JPS61124882A - Method and apparatus for measuring level of molten metal in mold - Google Patents

Method and apparatus for measuring level of molten metal in mold

Info

Publication number
JPS61124882A
JPS61124882A JP59246837A JP24683784A JPS61124882A JP S61124882 A JPS61124882 A JP S61124882A JP 59246837 A JP59246837 A JP 59246837A JP 24683784 A JP24683784 A JP 24683784A JP S61124882 A JPS61124882 A JP S61124882A
Authority
JP
Japan
Prior art keywords
ultrasonic
mold
molten metal
level
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59246837A
Other languages
Japanese (ja)
Inventor
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59246837A priority Critical patent/JPS61124882A/en
Publication of JPS61124882A publication Critical patent/JPS61124882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the level of the molten metal in a mold with good accuracy, by measuring a time during which an ultrasonic wave is transmitted and reflected from the surface of the molten metal to be received. CONSTITUTION:An ultrasonic transmitter-receiver 10 transmits an ultrasonic pulse toward the surface of molten steel 24A in a mold 22. This ultrasonic pulse is reflected from the surface of molten steel 24A to be returned to the ultrasonic transmitter-receiver 10 and received by a receiver 34 to be outputted to a time measuring device 36. The time measuring device 36 measures the time difference of a main bang echo and the reflected echo, which was reflected from the surface of molten steel 24A and returned to the ultrasonic transmitter- receiver 10, from the inputted signal not only to display the measured value but also to output the same to an operational processor 38 which, in turn, calculates the distance DELTAl between the ultrasonic transmitter-receiver 10 and the surface of molten steel 24A in the mold 22 on the basis of the inputted time difference.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、モールド内溶融金属レベルの測定方法及び装
置に係り、特に鋼の連続鋳造設備に用いるのに好適な、
超音波を発信し、その反射波を受信することにより溶融
金属のレベルを測定するモールド内溶融金属レベルの測
定方法及び装置の改良に関する。
The present invention relates to a method and apparatus for measuring the level of molten metal in a mold, and is particularly suitable for use in continuous steel casting equipment.
The present invention relates to improvements in a method and device for measuring the level of molten metal in a mold, which measures the level of molten metal by transmitting ultrasonic waves and receiving the reflected waves.

【従来の技術】[Conventional technology]

