JPS61124754A - Hydraulic controller having solenoid - Google Patents

Hydraulic controller having solenoid

Info

Publication number
JPS61124754A
JPS61124754A JP24329084A JP24329084A JPS61124754A JP S61124754 A JPS61124754 A JP S61124754A JP 24329084 A JP24329084 A JP 24329084A JP 24329084 A JP24329084 A JP 24329084A JP S61124754 A JPS61124754 A JP S61124754A
Authority
JP
Japan
Prior art keywords
oil
pressure
solenoid
oil passage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24329084A
Other languages
Japanese (ja)
Other versions
JPH025947B2 (en
Inventor
Kenichi Sakamoto
坂本 研一
Kazuyoshi Yuge
弓削 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JIDO HENSOKUKI KK
JATCO Corp
Original Assignee
NIPPON JIDO HENSOKUKI KK
JATCO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JIDO HENSOKUKI KK, JATCO Corp filed Critical NIPPON JIDO HENSOKUKI KK
Priority to JP24329084A priority Critical patent/JPS61124754A/en
Publication of JPS61124754A publication Critical patent/JPS61124754A/en
Publication of JPH025947B2 publication Critical patent/JPH025947B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To improve the response performance of a valve by forming a throttle valve for branching a hydraulic source oil passage to a signal pressurized oil passage, into a choke-type throttle valve and lowering the residual pressure in the signal pressurized oil passage. CONSTITUTION:When the oil temperature becomes an ordinary using temperature, a lock-up control valve 32 is not switched to the lock-up side. When a solenoid 36 is turned-ON in this state, the hydraulic pressure in a signal pressurized oil passage 74 immediately increases up to the value equal to the hydraulic pressure in a line pressurized oil passage 58, since the dynamic viscosity of the oil is little, and a sufficient flow-rate of oil is supplied into the signal pressurized-oil passage 74 through a chock-type throttle valve 72. In other words, the response performance of the signal pressurized oil passage 74 for the switching to the turning-ON of the solenoid 36 is improved markedly.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ソレノイドを有する油圧制御装置に一間する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is directed to a hydraulic control device having a solenoid.

(ロ)従来の技術 従来のソレノイドを有する油圧制御装置としては、例え
ば実開昭59−7954号公報に示されるオーバドライ
ブ解除バルブ、オーバドライブ解除ソレノイド等から成
るものがある。この油圧制御装置は、ライン圧油路とオ
リフィス形絞り弁を介して接続された信号圧油路に設け
られた開口をオーバドライブ解除ソレノイドによって開
閉するようにし、この信号圧油路の油圧によってオーバ
ドライブ解除バルブを切換えるようにしたものである。
(B) Prior Art Conventional hydraulic control devices having a solenoid include, for example, an overdrive release valve and an overdrive release solenoid disclosed in Japanese Utility Model Application Laid-Open No. 59-7954. This hydraulic control device uses an overdrive release solenoid to open and close an opening provided in a signal pressure oil path connected to a line pressure oil path via an orifice type throttle valve, and uses the oil pressure in this signal pressure oil path to open and close an opening provided in a signal pressure oil path. The drive release valve is switched.

これによってソレノイドのオンψオフに応じてオーバド
ライブ解除バルブを切換えることができる。
This allows the overdrive release valve to be switched in accordance with whether the solenoid is turned on or off.

