JPS61124853A - Apparatus for measuring lattice constant - Google Patents

Apparatus for measuring lattice constant

Info

Publication number
JPS61124853A
JPS61124853A JP24444184A JP24444184A JPS61124853A JP S61124853 A JPS61124853 A JP S61124853A JP 24444184 A JP24444184 A JP 24444184A JP 24444184 A JP24444184 A JP 24444184A JP S61124853 A JPS61124853 A JP S61124853A
Authority
JP
Japan
Prior art keywords
slit
ray beam
ray
specimen
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24444184A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishiba
石場 努
Yukio Takano
高野 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24444184A priority Critical patent/JPS61124853A/en
Publication of JPS61124853A publication Critical patent/JPS61124853A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to measure the lattice constant of a monocrystal with high accuracy, by limiting the irradiation area of X-rays to a specimen crystal by a rectangular slit and minimizing the measured area to enhance the repeated accuracy of measurement. CONSTITUTION:Incident X-ray beam 3 is controlled so as to irradiate both crystals of a standard specimen 10 and a measuring specimen. At this time, in order to measure an area as small as possible in the measuring specimen 11 and to hold parallelization of incident X-ray beam 3, a slit 7 is inserted between a monochrometer and specimen crystals 10, 11. The slit 7 has a rectangular slot 15, for example, having a dimension of 0.5X15mm and X-ray beam 3 passes through said slot 15. X-ray beam abcd limited by the slot 15 of the slit and the standard specimen is formed on the measuring specimen 11. When the irradiation area of the beam is made small, a slit insert mechanism 7 is moved to the direction shown by the arrow S.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は単結晶材料の格子定数を測定する装置に関する
もので、矩形状スリットを長手方向に平行移動すること
によシX線の照射面積を正確に調整する機構を具備する
ことによる高精度に格子定数を測定する装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an apparatus for measuring the lattice constant of a single crystal material. The present invention relates to a device that measures a lattice constant with high precision by having a mechanism for accurately adjusting it.

〔発明の背景〕[Background of the invention]

従来の装置は特開昭49−3677号に記載されている
ように格子定数測定装置とはX線源から発生したX線ビ
ームを2方向に分割するスリットを有し、該スリットに
よシ2方向に分割された該X線ビームそれぞれを反射さ
せるモノクロメータ−と、該モノクロメータ−によって
反射されたそれぞれのX線ビームが同一の回転台上に固
定された複数個の単結晶によって、回折条件を満たし得
る様に配置させた単結晶の格子定収の測定装置となって
いた。しかし、上記、記載内容は本測定装置の重要な部
分である試料結晶に照射するX線ビームの制限方法につ
いては何も述べていない。従って本発明のスリット挿入
機構を用いれば、常にX線の照射面積を正確にコン)e
r−ルすることが可能であり再現性のよい高精度測定が
実施できる。
As described in Japanese Patent Laid-open No. 49-3677, a conventional device has a slit that divides the X-ray beam generated from the X-ray source into two directions, and the lattice constant measuring device has a slit that divides the X-ray beam generated from the X-ray source into two directions. A monochromator that reflects each of the X-ray beams divided into directions, and a plurality of single crystals fixed on the same rotary table, each of which is reflected by the monochromator, is set under diffraction conditions. It was a device for measuring the lattice constant yield of single crystals arranged so as to satisfy the following conditions. However, the above description does not say anything about the method of limiting the X-ray beam irradiated to the sample crystal, which is an important part of this measuring device. Therefore, if you use the slit insertion mechanism of the present invention, you can always accurately control the X-ray irradiation area.
It is possible to carry out high-precision measurements with good reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明の目的は格子定数測定装置において、試料結晶に
対するX線ビームの照射面積を矩形状スリットにより制
限し、測定面積を極小化し、測定のくり返し精度を向上
させることによシ、単結晶の格子定数をΔd/dで10
−6〜10−8の高精度で測定しうる格子定数測定装置
を提供することにある。
An object of the present invention is to use a lattice constant measuring device to limit the irradiation area of an X-ray beam on a sample crystal using a rectangular slit, minimize the measurement area, and improve the repeatability of measurements. The constant is Δd/d 10
An object of the present invention is to provide a lattice constant measuring device capable of measuring with high accuracy of -6 to 10-8.

