cam curves CI integrally provided within and on the inner periphery;
A cam ring 13 having a cam surface C made of C2, a rotor 16 connected to a rotating shaft 18 housed within the cam ring 13 and pivotally supported by the pump housing 11, and a cam surface C
, a plurality of vanes 17 slidably fitted in the radial direction at equal intervals on the circumference of the rotor 16 to constitute a plurality of partitioned pump chambers between C2 and the rotor 16; There are a plurality of sets of suction ports IP1. This is a capacity switching device for a vane pump 10 having IP2 and discharge ports OPI and O'P2, and its features, as shown in the illustrated embodiment, include the following configuration. That is, a plurality of discharge ports OP1. Part of OP2 is the first OPI.
The remaining discharge port OP 2 is connected to a fluid pressure response device 57 via a discharge passage 50 , and the remaining discharge port OP 2 is connected to a capacity switching valve 20 via a second discharge passage 51 . , when the discharge flow rate from the discharge port OP1 is less than a predetermined amount, the fluid pressure response device 57 is activated, and when the discharge flow rate from the discharge port OP1 is greater than the predetermined amount, the suction port IP1. configured to selectively connect to IP2;
Furthermore, if the amount of working fluid supplied from the vane pump 10 to the fluid pressure response device 57 exceeds a predetermined value, a portion of the working fluid is transferred to the first discharge passage 50 through the suction port IPI.
夏P2にバイパスする流量制御弁40を設けたものであ
る。A flow control valve 40 that bypasses during summer P2 is provided.
ベーンポンプ10の回転数が低く従って一部の吐出ポー
トOP1よりの吐出流量が所定量より少い場合には、第
1図(a)に示す如く、吐出ポートOP1は流体圧応動
装置57に接続されると共に残りの吐出ポートOP2も
容量切替弁20により流体圧モータ57に接続されて両
吐出ポートOP 1゜OP2よりの作動流体が流体圧応
動装置57に供給される。従ってこの状態においてはベ
ーンポンプ10の吐出流量特性は第3図のPlに示す如
く、従来の吐出流量特性P(第5図参照)と基本的に同
じとなる。しかしながら、ベーンポンプ10の回転数が
上昇して一部の吐出ポートOP1よりの吐出流量が所定
量より多くなれば、第1図fblに示す如く、吐出ポー
)OP 1は流体圧応動装置57に接続されるが残りの
吐出ポー)OP2は容量切替弁20により吸入ポートI
PI、IP2に接続されて圧力損失なしにバイパスされ
、流体圧応動装置57には吐出ポー)OP 1よりの作
動流体のみが供給されるようになり、ベーンポンプ10
の吐出流量特性P2は第3図に示す如く、吐出流量特性
P1より傾斜が小となる。従って、ベーンポンプ10の
吐出流量特性は、第3図のPI−P3−P2に示す如く
屈折した折線状となる。そして、吐出流量が値q1を越
えれば流量制御弁40によりバイパスされて、流体圧応
動装置57に供給される制御流量特性は従来と同じくQ
となる。このバイパス量は2つの流量特性PL−P3−
P2とQの間の領域Y1及びY2で示され、従来の領域
X(第5図参照)より小となる。When the rotational speed of the vane pump 10 is low and therefore the discharge flow rate from some of the discharge ports OP1 is less than a predetermined amount, the discharge ports OP1 are connected to the fluid pressure response device 57 as shown in FIG. 1(a). At the same time, the remaining discharge port OP2 is also connected to the fluid pressure motor 57 by the capacity switching valve 20, and the working fluid from both discharge ports OP1 and OP2 is supplied to the fluid pressure response device 57. Therefore, in this state, the discharge flow rate characteristic of the vane pump 10, as shown by Pl in FIG. 3, is basically the same as the conventional discharge flow rate characteristic P (see FIG. 5). However, if the rotational speed of the vane pump 10 increases and the discharge flow rate from some of the discharge ports OP1 becomes larger than a predetermined amount, the discharge ports OP1 are connected to the fluid pressure response device 57, as shown in FIG. (However, the remaining discharge port) OP2 is connected to the suction port I by the capacity switching valve 20.