鋼等の金属連続鋳造において、モールド内の溶融金属レ
ベルを正確に把握することは、安定な鋳込み及び鋳造さ
れた鋳片の良好な品質の維持にとって極めて重要であり
、現在様々な測定技術が存在している。該測定技術の中
で代表的なものとしては、以下のものが上げられる。 (1)モールドに複数の熱電対あるいは感温素子を埋込
み、該熱電対あるいは該感温素子により測定されたモー
ルドの上、下方向の濃度分布から溶鋼レベルを測定する
、例えば、特開昭55−147469に示された測定方
法。 (2)渦電流による距離測定原理を用いて測定する、例
えば、特開昭58−3763に示された測定方法。 (3)モールドのl1wMに励磁コイル及び検出コイル
を設置し、該検出コイルのインピーダンス変化から溶鋼
レベルを測定する、例えば、特開昭58−53363に
示された測定方法。 (4)電極又は、抵抗線を溶鋼に浸漬させ、電極とモー
ルド壁との導通、あるいは、定電流電源、抵抗線、溶鋼
、及びモールド壁等から構成される電気回路の抵抗変化
を検出して溶鋼レベルを測定する、例えば、特開昭57
−19137及び、特開昭57−169626に示され
た測定方法。 (5)モールドを挾んで、一方に放射線源を、他方に検
出器を設置し、放射棒の透過量から溶鋼レベルを測定す
る、例えば、特開昭57−173722に示された測定
方法。 (6)モールド内の湯面を斜め上方から撮影する様に、
モールドの上方にテレビカメラを設置し、このテレビカ
メラの捉えた映像信号から溶鋼レベルを測定する、例え
ば、特開昭58−29558に示された測定方法。 (7)超音波送受信子を複数−モールドの上下方向に取
付けるか、あるいは埋込み、超音波をモールド内V<溶
鋼側)に向けて送信し、モールド内壁で反射して超音波
送受信子へかえる超音波エコーの強度を測定1bか、あ
るいは、対向するモールドに取付けられた、超音波送受
信子への超音波エコーの透過量を測定することにより溶
鋼のレベルを測定する、例えば、特開昭48−1812
3、特開昭57−159251に示された測定方法。
In continuous casting of metals such as steel, accurately determining the level of molten metal in the mold is extremely important for stable casting and maintaining good quality of the cast slab, and various measurement techniques currently exist. are doing. Among the measurement techniques, the following are representative. (1) A method of embedding a plurality of thermocouples or temperature sensing elements in a mold and measuring the molten steel level from the concentration distribution above and below the mold as measured by the thermocouples or temperature sensing elements. -Measurement method shown in 147469. (2) A measuring method disclosed in, for example, Japanese Patent Application Laid-Open No. 58-3763, which measures using a distance measuring principle based on eddy currents. (3) A measuring method disclosed in, for example, JP-A-58-53363, in which an excitation coil and a detection coil are installed at l1wM of the mold, and the molten steel level is measured from the impedance change of the detection coil. (4) Immerse an electrode or resistance wire in molten steel to detect continuity between the electrode and the mold wall, or change in resistance of an electric circuit consisting of a constant current power source, resistance wire, molten steel, mold wall, etc. Measuring the molten steel level, for example, JP-A-57
-19137 and the measurement method shown in JP-A-57-169626. (5) A measuring method disclosed in, for example, JP-A-57-173722, in which a radiation source is placed on one side of the mold and a detector is placed on the other side, and the molten steel level is measured from the amount of transmission of the radiation rod. (6) Photograph the hot water level inside the mold from diagonally above.
For example, a measuring method disclosed in Japanese Patent Laid-Open No. 58-29558, in which a television camera is installed above the mold and the molten steel level is measured from the video signal captured by the television camera. (7) Multiple ultrasonic transmitters/receivers - Attach or embed them in the vertical direction of the mold, transmit ultrasonic waves toward the inside of the mold (V < molten steel side), reflect on the inner wall of the mold, and return the ultrasonic waves to the ultrasonic transmitters/receivers. The level of molten steel is measured by measuring the intensity of the sonic echo 1b or by measuring the amount of transmission of the ultrasonic echo to an ultrasonic transmitter/receiver attached to an opposing mold. 1812
3. Measuring method disclosed in JP-A-57-159251.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、上記従来の方法には、以下で述べる問題
点がある。 即ち、(1)の前記モールドに複数の熱電対あるいは感
温素子を埋込み測定する方法では、熱電対や感温素子の
設置のピッチで測定精度が決まり、測定精度を上げるた
めには、多数の熱電対や感温素子が必要で、測定設備が
大がかりで、設置・維持にかかるコストが大きい。又、
溶鋼レベルの変動によるモールド鋳型内の濃度分布の変
化にかなりの遅れがあり、応答速度が遅い。 又、(2)の前記渦電流を用いた測定方法では、周囲に
磁性体が近づくと磁界に乱れが生じ、測定値に大きな誤
差が生ずる。 又、(3)の前記モールドの側壁に励磁コイル及び検出
コイルを設置する測定方法では、モールド壁の加工及び
その加工精度が検出精度に影響を及ぼす。 又、(4)の前記電極、又は、抵R1を溶鋼に浸漬させ
る測定方法では、電極や抵抗線を直接、溶鋼に浸漬する
ため、測定子に損耗が起こるのを避けられず保守性に問
題がある。又溶鋼表面にモールドパウダが存在すると、
その電気特性が検出精度に影響を及ぼす。 又、(5)の前記モールドを挾んで、一方に放射線源を
、他方に検出器を設置する測定方法では、放射線の漏洩
の可能性があり、安全性に問題がある。 又、(6)の前記モールド内の湯面を斜め上方から撮影
する測定方法では、溶鋼の火炎等による光学的外乱によ
って画像が乱れ、それによって大きな測定誤差を生ずる
ことがあり、又、溶鋼の表面に溶融していないモールド
パウダが存在する場合、この未溶融のモールドパウダの
発光量が溶鋼よりも極めて小さいため、画、像には、該
未溶融のモールドパウダが暗点として捉えられ、これが
。 モールドと溶鋼の境界線の近傍に存在する場合、該モー
ルドと溶鋼の境界が画一から識別できなくなる。 又、(7)の前記超音波送受信子を複数−モールドの上
下方向に取付けるか、あるいは埋込む測定方法では、モ
ールドに多数の超音波探触子を取付けるか、あるいは埋
込む必要があり、測定系が繁雑になるほか、保守性が悪
い。 【発明の目的1 本発明は、上記従来の問題点を鑑みてなされたものであ
って、モールド内溶融金属レベルを簡潔な測定系で、外
乱に強く、応答速度が速く、しかも精度よく測定できる
、モールド内溶融金属レベルの測定方法及び装置を提供
することを目的とする。 [11m題点を解決するための手段] 本発明は、超音波を発信しその反射波を受信することに
より、溶融金属のレベルを瀞定するモールド内溶融金属
レベルの測定方法において、第1図にその要旨を示す如
く、モールド上方より、該モールド内の溶融金属表面へ
向けて略垂直に空気中へ超音波を発信し、該超音波が発
信されてから前記溶融金属表面で反射され受信されるま
での時間を計測し、該計測した結果からモールド内の溶
融金属のレベルを測定するようにして、前記目的を達成
したものである。 又、本発明は、超音波を発信しその反射波を受信するこ
とによって溶融金属のレベルを測定するモールド内溶融
金属レベルの測定装置において、モールド上方に設けら
れた、該モールド内のWI融金金属表面向けて略垂直に
空気中へ超音波を発信する超音波送信手段と、該超音波
送信手段に電気パルスを印加する電気パルス送信器と、