〔発明の概要〕[Summary of the invention]

本発明の特徴は格子定数測定装置において、横方向に長
い矩形状スリットを用いて、そのスリットを横手方向に
平行移動し、標準試料との作る測定試料のX線照射面積
を制限する方式をとった。
The feature of the present invention is that the lattice constant measuring device uses a horizontally long rectangular slit and moves the slit in parallel in the horizontal direction to limit the X-ray irradiation area of the measurement sample made with the standard sample. Ta.

この機構により、測定試料を約180°回転しても容易
に同一大の測定面積をつくりうる。このことにより格子
定数の測定精度を向上せしめたものである。
With this mechanism, even if the measurement sample is rotated by about 180 degrees, the same measurement area can be easily created. This improves the measurement accuracy of lattice constants.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によシ説明する。第1
図は格子定数測定装置の概略を示す。1はX線源である
。X線源1から発生したX線はスリット2によシX線ビ
ーム3.4に分割される。
An embodiment of the present invention will be explained below with reference to FIG. 1st
The figure shows an outline of the lattice parameter measuring device. 1 is an X-ray source. X-rays generated from an X-ray source 1 are split by a slit 2 into X-ray beams 3.4.

X線ビーム3はモノクロメータ−5で単色化サレ、回転
台9上に固定された標準試料10と測定試料11に照射
される。このとき照射面積はスリット7で制限される。
The X-ray beam 3 is monochromated by a monochromator 5 and irradiated onto a standard sample 10 and a measurement sample 11 fixed on a rotating table 9. At this time, the irradiation area is limited by the slit 7.

入射X線ビーム3は滑らかに12方向く回転することに
より、回折条件を満足した方向に回折を起し、カウンタ
13に入射し標準試料10からの回折ピークと測定試料
11の回折ピークとして測定される。このときの両回折
ピークのブラック角の差がΔSとして測定される。
The incident X-ray beam 3 rotates smoothly in 12 directions, causing diffraction in a direction that satisfies the diffraction conditions, and enters the counter 13 where it is measured as a diffraction peak from the standard sample 10 and a diffraction peak from the measurement sample 11. Ru. The difference in Black angle between both diffraction peaks at this time is measured as ΔS.

X線ビーム4による回折は試料台9を約180゜回転し
、X線ビーム3と同様回折線はカウンタ14で測定され
、この時の角度差をΔS′とする。
Diffraction by the X-ray beam 4 rotates the sample stage 9 by about 180 degrees, and like the X-ray beam 3, the diffraction line is measured by the counter 14, and the angular difference at this time is defined as ΔS'.

従って、格子定数の変化量は(1)式で求めることがで
きる。
Therefore, the amount of change in the lattice constant can be determined using equation (1).

ここで、Δd==d、−doであり、d、は測定試料の
格子面間隔、doは標準試料10の格子面間隔である。
Here, Δd==d, -do, d is the lattice spacing of the measurement sample, and do is the lattice spacing of the standard sample 10.

また、θ0は入射X線の波長λ0に対する標準試料10
に対するブラック角である。
In addition, θ0 is the standard sample 10 with respect to the wavelength λ0 of the incident X-ray.
is Black's angle.

上記、測定方法により格子定数を決定することができる
が、この方法で重要なことはX4g!ビーム3とX線ビ
ーム4の測定においてスリット7と8によるX線ビーム
の制限される測定試料上の位置が同一でなければならな
いことである。
The lattice constant can be determined using the above measurement method, but the important thing in this method is that X4g! In the measurement of the beam 3 and the X-ray beam 4, the positions on the measurement sample where the X-ray beam is restricted by the slits 7 and 8 must be the same.