It is connected to PI and IP2 and bypassed without pressure loss, and only the working fluid from the discharge port OP1 is supplied to the fluid pressure response device 57, and the vane pump 10
As shown in FIG. 3, the discharge flow rate characteristic P2 has a smaller slope than the discharge flow rate characteristic P1. Therefore, the discharge flow rate characteristic of the vane pump 10 has a bent line shape as shown by PI-P3-P2 in FIG. If the discharge flow rate exceeds the value q1, it is bypassed by the flow rate control valve 40 and the controlled flow rate characteristic supplied to the fluid pressure response device 57 is the same as before.
becomes. This bypass amount is determined by two flow characteristics PL-P3-
This is indicated by regions Y1 and Y2 between P2 and Q, which are smaller than the conventional region X (see FIG. 5).
上述の如く、本発明によれば、流量制御弁40のバイパ
スによる無駄なエネルギの消費が少くなリベーンボンプ
10の駆動トルクを減少させることができ、しかも流体
圧応動装置57に供給される制御流量特性は従来と同一
に維持することができる。As described above, according to the present invention, wasted energy consumption due to bypass of the flow control valve 40 can be reduced, the driving torque of the revan pump 10 can be reduced, and the control flow rate characteristics supplied to the fluid pressure responsive device 57 can be reduced. can be maintained the same as before.
第1図及び第2図に示す実施例において、先ずベーンポ
ンプ10の構造を説明すれば、ポンプハウジング11に
形成された一端が開口した円筒穴ttbには1対のサイ
ドプレート14.15が対向して嵌合され、両サイドプ
レー)14.15の間にはカムリング13が挟持され、
この3者13゜14.15は位置決めピン19によりポ
ンプハウジング11に位置決めされると共に円筒穴11
bに嵌合されたエンドカバー12によりスプリング12
aを介して押圧固定され、エンドカバー12はストップ
リングにより円筒穴11bに汰止め保持されている。ポ
ンプハウジング11にはカムリング13と同軸に回転軸
18が軸支され、カムリング13内に位置してこれより
わずかに幅が狭いロータ16の中心部が回転軸18の先
端にスプライン結合されている。In the embodiment shown in FIGS. 1 and 2, the structure of the vane pump 10 will be explained first. A pair of side plates 14 and 15 are opposed to a cylindrical hole ttb formed in the pump housing 11 and open at one end. The cam ring 13 is held between the two sides (14 and 15),
These three members 13°, 14.15 are positioned in the pump housing 11 by positioning pins 19, and the cylindrical hole 11
The spring 12 is caused by the end cover 12 fitted to b.
The end cover 12 is fixedly pressed into the cylindrical hole 11b by a stop ring. A rotary shaft 18 is coaxially supported in the pump housing 11 and coaxially with the cam ring 13, and a center portion of a rotor 16 located within the cam ring 13 and having a slightly narrower width than the rotor 16 is splined to the tip of the rotary shaft 18.
第1図に示す如く、カムリング13の内周には180度
の位相差をおいて同一形状のカム曲線C,1゜1、C2
よりなるカム面Cが形成され、このカム面Cに摺接する
10枚のベーン17が放射方向番こ摺動可能にロータ1
6に嵌挿されている。カム面Cとロータ16の外周面と
の間にはベーン17により区画されて10個のポンプ室
が形成され、各ポンプ室はロータ16の回転により容積
変化を生ずる。サイドプレート14.15のロータ16
と対接する面には、膨張行程をなすポンプ室に対応して
2対の吸入ポートIPI、IP2が形成され、各吸入ポ
ートIP1.IP2はポンプハウジング11の内周に形
成された環状溝11aにより接続され、またサイドプレ
ート14には圧縮行程をなすポンプ室に対応して2個の
吐出ポー1−OP 1゜OP2が独立して形成されてい
る。上記ベーンポンプ10の構造は従来のものと基本的
に同一である。As shown in FIG. 1, the inner periphery of the cam ring 13 has cam curves C,1°1, C2 of the same shape with a phase difference of 180 degrees.
A cam surface C is formed, and ten vanes 17 that are in sliding contact with the cam surface C are able to slide in the radial direction of the rotor 1.