(ハ)発明が解決しようとする問題点 しかし、上記のような従来の油圧制御装置には、ソレノ
イドが開口を開いているにもかかわらず低温時にある程
度の油圧を生じバルブが所定どおりに作動しない場合が
あるという問題点があった。すなわち、ソレノイドによ
って開閉される開口は小型のソレノイドの小さい押し力
によっても閉じることが可能であるように比較的小さな
開口としてあり、ライン圧油路と信号圧油路との間に設
けられる絞り弁の絞り効果とこの開口の絞り効果との関
係で信号圧油路には通常の場合であってもある程度の油
圧を生じるが、低温時には油の粘度が増大し油が円滑に
流れないため信号圧油路に通常の場合よりも高い圧力が
発生する。この圧力がバルブの切換り圧力を越えると、
ソレノイドが開口を閉じていないにもかかわらずバルブ
が切換わることになる。このような油圧制御装置を自動
変速機のトルクコンバータロックアツプ機構の切換制御
に適用した場合には1例えば低温時に常にロックアツプ
機構が作動した状態となり、自動変速機を搭載した車両
の走行ができなくなるという不具合を発生する。@号圧
油路の油圧を小さくするためには、ライン圧油路と信号
圧油路との間に設けられる絞り弁の径を小さくして絞り
効果を大きくすればよいが、この場合には絞り弁を通る
油の流量が減少し、ソレノイドによって開口を閉じても
信号圧油路の油圧が直ちに上昇しない、すなわちソレノ
イドのオン・オフに対する信号圧油路の油圧の変化の応
答性が低下する、という不具合を発生する。
(c) Problems to be solved by the invention However, in the conventional hydraulic control device as described above, even though the solenoid is open, a certain amount of hydraulic pressure is generated at low temperatures, and the valve does not operate as expected. There was a problem that there were cases. In other words, the opening opened and closed by the solenoid is relatively small so that it can be closed even with a small pushing force from a small solenoid, and the throttle valve is installed between the line pressure oil path and the signal pressure oil path. Due to the throttling effect of the opening and the throttling effect of this opening, a certain amount of oil pressure is generated in the signal pressure oil path even in normal conditions, but at low temperatures the viscosity of the oil increases and the oil does not flow smoothly, so the signal pressure Higher pressure than normal occurs in the oil line. If this pressure exceeds the switching pressure of the valve,
The valve will switch even though the solenoid has not closed the opening. If such a hydraulic control device is applied to switching control of the torque converter lock-up mechanism of an automatic transmission, the lock-up mechanism will always be activated at low temperatures, making it impossible for a vehicle equipped with an automatic transmission to run. This problem occurs. In order to reduce the oil pressure in the @ pressure oil passage, the diameter of the throttle valve installed between the line pressure oil passage and the signal pressure oil passage can be made smaller to increase the throttling effect, but in this case, The flow rate of oil passing through the throttle valve decreases, and even if the opening is closed by the solenoid, the oil pressure in the signal pressure oil path does not rise immediately. In other words, the responsiveness of changes in oil pressure in the signal pressure oil path to on/off of the solenoid decreases. , this problem occurs.

本発明は、上記のような問題点を解決し、低温時に信号
圧油路に所定以上の残圧が発生せず、しかも通常の使用
温度においては十分な応答性を宥する油圧制御装置を得
ることを目的としている。
The present invention solves the above-mentioned problems and provides a hydraulic control device that does not generate residual pressure above a predetermined level in the signal pressure oil path at low temperatures and has sufficient responsiveness at normal operating temperatures. The purpose is to

(ニ)問題点を解決するための手段 本発明は、絞り弁としてチョーク形絞り弁を用いること
により上記問題点を解決する。すなわち、本発明による
ソレノイドを有する油圧制御装置は、信号圧油路を油圧
源油路に接続する絞り弁が、断面積に比して長さの長い
チョーク形絞り弁であることを特徴としている。
(d) Means for solving the problems The present invention solves the above problems by using a choke type throttle valve as the throttle valve. That is, the hydraulic control device having a solenoid according to the present invention is characterized in that the throttle valve that connects the signal pressure oil path to the oil pressure source oil path is a choke-type throttle valve that is long in length compared to its cross-sectional area. .