第2図は本発明装置のスリット挿入機構の一実施例を示
す。第2図は第1図におけるXaビーム3によるものと
仮定する。入射X#!ビーム3は予め標準試料10と測
定試料11の両結晶に照射するように調整されていると
する。このとき、測定試料11はできるだけ小さい面積
を測定する必要と入射X線ビーム3の平行性を保つため
モノクロメータ−5と試料結晶10.11間にスリット
7を挿入する。スリット7はその中央部に例えば0.5
X15wmの矩形状の孔15をもち、ここをX線ビーム
3が通過する。測定試料11上にはスリットの孔15と
標準試料10とにより制限されたX線ビームabedが
形成される。このビームの照射面積をよシ小さくする場
合はスリット挿入機構7を矢印S方向に移動し実施可能
となる。
FIG. 2 shows an embodiment of the slit insertion mechanism of the device of the present invention. It is assumed that FIG. 2 is based on the Xa beam 3 in FIG. 1. Incidence X#! It is assumed that the beam 3 is adjusted in advance so as to irradiate both the crystals of the standard sample 10 and the measurement sample 11. At this time, a slit 7 is inserted between the monochromator 5 and the sample crystal 10, 11 in order to measure the smallest possible area of the measurement sample 11 and to maintain parallelism of the incident X-ray beam 3. For example, the slit 7 has a diameter of 0.5 mm at its center.
It has a rectangular hole 15 of x15wm, through which the X-ray beam 3 passes. An X-ray beam abed limited by the slit hole 15 and the standard sample 10 is formed on the measurement sample 11 . If the irradiation area of this beam is to be made smaller, this can be done by moving the slit insertion mechanism 7 in the direction of arrow S.

第1図の説明で格子定数測定時はX線ビーム4による測
定、すなわち、試料台9を約180°回転し測定を行な
うが、この両者においてX線ビームの照射位置が異なる
と測定精度に直接影響する。
In the explanation of Fig. 1, when measuring the lattice constant, the measurement is performed using the X-ray beam 4, that is, the sample stage 9 is rotated approximately 180 degrees. However, if the irradiation position of the X-ray beam is different between the two, the measurement accuracy will be directly affected. Affect.

そこで、第1図に示すスリット7と8を同一仕様のもの
を用いX線の強度をカウンタ13と14でモニタし、同
一強度に調整することによりその目的は達成できる。
Therefore, this purpose can be achieved by using slits 7 and 8 of the same specification as shown in FIG. 1, monitoring the X-ray intensity with counters 13 and 14, and adjusting the intensity to be the same.

第3図(a)はXIWビーム3による測定のX線照射位
置および、回折線16の検出情況を模式的に示したもの
である。第3図(b)はX線ビーム4とそのときの回折
線17の様子を示した。この両図から明らかのようにカ
ウンタ13.14に致達する回折線の生じる測定試料1
1の領域1.12と1 、/1./は等しい。従って、
本発明のスリット挿入機構を使用することにより、測定
試料11上の測定面積の大きさを容易かつ任意に選択で
きると同時に、X線の照射位置本正確に設定することが
できる。
FIG. 3(a) schematically shows the X-ray irradiation position in the measurement using the XIW beam 3 and the detection situation of the diffraction line 16. FIG. 3(b) shows the X-ray beam 4 and the diffraction lines 17 at that time. As is clear from both figures, measurement sample 1 produces diffraction lines that reach counters 13 and 14.
1 area 1.12 and 1, /1. / are equal. Therefore,
By using the slit insertion mechanism of the present invention, the size of the measurement area on the measurement sample 11 can be easily and arbitrarily selected, and at the same time, the X-ray irradiation position can be accurately set.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定試料のX線の照射面積(分析面積
)を任意に、かつ容易に選択することができると同時に
、X線の入射方向の差による照射面積の差異もなく、よ
って、本発明による格子定数測定はΔd/dで10−6
〜10−@の高精度測温1図は格子定数測定装置の概略
平面図、第2図は本発明のスリット挿入機構の1実施例
を示す斜視図、第3図はスリット挿入によるX線照射部
と回折線情報の関係を示した図である。
According to the present invention, the X-ray irradiation area (analysis area) of the measurement sample can be arbitrarily and easily selected, and at the same time, there is no difference in the irradiation area due to a difference in the incident direction of the X-rays. The lattice constant measurement according to the present invention is 10-6 in Δd/d.
~10-@ High precision temperature measurement Figure 1 is a schematic plan view of the lattice constant measuring device, Figure 2 is a perspective view showing one embodiment of the slit insertion mechanism of the present invention, and Figure 3 is X-ray irradiation by slit insertion. FIG. 3 is a diagram showing the relationship between portions and diffraction line information.