It is inserted into 6. Ten pump chambers are defined by vanes 17 between the cam surface C and the outer peripheral surface of the rotor 16, and the volume of each pump chamber changes as the rotor 16 rotates. Rotor 16 of side plate 14.15
Two pairs of suction ports IPI, IP2 are formed on the surface facing each other, corresponding to the pump chambers making an expansion stroke, and each suction port IP1. The IP2 is connected by an annular groove 11a formed on the inner circumference of the pump housing 11, and the side plate 14 has two independent discharge ports 1-OP1 and OP2 corresponding to the pump chambers that perform the compression stroke. It is formed. The structure of the vane pump 10 is basically the same as the conventional one.
第1図(alに示す如く、吸入ポートIPI、IP2は
ポンプハウジング11の環状溝11a及び吸入口11c
ならびに吸入通路53,53aを介してリザーバ55に
接続されて作動流体を吸入し、吐出ポー)OP 1は第
1吐出通路50を介して動力舵取装置のサーボ弁ならび
にパワシリンダ等の流体圧応動装置57に接続され、吐
出ポートOP2は第2吐出通路51を介して容量切替弁
20に接続されている。容量切替弁20の内部には軸動
可能なスプール21により3つの室23.24゜25が
形成され、第1室23には吐出ポー)OPlよりの第1
吐出通路の前半部50aがポート26を介して接続され
ると共に流体圧応動装置57への第1吐出通路の後半部
50bが接続されている。第3室25は後述の流量感知
弁30を介して第1室23に接続されると共にスプール
21を第1室23に向けて付勢するスプリング22が設
けられている。容量切替弁20には更に2つのポート2
7.28が設けられ、ポート27は第2吐出通路51を
介して吐出ポー)OP2に接続され、ポート28は戻し
通路52により吸入通路53゜53aに接続されている
。容量切替弁20のスプール21は、後述の流量感知弁
30の作用により、吐出ポートOP 1よりの吐出流量
が所定量より少いときは、第1図(a)に示す如く第1
室23側に位置してポート27を第1室23に連通し、
吐出ボ−トOP2よりの作動流体は吐出ポートOP1よ
りの作動流体と共に第1吐出通路50の後半部5obを
通って流体圧応動装置57に供給される。As shown in FIG. 1 (al), the suction ports IPI and IP2 are connected to the annular groove 11a of the pump housing 11 and
It is also connected to a reservoir 55 via suction passages 53, 53a to suck working fluid, and a discharge port (OP1) is connected to a fluid pressure response device such as a servo valve of a power steering device and a power cylinder through a first discharge passage 50. 57, and the discharge port OP2 is connected to the capacity switching valve 20 via the second discharge passage 51. Inside the capacity switching valve 20, three chambers 23, 24° 25 are formed by a spool 21 that can move axially.
The first half 50a of the discharge passage is connected via the port 26, and the second half 50b of the first discharge passage is connected to the fluid pressure response device 57. The third chamber 25 is connected to the first chamber 23 via a flow rate sensing valve 30, which will be described later, and is provided with a spring 22 that biases the spool 21 toward the first chamber 23. The capacity switching valve 20 also has two ports 2.
7.28, the port 27 is connected to the discharge port OP2 via the second discharge passage 51, and the port 28 is connected to the suction passage 53.degree. 53a by the return passage 52. When the discharge flow rate from the discharge port OP1 is less than a predetermined amount, the spool 21 of the capacity switching valve 20 is moved to the first position as shown in FIG.
located on the chamber 23 side and communicating the port 27 with the first chamber 23;
The working fluid from the discharge boat OP2 is supplied to the fluid pressure response device 57 through the rear half 5ob of the first discharge passage 50 together with the working fluid from the discharge port OP1.
また吐出ボー)OP 1よりの吐出流量が所定量より多
いときは、スプール21は第1図中)に示す如く第3室
25側に位置して第2室24を介してポート27とポー
ト28を連通し、吐出ポートoP2よりの作動流体は圧
力損失なしに吸入ポートlPi、IP2に戻される。In addition, when the discharge flow rate from the discharge port OP 1 is larger than a predetermined amount, the spool 21 is located on the third chamber 25 side as shown in FIG. The working fluid from the discharge port oP2 is returned to the suction ports IPi and IP2 without pressure loss.