前記モールド内の溶融金属表面から反射されてきた超音
波を受信する超音波受信手段と、該超音波受信手段で受
信された信号を増幅する受信器と、前記超音波送信手段
が超音波パルスを発信してから、前記超音波受信手段が
受信するまでの時間間隔を計測する時間計測器とを備え
たことにより、同じく前記目的を達成したものである。 【作用1 以下図面を参照して、本発明の作用について詳細に説明
する。 前出第1図において、超音波送受信子10から送信され
た超音波パルスは、モールド22内の溶融金!a24の
表面で反射され反射エコー14となり、前記超音波送受
信子10へかえり受信される。 なお、26は凝固シェルであり、32は゛電気パルス送
信器、34は受信器、36は時間計測器である。この際
、前記超音波送受信子10で受信された超音波信号は、
第2図に示す波形となる。 第2図において、12は、超音波パルス送信時に超音波
送受信子10内の超音波振動子に生ずる撮動、即ら、メ
インバングエコーであり、又、14は、送信された超音
波が溶融金121124の表面で置割され、再び超音波
送受信子10へかえってきた超音波エコー、即ら、反射
エコーである。従つて、メインバングエコー12と反射
エコー14の時間差Δtが、超音波送受信子1oで発信
された超音波が該超音波送受信子1oと溶融金属24表
面との問を往復するのに要した#間である。よって、前
記時間差Δtを音速で除算すれば、前記超音波送受信子
10と前記溶融金属24表面の往復距離2Δβを求める
ことができる。 しかし、現実的には、前記溶融金属24は高温であるた
め、超音波パルスの伝播路上には、温度勾配が生じてお
り、該超音波パルスの伝播路上の音速にも温度を関数と
する分布が生じている。従って、溶融金属レベルの変動
に伴い、超音波送受信子10と溶融金属24の表面との
距離が変化すると、該溶融金属24表面近くの温度の^
い部分での濃度分布は極く優かしか変化しないものの、
前記超音波送受信子10近くの温度の低い部分の、前記
超音波パルスの伝播路全体に占める割合が変化してしま
う。そのため、該超音波パルスの伝播路上での′平均音
速が変化し、いつも一定の音速値を用いて前記vI間差
ΔtをM算していたのでは、求められたlB音波送受信
子10と前記溶融金属24表面との距離Δβに誤差が生
じてしまう。しかし、通常の操業時は、該溶融金属24
のレベルの変動に伴う、該溶融金属24表面近くの8i
度分布の変動は極く小さく、従って、音速分布の変動も
極く小さい。 即ち、前記溶融金1124のレベルの変化に伴う前記メ
インバングエコー12と反射エコー14の時間差Δtの
変化は、例えば第3図に示す如く、単調で滑かであり、
しかも再現性がよい。但し、前記時間差Δtは、前記超
音波送受信子10と溶融金属表面との距離Δβの増加に
対して単調に増加するが、溶融金属レベルは該距離Δ(
が小さいほど大きくなるため、第3図に示す如く前記時
間差Δtは溶融金属レベルの増加に対し単調に減少する
。 従って、前記距離Δぶの数個の値に対し時間差Δtを予
め測定し、溶融金1i124のレベルと時間差Δtの関
係について第3図に示されたような関係を求めておけば
、実測定において、前記時間差Δ【から前記距離Δpを
求めることができる。又、該距離Δぶと該時間差Δ【と
の関係の代わりに、超音波パルス伝播路上での平均音速
と該時間差Δもの関係を予め求めておき、前記距離Δぶ
の測定に用いてもよいし、更に、該距離Δぶと該時間差
Δtの関係を求める場合には該距離Δ℃を連続的に変化
させ該時間差Δtを求めてもよい。 なお、該距離Δ℃と該時間差Δtとの関係を予め求める
場合、該距離Δぶの測定には、超音波を使った手段とは
別の手段を用いる。 一方、モールド内の溶融金属レベルの測定値を、モール
ド内の溶融金属レベルを一定に保つ等の制御用の信号と
して用いる場合には、上述した様なモールド内の溶融金
属レベルの絶対値を求める手続きを実施せずに1.超音
波パルスの伝播時間である時間差Δ(の測定値をそのま
ま用いることも可能である。 本発明は、超音波を用いているため、電磁気的な外乱に
強い。又、測定周期は、超音波パルスの送信開隔で決ま
るが、これは通常0.01sec〜0.0O1sec程
度であり、非常に速い応答速度の測定が可能である。。 更に、超音波送受信子をモ〜−ルド上方に設置し、測定
を行うため、溶融金属の高熱による測定系の損耗が起り
にくい等の利点を有している。従って、連続鋳造設備の
安定な操業が可能となり、良好な品質の鋳片を製造する
ことができる。 【実施例] 以下本発明の実施例について詳細に説明する。 M4図は、本発明が適用された実施例を示す図である。 本実施例は、モールド22上方の適当な支持体201.
:設置固定された、超音波゛を溶鋼24A表面に発信し
、反射エコー14を受信する超音波送受信子10と、該
超音波送受信子10に電気パルスを印加する電気パルス
送信器32と、前記超音波送受信子10が受信した信号
を増幅する受信器34と、前記超音波送受信子10が超
音波パルスを発信してから、該超音波パルスが前記モー
ルド自溶IM24A表面で反射されて該超音波送受信子
10へかえってくるまでの時間間隔を測定し出力又は表
示する時間計測器36と、該時間計測器36の出力から
、前記超音波送受信子10と前記モールド内溶鋼24A
表面との距離を計算し出力又は表示する演算処理器38
とから構成されている。 以下本実施例の作用について詳細に説明する。 電気パルス送信器10は、該モールド22内の溶鋼24
Aのレベルの測定のため、前記超音波送受信子10へ入
力する電気パルスを一定の繰返しで送信していて、−力
受信器34も前記電気パルス送信器32と共に、一つの
超音波送受信子10に接続されており、従って該超音波
送受信子10は送信、受信の役割を兼用する。前記電気
パルス送信器32からの電気パルスを受け、前記超音波
送受信子10は超音波パルスを前記モールド22内の前
記溶鋼24Aの表面に向けて送信する。この超音波パル
スは前記溶鋼24Aの表面にて屏射され、前記超音波送
受信子10へかえる。前記超音波送受信子10へかえっ
た超音波パルスは、再びここで電気信号に変換され、前
記受信器34に受信され、増幅される。増幅された信号
は、該受信器34から、時間計測器36へ出力され、該
時間計測器36は入力された信号から、メインバングエ
コー12と前記溶鋼24Aの表面で反射し前記超音波送
受信子10へ戻った反射エコー14の時間差Δtを計測
し、この値を表示すると共に、演n!I!l理器38へ
出力する。該演算処理器38は、入力された時間差Δ【
を基に超音波送受信子10とモールド22内の溶1m2
4Aの表面との距離Δ(を求め、該距離Δβの値を表示
すると共に、適当な記録媒体にこの値を記録する。 第5図に、この発明が適用されたモールド内溶融金属レ
ベル測定装置により溶鋼レベルを実際に測定した結果の
一例を示す。溶鋼レベルの変動が1n以下の精度で測定
されていることがわかる。 なお、上記実施例では、一つで送信、受信を兼用する超
音波送受信子を例示したが、超音波送信子、超音波受信
子はこれに限定されず、送信、受信が別々となった超音
波送受信子を用いてもよい。 又、前記実施例では、超音波送受信子10とモールド内
層鋼24A表面との距離を計算するのに演詐処理器38
を用いていたが、超音波送受信子10とモールド内溶融
金属表面との距離Δβが求められる手段であればこれに
限定されず、又、時間計測器36の出力又は表示により
前記超音波送受信子とモールド内溶融金属表面との距離
が求められれば、演算処M63Bは必要としない。 又、前記実施例は、溶鋼表面のレベルの測定方法及び装
置に関するものであったが、溶鋼に限定されるものでは
なく、他の溶融金属であってもよい。 【発明の効果] 以上の通り、本発明によれば、モールド内溶融金属レベ
ルを簡潔な測定系で、外乱に強く、応答速度が速く、し
かも精度よく測定できる。従って、溶融金属の鋳造を行
うに際し、安定な操業が可能となり、良好な品質の鋳片
が製−できる等の優れた効果を有する。
However, the above conventional method has the problems described below. That is, in the method (1) of embedding multiple thermocouples or temperature sensing elements in the mold, the measurement accuracy is determined by the pitch at which the thermocouples or temperature sensing elements are installed. Thermocouples and temperature-sensing elements are required, and measurement equipment is large-scale, resulting in high installation and maintenance costs. or,
There is a considerable delay in the change in concentration distribution within the mold due to fluctuations in the molten steel level, resulting in a slow response speed. In addition, in the measurement method (2) using the eddy current, when a magnetic body approaches the surrounding area, disturbance occurs in the magnetic field, resulting in a large error in the measured value. Furthermore, in the measurement method (3) in which an excitation coil and a detection coil are installed on the side wall of the mold, the processing of the mold wall and its processing accuracy affect the detection accuracy. In addition, in the measurement method of (4) in which the electrode or resistor R1 is immersed in molten steel, since the electrode or resistance wire is directly immersed in molten steel, wear and tear on the probe is unavoidable, resulting in problems in maintainability. There is. Also, if mold powder is present on the surface of molten steel,