(ホ)作用 上記のような構成とすることにより、低温時には油の粘
度の増大に伴なってチョーク形絞り弁の抵抗が大きくな
り、これを通過する流量が減少するため、信号圧油路に
発生する残圧は非常に小さくなる。従って、信号圧油路
の油圧が作用するバルブがソレノイドの作動状態と無関
係に切換わるという不具合の発生が防止される。一方、
油の温度が通常の使用時の温度まで上昇すると、油の粘
度の低下に伴ないチ璽−り形絞り弁の抵抗が減少するた
めライン圧油路から信号圧油路に十分な流量が供給され
るが、油の粘度が低下しているため所定以上の残圧が発
生することはない、しかもこの場合、十分な流量が供給
されているため、ソレノイドが開口を閉じた場合の信号
圧油路の油圧の応答性は非常に良好である。
(e) Effect By adopting the above configuration, the resistance of the choke type throttle valve increases as the viscosity of the oil increases at low temperatures, and the flow rate passing through it decreases, so the signal pressure oil path is The residual pressure generated will be very small. Therefore, the problem that the valve to which the oil pressure of the signal pressure oil path acts is switched regardless of the operating state of the solenoid is prevented from occurring. on the other hand,
When the oil temperature rises to the temperature during normal use, the resistance of the twist-type throttle valve decreases as the viscosity of the oil decreases, so sufficient flow is supplied from the line pressure oil path to the signal pressure oil path. However, since the viscosity of the oil has decreased, residual pressure above the specified level will not occur.Moreover, in this case, sufficient flow is being supplied, so the signal pressure oil when the solenoid closes its opening The hydraulic response of the road is very good.

(へ)実施例 第2図に、本発明を適用するオーバドライブ付自動変速
機の変速機構部を骨組図として示す、この変速機構部は
、トルクコンバータ部1、オーバドライブ歯車列部2、
及び3速歯車列部3から構成されている。トルクコンバ
ータ部1のロックアツプ機構付トルクコンバータ4は、
エンジン(図示してない)からのトルクが回転軸4aか
ら入力され、回転軸4bによってオーバドライブ歯、1
.     車列部2ヘトルクを出力するようにしであ
る。
(F) Embodiment FIG. 2 shows a skeleton diagram of a transmission mechanism section of an automatic transmission with an overdrive to which the present invention is applied. This transmission mechanism section includes a torque converter section 1, an overdrive gear train section 2,
and a third speed gear train section 3. The torque converter 4 with a lock-up mechanism of the torque converter section 1 is
Torque from the engine (not shown) is input from the rotating shaft 4a, and the overdrive tooth 1 is driven by the rotating shaft 4b.
.. It is designed to output torque to the vehicle convoy section 2.

ロックアツプ機構付トルクコンバータ4はロックアツプ
クラッチ4Cを有しており、これによって回転軸4a及
び4bを機械的に連結した状態とすることが可能である
。オーバドライブ歯車列部2は、遊星歯車組5.グイレ
フトクラッチ6及びオーバドライブブレーキ7を有して
おり、また、3速歯車列部3は周知の前進3速後退l速
の歯車列であり、2組の遊星歯車組9及び10,2つの
クラッチ11及び12,2つのブレーキ13及び14、
及びワンウェイクラッチ15を有しており、上記ブレー
午7.13.14、ワンウェイクラッチ15.及びクラ
ッチ6.11.12を適当に組合わせて作動させること
により前進4速後退1速を実現する。
The torque converter 4 with a lock-up mechanism has a lock-up clutch 4C, which allows the rotating shafts 4a and 4b to be mechanically connected. The overdrive gear train section 2 includes a planetary gear set 5. It has a gear left clutch 6 and an overdrive brake 7, and the third speed gear train section 3 is a well-known gear train with three forward speeds and one backward speed, and includes two planetary gear sets 9 and 10, two planetary gear sets 9 and 10, clutches 11 and 12, two brakes 13 and 14,
and a one-way clutch 15, and the one-way clutch 15. By operating the clutches 6, 11, and 12 in appropriate combinations, four forward speeds and one reverse speed are realized.