第1図に示す如く、流量感知弁30は3つのポート33
,34.35を有し、ポート34は軸動可能なスプール
31によりポート33とポート35に選択的に接続され
ている。各ボー)33.34.35はそれぞれ管路を介
して容量切替弁20の第1室23、同じく第3室25及
びリザーバ55に接続されている。またスプール31の
左側の圧力室36には対向する圧力室37に向けてスプ
ール31を付勢するスプリング32を設け、圧力室36
は制御管路38を介して、第1吐出通路50の前半部5
0aに設けた絞り58の下流側に連通され、圧力室37
は制御管路39を介して絞り58の上流側に連通される
。ベーンポンプ10の回転数がn2より低く吐出ポート
OP1よりの吐出流量が所定量(後述の値91以上、例
えば61/m1n)以下の場合は、絞り58前後の圧力
差は小であるのでスプール31は第1図(alに示す如
く圧力室37側に位置して容量切替弁20の第3室25
を第1室23に連通し、また回転数が上昇してn2を越
え、吐出ボー)OPIよりの吐出流量が所定量以上とな
れば、絞り58の前後の圧力差によりスプール31は第
1図中)に示す如くスプリング22に抗して圧力室36
側に移動して容量切替弁20の第3室25をリザーバ5
5に連通ずる。As shown in FIG. 1, the flow sensing valve 30 has three ports 33.
, 34, 35, and port 34 is selectively connected to port 33 and port 35 by a pivotable spool 31. Each bow) 33, 34, and 35 are connected to the first chamber 23, the third chamber 25, and the reservoir 55 of the capacity switching valve 20, respectively, via conduits. Further, a spring 32 is provided in the pressure chamber 36 on the left side of the spool 31 to bias the spool 31 toward the opposing pressure chamber 37.
is connected to the front half 5 of the first discharge passage 50 via the control pipe 38.
It communicates with the downstream side of the throttle 58 provided at 0a, and the pressure chamber 37
is communicated with the upstream side of the throttle 58 via the control line 39. When the rotation speed of the vane pump 10 is lower than n2 and the discharge flow rate from the discharge port OP1 is less than or equal to a predetermined amount (a value of 91 or more, for example, 61/m1n, which will be described later), the pressure difference before and after the throttle 58 is small, so the spool 31 As shown in FIG. 1 (al), the third chamber 25 of the capacity switching valve 20 is located on the pressure chamber 37 side.
is communicated with the first chamber 23, and when the rotational speed increases and exceeds n2, and the discharge flow rate from OPI (discharge bow) exceeds a predetermined amount, the spool 31 is moved to the position shown in FIG. As shown in (middle), the pressure chamber 36 resists the spring 22.
Move the third chamber 25 of the capacity switching valve 20 to the reservoir 5.
It connects to 5.
第1図に示す如く、第1吐出通路50と吸入通路53.
53aの間には流量制御弁40が設けられている。流量
制御弁40の内部には軸動可能にスプール41が設けら
れ、同スプール41は戻し通路54を介して吸入通路5
3.53aに接続されるポート43を通常は閉じるよう
にスプリング42により付勢されていると共に、同スプ
リング42を収納した室を制御管路44を介して第1吐
出通路の後半部50bに設けた絞り56の下流側に連通
しである。流体圧応動装置57への供給量が所定の値q
l(例えば6J/win)より大となれば絞り56の前
後の圧力差により流量制御弁40が作動してポート43
が開き、ベーンポンプ10よりの余分の吐出流量は戻し
通路54を介して吸入通路53.53aに戻される。As shown in FIG. 1, a first discharge passage 50, a suction passage 53.
A flow control valve 40 is provided between the valves 53a and 53a. A spool 41 is provided inside the flow control valve 40 so as to be able to move axially, and the spool 41 is connected to the suction passage 5 via a return passage 54.
3.53a is normally biased by a spring 42 to close the port 43, and a chamber housing the spring 42 is provided in the rear half 50b of the first discharge passage via the control pipe 44. It communicates with the downstream side of the throttle 56. The amount of supply to the fluid pressure response device 57 is a predetermined value q
l (for example, 6 J/win), the flow control valve 40 is activated due to the pressure difference before and after the throttle 56, and the flow rate control valve 40 is activated.
is opened, and the excess discharge flow rate from the vane pump 10 is returned to the suction passage 53.53a via the return passage 54.