Its electrical characteristics affect detection accuracy. Furthermore, in the measurement method (5) in which the mold is sandwiched and a radiation source is placed on one side and a detector is placed on the other side, there is a possibility of radiation leakage, which poses a safety problem. In addition, in the measurement method (6) of photographing the molten metal surface in the mold from diagonally above, the image may be distorted by optical disturbances caused by flames of the molten steel, etc., resulting in large measurement errors. When there is unmelted mold powder on the surface, the amount of light emitted by this unmelted mold powder is extremely smaller than that of molten steel, so the unmelted mold powder is captured as a dark spot in the image. . If it exists near the boundary line between the mold and molten steel, the boundary between the mold and molten steel becomes uniform and cannot be identified. In addition, in the measurement method (7) in which a plurality of ultrasonic transceivers are attached or embedded in the vertical direction of the mold, it is necessary to attach or embed a large number of ultrasonic probes in the mold, making it difficult to measure. In addition to making the system complicated, it also has poor maintainability. [Objective of the Invention 1] The present invention has been made in view of the above-mentioned conventional problems, and is capable of measuring the molten metal level in a mold with a simple measurement system that is resistant to external disturbances, has a fast response speed, and has high accuracy. It is an object of the present invention to provide a method and apparatus for measuring the level of molten metal in a mold. [Means for Solving Problem 11m] The present invention provides a method for measuring the level of molten metal in a mold by emitting ultrasonic waves and receiving the reflected waves, as shown in FIG. As shown in Figure 2, ultrasonic waves are emitted from above the mold almost perpendicularly into the air toward the molten metal surface within the mold, and after the ultrasonic waves are emitted, they are reflected by the molten metal surface and received. The above objective is achieved by measuring the time until the mold melts and measuring the level of molten metal in the mold from the measured result. The present invention also provides an in-mold molten metal level measuring device that measures the level of molten metal by emitting ultrasonic waves and receiving the reflected waves. an ultrasonic transmitter that transmits ultrasonic waves into the air substantially perpendicularly toward a metal surface; an electric pulse transmitter that applies an electric pulse to the ultrasonic transmitter;
an ultrasonic receiving means for receiving ultrasonic waves reflected from the molten metal surface in the mold; a receiver for amplifying the signal received by the ultrasonic receiving means; and an ultrasonic transmitting means for transmitting ultrasonic pulses. The above object is also achieved by including a time measuring device that measures the time interval from when the ultrasonic waves are transmitted to when the ultrasonic waves are received by the ultrasonic receiving means. [Operation 1] The operation of the present invention will be explained in detail below with reference to the drawings. In FIG. 1 mentioned above, the ultrasonic pulses transmitted from the ultrasonic transceiver 10 are applied to the molten gold in the mold 22! It is reflected by the surface of a24, becomes a reflected echo 14, and is returned to and received by the ultrasonic transceiver 10. Note that 26 is a coagulation shell, 32 is an electric pulse transmitter, 34 is a receiver, and 36 is a time measuring device. At this time, the ultrasonic signal received by the ultrasonic transceiver 10 is
The waveform is shown in FIG. In FIG. 2, reference numeral 12 indicates a main bang echo, which occurs in the ultrasonic transducer in the ultrasonic transmitter/receiver 10 when transmitting an ultrasonic pulse, and 14 indicates a main bang echo that occurs when the transmitted ultrasonic wave melts. This is an ultrasonic echo that is broken on the surface of the gold 121124 and returned to the ultrasonic transmitter/receiver 10, that is, a reflected echo. Therefore, the time difference Δt between the main bang echo 12 and the reflected echo 14 is # required for the ultrasonic wave emitted by the ultrasonic transceiver 1o to travel back and forth between the ultrasonic transceiver 1o and the surface of the molten metal 24. It is between. Therefore, by dividing the time difference Δt by the speed of sound, the round trip distance 2Δβ between the ultrasonic transceiver 10 and the surface of the molten metal 24 can be determined. However, in reality, since the molten metal 24 is at a high temperature, a temperature gradient occurs on the propagation path of the ultrasonic pulse, and the sound velocity on the propagation path of the ultrasonic pulse also has a distribution as a function of temperature. is occurring. Therefore, when the distance between the ultrasonic transmitter/receiver 10 and the surface of the molten metal 24 changes as the molten metal level changes, the temperature near the surface of the molten metal 24 changes.