1・・・X線源、2・・・スリット、5,6・・・モノ
クロメータ−17,8・・・スリット挿入機構、9・・
・試料台、10・・・標準試料、11・・・測定試料、
13.14・・・カウンタ。
1... X-ray source, 2... Slit, 5, 6... Monochromator 17, 8... Slit insertion mechanism, 9...
・Sample stand, 10... Standard sample, 11... Measurement sample,
13.14...Counter.

¥J 1  図 ′fJZ  図¥J 1 Diagram 'fJZ diagram

Claims (1)

【特許請求の範囲】[Claims] 1、X線源から発生するX線ビームを2方向に分割する
スリットを有し、該スリットにより2方向に分割された
該X線ビームそれぞれを反射させるモノクロメーターと
、該モノクロメーターによつて反射されたそれぞれのX
線ビームが、同一の回転台上に固定された複数個の単結
晶によつて、回折条件を満し得る様に配置させた単結晶
の格子定数の測定装置において、X線照射面積を制限す
るスリットは横方向に広い矩形状のスリットであつて、
その移動方向は横方向に平行移動する構造を有するスリ
ット挿入機構を配置することを特徴とする格子定数測定
装置。
1. A monochromator that has a slit that divides the X-ray beam generated from the X-ray source into two directions, and that reflects each of the X-ray beams that are divided into the two directions by the slit, and the monochromator that reflects the X-ray beam. each X
Limiting the X-ray irradiation area in a single crystal lattice constant measurement device in which the ray beam is arranged so that the diffraction conditions can be satisfied by multiple single crystals fixed on the same rotating table. The slit is a horizontally wide rectangular slit,
1. A lattice constant measuring device characterized in that a slit insertion mechanism having a structure in which the movement direction is parallel to the lateral direction is disposed.
JP24444184A 1984-11-21 1984-11-21 Apparatus for measuring lattice constant Pending JPS61124853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24444184A JPS61124853A (en) 1984-11-21 1984-11-21 Apparatus for measuring lattice constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24444184A JPS61124853A (en) 1984-11-21 1984-11-21 Apparatus for measuring lattice constant

Publications (1)

Publication Number Publication Date
JPS61124853A true JPS61124853A (en) 1986-06-12

Family

ID=17118697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24444184A Pending JPS61124853A (en) 1984-11-21 1984-11-21 Apparatus for measuring lattice constant

Country Status (1)

Country Link
JP (1) JPS61124853A (en)

Similar Documents

Publication Publication Date Title
TWI254794B (en) X-ray diffraction apparatus
US4364122A (en) X-Ray diffraction method and apparatus
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
JP3519203B2 (en) X-ray equipment
JPH05322804A (en) Method and device for measuring reflected profile of x ray
US8488740B2 (en) Diffractometer
US7242743B2 (en) X-ray diffraction apparatus and method
JPS61124853A (en) Apparatus for measuring lattice constant
JPH05107203A (en) X-ray apparatus for evaluating surface condition of sample
JP2000258366A (en) Minute part x-ray diffraction apparatus
US3816747A (en) Method and apparatus for measuring lattice parameter
JPH04318433A (en) Radiograph stress measuring apparatus
JP2921597B2 (en) Total reflection spectrum measurement device
JP2002148220A (en) X-ray diffractometer and x-ray adjustment method
JP2616452B2 (en) X-ray diffractometer
JP2952284B2 (en) X-ray optical system evaluation method
JPH11248652A (en) X-ray diffraction measuring method and x-ray differactometer
JP2999272B2 (en) Parallel beam X-ray diffractometer
JPH05296946A (en) X-ray diffraction device
JPH0933700A (en) X-ray monochromator and x-ray diffractor using it
JPH0225738A (en) X-ray diffraction apparatus
JPH0254496B2 (en)
JPH04175644A (en) Lattice constant measuring device
JPH09222401A (en) Microscopic-region x-ray diffractometer
JPH04329347A (en) Thin film sample x-ray diffracting device