次に上記第1実施例をサーボ弁ならびにパワシリンダよ
りなる動力舵取装置の流体圧応動装置の駆動に使用した
場合の作動につき説明する。エンジンにより駆動される
ベーンポンプ10の回転数がn2より低く、吐出ポート
OP1よりの吐出流量が所定量(例えば、61/+++
in)以下の場合は、第1図(a)に示す如く、流量感
知弁30は容量切替弁20の第3室25を第1室23に
連通し、容量切替弁20のスプール21は第1室23側
に位置して再吐出ポートOPI、OP2よりの作動流体
を第1吐出通路50の後半部50bを介して流体圧応動
装置57に供給する。この状態において再吐出ボー)O
PI、OP2よりの吐出流量特性は第3図のPlに示す
通りであり、吐出流量が所定の値(例えば、6J/l1
in)以上となれば領域Y1で示される余分の吐出流量
は流量制御弁40により戻し通路54を介して吸入通路
53,53aにバイパスされ、流体圧応動装置57に供
給される制御流量は値q1に保たれる。Next, the operation when the first embodiment is used to drive a fluid pressure responsive device of a power steering device consisting of a servo valve and a power cylinder will be described. The rotation speed of the vane pump 10 driven by the engine is lower than n2, and the discharge flow rate from the discharge port OP1 is a predetermined amount (for example, 61/+++
in) In the following case, as shown in FIG. The working fluid from the re-discharge ports OPI and OP2 located on the chamber 23 side is supplied to the fluid pressure response device 57 via the rear half 50b of the first discharge passage 50. In this state, the re-discharge ball)O
The discharge flow rate characteristics from PI and OP2 are as shown in Pl in FIG.
in), the excess discharge flow rate shown in region Y1 is bypassed by the flow control valve 40 to the suction passages 53, 53a via the return passage 54, and the control flow rate supplied to the fluid pressure response device 57 is the value q1. is maintained.
ベーンポンプ10の回転数がn2より上昇して吐出ポー
トOP1よりの吐出流量が所定量以上となれば、第1図
中)に示す如く流量感知弁30は容量切替弁20の第3
室25をリザーバ55に連通し、容量切替弁20のスプ
ール21は第3室25側に移動して吐出ポートOP2よ
りの作動流体を圧力損失なしに吸入ポートIPI、IP
2に戻し、吐出ポートopiよりの作動流体のみが流体
圧応動装置57に供給される。この状態においては吐出
ポートOP1よりの吐出流量特性は第3図のP2に示す
通りとなり、吐出流量は常に所定の値91以上であるが
、領域Y2で示される余分の吐出流量は流量制御弁40
により吸入通路53.53aにバイパスされ、流体圧応
動装置57に供給される制御流量は値q1に保たれる。When the rotational speed of the vane pump 10 rises above n2 and the discharge flow rate from the discharge port OP1 exceeds a predetermined amount, the flow rate sensing valve 30 moves to the third position of the capacity switching valve 20 as shown in FIG.
The chamber 25 is communicated with the reservoir 55, and the spool 21 of the capacity switching valve 20 moves to the third chamber 25 side to transfer the working fluid from the discharge port OP2 to the suction ports IPI, IP without pressure loss.
2, only the working fluid from the discharge port opi is supplied to the fluid pressure response device 57. In this state, the discharge flow rate characteristics from the discharge port OP1 are as shown at P2 in FIG.
The controlled flow rate bypassed to the suction passage 53.53a and supplied to the hydraulic response device 57 is maintained at the value q1.
上述の如く本実施例によれば、ベーンポンプ10の吐出
流量特性は、第3図に示す如<PI−P3−22となる
と共に流体圧応動装置57に供給される作動流体の制御
流量特性Qは従来と同一特性となり、流量制御弁40に
よるエネルギ損失を伴なうバイパスが生ずる領域Y1及
びY2は従来の領域Xよりも減少する。As described above, according to this embodiment, the discharge flow rate characteristic of the vane pump 10 is <PI-P3-22 as shown in FIG. 3, and the control flow rate characteristic Q of the working fluid supplied to the fluid pressure response device 57 is The characteristics are the same as in the conventional case, and the regions Y1 and Y2 in which bypass accompanied by energy loss due to the flow control valve 40 occurs are reduced compared to the conventional region X.