Although the concentration distribution in the dark part changes only slightly,
The proportion of the low-temperature portion near the ultrasonic transceiver 10 in the entire propagation path of the ultrasonic pulse changes. Therefore, the average sound velocity on the propagation path of the ultrasonic pulse changes, and if the vI difference Δt was always calculated using a constant sound velocity value, then the An error occurs in the distance Δβ from the surface of the molten metal 24. However, during normal operation, the molten metal 24
8i near the surface of the molten metal 24 as the level of
The fluctuations in the speed distribution are extremely small, and therefore the fluctuations in the sound speed distribution are also extremely small. That is, the change in the time difference Δt between the main bang echo 12 and the reflected echo 14 as the level of the molten gold 1124 changes is monotonous and smooth, as shown in FIG. 3, for example.
Moreover, the reproducibility is good. However, the time difference Δt increases monotonically with an increase in the distance Δβ between the ultrasonic transceiver 10 and the molten metal surface, but the molten metal level increases as the distance Δ(
The smaller the value, the larger the time difference Δt becomes, so as shown in FIG. 3, the time difference Δt monotonically decreases as the molten metal level increases. Therefore, if the time difference Δt is measured in advance for several values of the distance Δb, and the relationship between the level of the molten metal 1i124 and the time difference Δt as shown in FIG. , the distance Δp can be determined from the time difference Δ[. Furthermore, instead of the relationship between the distance Δ and the time difference Δ, the relationship between the average sound speed on the ultrasonic pulse propagation path and the time difference Δ may be determined in advance and used to measure the distance Δ. However, when determining the relationship between the distance ΔC and the time difference Δt, the distance Δ° C. may be continuously changed to determine the time difference Δt. Note that when the relationship between the distance Δ°C and the time difference Δt is determined in advance, a means different from the means using ultrasonic waves is used to measure the distance Δ. On the other hand, when using the measured value of the molten metal level in the mold as a control signal to maintain a constant molten metal level in the mold, the absolute value of the molten metal level in the mold is determined as described above. 1. without carrying out the procedure. It is also possible to use the measured value of the time difference Δ(, which is the propagation time of an ultrasonic pulse) as is. Since the present invention uses ultrasonic waves, it is resistant to electromagnetic disturbances. It is determined by the pulse transmission interval, which is usually about 0.01 sec to 0.0 O1 sec, and it is possible to measure very fast response speed.Furthermore, an ultrasonic transmitter/receiver is installed above the mold. This method has the advantage that the measurement system is less likely to be worn out due to the high heat of the molten metal.Therefore, continuous casting equipment can operate stably and produce slabs of good quality. [Example] Examples of the present invention will be described in detail below. Figure M4 is a diagram showing an example to which the present invention is applied. Body 201.
: an ultrasonic transmitter/receiver 10 which is installed and fixed and transmits ultrasonic waves to the surface of the molten steel 24A and receives reflected echoes 14; an electric pulse transmitter 32 which applies electric pulses to the ultrasonic transmitter/receiver 10; A receiver 34 amplifies the signal received by the ultrasonic transceiver 10, and after the ultrasonic transceiver 10 emits an ultrasonic pulse, the ultrasonic pulse is reflected on the surface of the mold self-fusing IM 24A and the ultrasonic pulse is A time measuring device 36 that measures and outputs or displays the time interval until the sound wave is returned to the ultrasonic transmitting/receiving element 10, and from the output of the time measuring device 36, the ultrasonic transmitting/receiving element 10 and the molten steel in the mold 24A.
Arithmetic processor 38 that calculates and outputs or displays the distance to the surface
It is composed of. The operation of this embodiment will be explained in detail below. The electric pulse transmitter 10 transmits the molten steel 24 in the mold 22.
In order to measure the level of A, the electric pulse input to the ultrasonic transmitter/receiver 10 is transmitted with a constant repetition, and the force receiver 34 is also connected to one ultrasonic transmitter/receiver 10 along with the electric pulse transmitter 32. Therefore, the ultrasonic transmitter/receiver 10 serves both as a transmitter and a receiver. Upon receiving the electric pulse from the electric pulse transmitter 32, the ultrasonic transceiver 10 transmits the ultrasonic pulse toward the surface of the molten steel 24A in the mold 22. This ultrasonic pulse is reflected on the surface of the molten steel 24A and is returned to the ultrasonic transceiver 10. The ultrasonic pulses returned to the ultrasonic transmitter/receiver 10 are again converted into electrical signals, received by the receiver 34, and amplified. The amplified signal is outputted from the receiver 34 to a time measuring device 36, and the time measuring device 36 reflects the input signal from the main bang echo 12 and the surface of the molten steel 24A and transmits the signal to the ultrasonic transmitter/receiver. The time difference Δt of the reflected echo 14 returned to the echo 10 is measured, this value is displayed, and the performance n! I! output to the processor 38. The arithmetic processor 38 calculates the input time difference Δ[
Based on the ultrasonic transmitter/receiver 10 and the melt 1m2 in the mold 22.
4A to the surface is determined, and the value of the distance Δβ is displayed and this value is recorded on a suitable recording medium. FIG. 5 shows an in-mold molten metal level measuring device to which the present invention is applied. An example of the results of actually measuring the molten steel level is shown below. It can be seen that fluctuations in the molten steel level are measured with an accuracy of 1n or less. In the above example, one ultrasonic wave is used for both transmission and reception. Although the transmitter/receiver is illustrated, the ultrasonic transmitter and the ultrasonic receiver are not limited to this, and an ultrasonic transmitter/receiver that transmits and receives separately may be used. The fraud processor 38 is used to calculate the distance between the transmitter/receiver 10 and the surface of the mold inner layer steel 24A.
However, the method is not limited to this, as long as the distance Δβ between the ultrasonic transceiver 10 and the surface of the molten metal in the mold can be determined. If the distance between and the surface of the molten metal in the mold is determined, the calculation process M63B is not required. Further, although the above embodiments relate to a method and apparatus for measuring the surface level of molten steel, the method and apparatus are not limited to molten steel, and may be applied to other molten metals. [Effects of the Invention] As described above, according to the present invention, the level of molten metal in a mold can be measured with a simple measurement system that is resistant to external disturbances, has a fast response speed, and has high accuracy. Therefore, when casting molten metal, stable operation is possible, and excellent effects such as being able to produce slabs of good quality are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の詳細な説明するための、超音波送受
信子から超音波を発信してモールド内の溶融金属のレベ
ル測定を行う状態を示す、一部ブロック線図を含む縦断
面図、 第2図は、同じく、超音波送受信子から発信されて、該
超音波送受信子で受信された超音波信号の波形の例を示
を線図、 第3図は、同じく、溶融金属レベルと、超音波送受信の
時間差Δtとの関係の例を示す縮図、第4図は、本発明
が適用された実施例を示す、一部ブロック線図を含む縦
断面図1 、  第5図は、前記実施例で測定したモールド内層1
nレベルの例を示す線図である。 10・・・超音波送受信子、 12・・・メインバングエコー、 14・・・反射エコー、 22・・・モールド、    24・・・溶融金属、2
4A・・・溶鋼、 32・・・電気パルス送信器、 34・・・受信器、     36・・・時間計測器、
38・・・演算処理器、 Δぶ・・−超音波送受信子と溶融金属表面との距離、Δ
t・・・超音波発信時と受信時との時間差。
FIG. 1 is a longitudinal cross-sectional view, including a partial block diagram, showing a state in which ultrasonic waves are transmitted from an ultrasonic transmitter/receiver to measure the level of molten metal in a mold, for explaining the present invention in detail. , FIG. 2 is a diagram showing an example of the waveform of an ultrasonic signal transmitted from an ultrasonic transceiver and received by the ultrasonic transceiver, and FIG. , FIG. 4 is a vertical cross-sectional view 1 including a partial block diagram showing an embodiment to which the present invention is applied, and FIG. Mold inner layer 1 measured in Example
It is a diagram showing an example of n levels. DESCRIPTION OF SYMBOLS 10... Ultrasonic transmitter/receiver, 12... Main bang echo, 14... Reflected echo, 22... Mold, 24... Molten metal, 2
4A... Molten steel, 32... Electric pulse transmitter, 34... Receiver, 36... Time measuring device,
38... Arithmetic processor, Δbu...-Distance between the ultrasonic transceiver and the molten metal surface, Δ
t: Time difference between transmitting and receiving ultrasonic waves.