上記各実施例においては、楕円形のカム面Cに沿って2
組の吸入ポートIPI、IP2及び吐出ポートOPI、
OP2を有するベーンポンプ10の場合につき説明した
が、本発明は略三角形、略四角形等のカム面を有し3組
、4組等の吸入、吐出ポートを有するベーンポンプにつ
いても実施することができる。In each of the above embodiments, two
A set of suction ports IPI, IP2 and discharge ports OPI,
Although the case of the vane pump 10 having OP2 has been described, the present invention can also be implemented in a vane pump having a substantially triangular or substantially square cam surface and three or four sets of suction and discharge ports.
第1図〜第3図は本発明の一実施例を示し、第1図(a
)はベーンポンプを含む全体の構造図で低速回転状態を
示す図、第1回出)は同じく高速回転状態を示す図、第
2図は第1図(a)のu−n線に沿ったベーンポンプの
断面図、第3図は「ポンプ回転数−流量」の特性図、第
4図は従来例の構造図、第5図は従来例の「ポンプ回転
数−流量」の特性図である。
符号の説明
10・・・ベーンポンプ、11・・・ポンプハウジング
、13・・・カムリング、16・・・ロータ、17・・
・ベーン、18・・・回転軸、20・・・容量切替弁、
40・・・流量制御弁、50・・・第1吐出通路、51
・・・第2吐出通路、57・・・流体圧応動装置、IP
I、[P2・・・吸入ポート、OPl、OF2・・・吐
出ポート、C・・・カム面、C1,C2・・・カム曲線
。1 to 3 show an embodiment of the present invention, and FIG.
) is a diagram of the entire structure including the vane pump, showing a low-speed rotation state, 1st issue) is a diagram also showing a high-speed rotation state, and Fig. 2 is a diagram of the vane pump along line u-n in Fig. 1(a). 3 is a characteristic diagram of "pump rotation speed-flow rate", FIG. 4 is a structural diagram of a conventional example, and FIG. 5 is a characteristic diagram of "pump rotation speed-flow rate" of a conventional example. Explanation of symbols 10... Vane pump, 11... Pump housing, 13... Cam ring, 16... Rotor, 17...
・Vane, 18... Rotating shaft, 20... Capacity switching valve,
40...Flow rate control valve, 50...First discharge passage, 51
...Second discharge passage, 57...Fluid pressure response device, IP
I, [P2... Suction port, OPl, OF2... Discharge port, C... Cam surface, C1, C2... Cam curve.
Claims (1)
に設けられかつ内周に複数のカム曲線よりなるカム面を
有するカムリングと、このカムリング内に収納されかつ
ポンプハウジングに軸支された回転軸に連結されたロー
タと、前記カム面とロータの間に複数個に区画されたポ
ンプ室を構成すべく前記ロータに円周上等間隔で放射方
向に摺動可能に嵌装された複数のベーンと、前記ポンプ
室に対して作動流体を吸入または吐出すべく前記複数の
カム曲線に対応して設けられた複数組の吸入ポート及び
吐出ポートを有するベーンポンプにおいて、前記複数の
吐出ポートの一部は第1吐出通路を介して流体圧応動装
置に接続すると共に残りの吐出ポートは第2吐出通路を
介して容量切替弁に接続し、この容量切替弁は前記第2
吐出通路を、前記一部の吐出ポートよりの吐出流量が所
定量より少い場合は前記流体圧応動装置に、同吐出ポー
トよりの吐出流量が所定量より多い場合は前記吸入ポー
トに選択的に接続するよう構成し、更に前記第1吐出通
路にはベーンポンプより前記流体圧応動装置に供給され
る作動流体の量が所定の値を越えれば同作動流体の一部
を前記吸入ポートにバイパスする流量制御弁を設けたこ
とを特徴とするベーンポンプの容量切替装置。A pump housing, a cam ring that is integrally provided within the pump housing and has a cam surface formed of a plurality of cam curves on the inner periphery, and a cam ring that is housed within the cam ring and is connected to a rotating shaft that is pivotally supported by the pump housing. a plurality of vanes slidably fitted in the rotor in a radial direction at equal intervals on the circumference to constitute a plurality of pump chambers partitioned between the cam surface and the rotor; In a vane pump having a plurality of sets of suction ports and discharge ports provided corresponding to the plurality of cam curves to suck or discharge working fluid into the pump chamber, some of the plurality of discharge ports are connected to a first discharge port. The remaining discharge ports are connected to the fluid pressure response device via a passage, and the remaining discharge ports are connected to a capacity switching valve via a second discharge passage, and the capacity switching valve is connected to the second discharge port.