Claims (2)

【特許請求の範囲】[Claims] (1)超音波を発信しその反射波を受信することにより
、溶融金属のレベルを測定するモールド内溶融金属レベ
ルの測定方法において、 モールド上方より、該モールド内の溶融金属表面へ向け
て略垂直に空気中へ超音波を発信し、該超音波が発信さ
れてから前記溶融金属表面で反射され受信されるまでの
時間を計測し、 該計測した結果からモールド内の溶融金属のレベルを測
定することを特徴とするモールド内溶融金属レベルの測
定方法。
(1) In a method for measuring the level of molten metal in a mold, in which the level of molten metal is measured by transmitting ultrasonic waves and receiving the reflected waves, a method for measuring the level of molten metal in a mold is performed from above the mold, approximately perpendicularly to the surface of the molten metal in the mold. emit ultrasonic waves into the air, measure the time from when the ultrasonic waves are emitted until they are reflected and received by the molten metal surface, and measure the level of the molten metal in the mold from the measured results. A method for measuring the level of molten metal in a mold.
(2)超音波を発信しその反射波を受信することによつ
て溶融金属のレベルを測定するモールド内溶融金属レベ
ルの測定装置において、 モールド上方に設けられた、該モールド内の溶融金属表
面へ向けて略垂直に空気中へ超音波を発信する超音波送
信手段と、 該超音波送信手段に電気パルスを印加する電気パルス送
信器と、 前記モールド内の溶融金属表面から反射されてきた超音
波を受信する超音波受信手段と、 該超音波受信手段で受信された信号を増幅する受信器と
、 前記超音波送信手段が超音波パルスを発信してから、前
記超音波受信手段が受信するまでの時間間隔を計測する
時間計測器と、 を備えたことを特徴とするモールド内溶融金属レベルの
測定装置。
(2) In a device for measuring the level of molten metal in a mold, which measures the level of molten metal by emitting ultrasonic waves and receiving the reflected waves, the molten metal level in the mold is provided above the mold. an ultrasonic transmitting means for transmitting ultrasonic waves substantially vertically into the air; an electric pulse transmitter for applying an electric pulse to the ultrasonic transmitting means; and an ultrasonic wave reflected from the surface of the molten metal in the mold. an ultrasonic receiving means for receiving the ultrasonic pulse; a receiver for amplifying the signal received by the ultrasonic receiving means; and a receiver for amplifying the signal received by the ultrasonic receiving means, from when the ultrasonic transmitting means transmits an ultrasonic pulse to when the ultrasonic pulse is received by the ultrasonic receiving means. A device for measuring the level of molten metal in a mold, comprising: a time measuring device for measuring a time interval;
JP59246837A 1984-11-21 1984-11-21 Method and apparatus for measuring level of molten metal in mold Pending JPS61124882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59246837A JPS61124882A (en) 1984-11-21 1984-11-21 Method and apparatus for measuring level of molten metal in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59246837A JPS61124882A (en) 1984-11-21 1984-11-21 Method and apparatus for measuring level of molten metal in mold