The discharge passage is selectively connected to the fluid pressure response device when the discharge flow rate from some of the discharge ports is less than a predetermined amount, and to the suction port when the discharge flow rate from the same discharge port is higher than a predetermined amount. The first discharge passage is configured to have a flow rate configured to bypass a portion of the working fluid to the suction port when the amount of working fluid supplied from the vane pump to the fluid pressure response device exceeds a predetermined value. A vane pump capacity switching device characterized by being equipped with a control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246864A JPS61125966A (en) | 1984-11-21 | 1984-11-21 | Capacitiy change-over device for vane pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59246864A JPS61125966A (en) | 1984-11-21 | 1984-11-21 | Capacitiy change-over device for vane pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61125966A true JPS61125966A (en) | 1986-06-13 |
Family
ID=17154860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59246864A Pending JPS61125966A (en) | 1984-11-21 | 1984-11-21 | Capacitiy change-over device for vane pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61125966A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053701A1 (en) * | 2000-01-21 | 2001-07-26 | Delphi Technologies, Inc. | Hydraulic vane pump |
WO2001053702A1 (en) * | 2000-01-21 | 2001-07-26 | Delphi Technologies, Inc. | Hydraulic fluid vane pump |
US6641372B2 (en) | 2000-01-21 | 2003-11-04 | Delphi Technologies, Inc. | Dual discharge hydraulic pump and system therefor |
JP2016109020A (en) * | 2014-12-05 | 2016-06-20 | 富士重工業株式会社 | Oil pump discharge changeover circuit |
-
1984
- 1984-11-21 JP JP59246864A patent/JPS61125966A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053701A1 (en) * | 2000-01-21 | 2001-07-26 | Delphi Technologies, Inc. | Hydraulic vane pump |
WO2001053702A1 (en) * | 2000-01-21 | 2001-07-26 | Delphi Technologies, Inc. | Hydraulic fluid vane pump |
US6478549B1 (en) | 2000-01-21 | 2002-11-12 | Delphi Technologies, Inc. | Hydraulic pump with speed dependent recirculation valve |
US6641372B2 (en) | 2000-01-21 | 2003-11-04 | Delphi Technologies, Inc. | Dual discharge hydraulic pump and system therefor |
JP2016109020A (en) * | 2014-12-05 | 2016-06-20 | 富士重工業株式会社 | Oil pump discharge changeover circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002188579A (en) | Variable displacement pump | |
US4289454A (en) | Rotary hydraulic device | |
JPS62129593A (en) | Vane type compressor | |
JPS61125966A (en) | Capacitiy change-over device for vane pump | |
JPH034756B2 (en) | ||
JPH04237675A (en) | Power steering system | |
JP2008115773A (en) | Oil pump | |
JPS61119472A (en) | Capacity selecting apparatus for vane pump | |
JP3635671B2 (en) | Double cartridge type oil pump | |
JP3371709B2 (en) | Oil pump device | |
JPH0714186U (en) | Vane pump | |
JPH0318715Y2 (en) | ||
JPH0526956B2 (en) | ||
JPH0320557Y2 (en) | ||
JPS6214394Y2 (en) | ||
JPS646352B2 (en) | ||
JPS603289Y2 (en) | Oil pump drive device in internal combustion engine | |
JP2003176791A (en) | Variable displacement vane pump | |
JPH0320556Y2 (en) | ||
JPS6014949Y2 (en) | pump equipment | |
JPS59110882A (en) | Variable volume vane pump | |
JPH03118286U (en) | ||
JP2544107Y2 (en) | Pump device | |
JPH0433994B2 (en) | ||
JPS61218781A (en) | Controller of pump's intake fluid |