Publications (1)

Publication Number Publication Date
JPS61124882A true JPS61124882A (en) 1986-06-12

Family

ID=17154429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59246837A Pending JPS61124882A (en) 1984-11-21 1984-11-21 Method and apparatus for measuring level of molten metal in mold

Country Status (1)

Country Link
JP (1) JPS61124882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065758U (en) * 1991-12-19 1994-01-25 功 村上 Molten metal surface position measuring device
JP2013190294A (en) * 2012-03-13 2013-09-26 Sumitomo Metal Mining Co Ltd Liquid level measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065758U (en) * 1991-12-19 1994-01-25 功 村上 Molten metal surface position measuring device
JP2013190294A (en) * 2012-03-13 2013-09-26 Sumitomo Metal Mining Co Ltd Liquid level measuring apparatus

Similar Documents

Publication Publication Date Title
US11020793B2 (en) Measuring method, system and sensor for a continuous casting machine
EP2409795B1 (en) Temperature measuring method and device for continuous-casting mold copper plate
GB1594395A (en) Method and apparatus for measuring slag foaming using microwave level meter
US5379270A (en) Acoustic-optic sound velocity profiler
US6786633B2 (en) Method and arrangement for acoustically determining a fluid temperature
JPS61124882A (en) Method and apparatus for measuring level of molten metal in mold
JPS6037254A (en) Control of liquid level of molten metal bath
Ihara et al. Application of ultrasonic Doppler velocimetry to molten glass by using broadband phase difference method
JPS61130885A (en) Method and apparatus for measuring molten metal level in mold
JPH04351254A (en) Instrument for measuring level in mold in continuous casting
JP2016044984A (en) Weld monitoring device and method by ultrasonic wave
JPH08271322A (en) Ultrasonic liquid level measuring method
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JP2009078298A (en) Method and apparatus for measuring temperature of mold copper plate for continuous casting
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JP4411734B2 (en) Hot ultrasonic thickness gauge and thickness measurement method
JPH07318436A (en) Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor
JPS58191930A (en) Ultrasonic liquid level gauge
GB2076966A (en) Apparatus and method for measuring layer thicknesses of a multilayered metal member
JPS6196404A (en) Method and instrument for measuring thickness of cooling water film of belt caster
JPH08285938A (en) Ultrasonic distance measuring apparatus using wave-guiding rod
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JPH02216409A (en) Ultrasonic measuring instrument
SU1732177A1 (en) Method of determining ultrasound velocity temperature coefficient
JPH10300556A (en) Measuring apparatus for level of molten metal