第1図に、本発明による油圧制御装置を含む自動変速機
の油圧制御装置全体を示す、以下、本発明に直接関連す
るバルブ等について説明し、これら以外の部分の詳細な
説明は省略する(なお、オイルポンプ20.プレッシャ
レギュレータバルブ21、マニュアルバルブ22.1−
2シフトバルブ23.2−3シフトバルブ24.3−4
シフトパルプ25.プレッシャモディファイアバルブ2
.6.スロットルバルブ27.スロットルバックアップ
バルブ28.ソレノイドダウンシフトバルブ29.セカ
ンドロックバルブ30.00制御バシブ31.ガバナバ
ルブ33、アキュムレータ34等の構成・作用について
は例えば特開昭54−132062号、特開昭58−1
96373号に開示されているものと同様である。
FIG. 1 shows the entire hydraulic control system for an automatic transmission including the hydraulic control system according to the present invention.Hereinafter, valves and the like directly related to the present invention will be explained, and detailed explanations of other parts will be omitted. In addition, oil pump 20. Pressure regulator valve 21, manual valve 22.1-
2 shift valve 23.2-3 shift valve 24.3-4
Shift pulp 25. Pressure modifier valve 2
.. 6. Throttle valve 27. Throttle backup valve 28. Solenoid downshift valve 29. Second lock valve 30.00 Control Vasive 31. Regarding the structure and operation of the governor valve 33, accumulator 34, etc., see, for example, JP-A-54-132062 and JP-A-58-1.
It is similar to that disclosed in No. 96373.

ロックアツプ制御バルブ32は、スプール32a及びス
プリング32bを有しており、ロックアツプ油室4dと
連通する油路68を油路70に1続する状態とドレーン
ポード72に接続する状態との間を切り換わり可能であ
る。油路70にはプレッシャーレギュレータバルブ21
からトルクコンバータ供給圧が供給されている。ロック
アツプ制御バルブ32の切り換えは、ロックアツプ制御
ソレノイド36によって行なわれる。ロックアツプ制御
ソレノイド36は、ライン圧油路58(油圧源油路)か
らチョーク形絞り弁72を介して分岐した信号圧油路7
4の油圧の排出を制御することにより、ロックアツプ制
御バルブ32を切り換える。すなわち、ロックアツプ制
御ソレノイド36がオフの状態では信号圧油路74の油
は開口80から排出され、ロックアツプ制御バルブ32
のポート76には油圧が作用せず、ロックアツプ制御バ
ルブ32は油路68と油路70とを連通させる位置にあ
り、逆にロックアツプ制御ソレノイド36がオンになる
と開口80からの油の排出が停止されるためロックアツ
プ制御バルブ32のポート76にライン圧が作用し、ロ
ックアツプ制御バルブ32は油路68をドレーンポート
72からドレーンする状態に切り換わる。ロックアツプ
制御バルブ32が油路68と油路70とを連通させる状
態においては、ロックアツプ油室4dにトルクコンバー
タ供給圧と同じ油圧か作用するため、ロックアツプ機構
は解除状態にあり、またロックアツプ制御バルブ32が
油路68をドレーンする状態に切り換わると、ロックア
ツプ油室4dの油圧がドレーンされるためロックアツプ
クラッチ4Cが締結されロックアツプ状態となる。
The lock-up control valve 32 has a spool 32a and a spring 32b, and switches between a state in which the oil passage 68 communicating with the lock-up oil chamber 4d is connected to the oil passage 70 and a state in which it is connected to the drain port 72. It is possible. A pressure regulator valve 21 is installed in the oil passage 70.
Torque converter supply pressure is supplied from Switching of the lockup control valve 32 is effected by a lockup control solenoid 36. The lock-up control solenoid 36 is a signal pressure oil path 7 branched from a line pressure oil path 58 (hydraulic source oil path) via a choke type throttle valve 72.
The lock-up control valve 32 is switched by controlling the discharge of the hydraulic pressure of 4. That is, when the lock-up control solenoid 36 is off, the oil in the signal pressure oil passage 74 is discharged from the opening 80, and the lock-up control valve 32
Hydraulic pressure does not act on the port 76, and the lock-up control valve 32 is in a position that communicates the oil passage 68 with the oil passage 70. Conversely, when the lock-up control solenoid 36 is turned on, the discharge of oil from the opening 80 is stopped. Therefore, line pressure acts on the port 76 of the lock-up control valve 32, and the lock-up control valve 32 is switched to drain the oil passage 68 from the drain port 72. When the lock-up control valve 32 communicates the oil passage 68 and the oil passage 70, the same oil pressure as the torque converter supply pressure acts on the lock-up oil chamber 4d, so the lock-up mechanism is in the released state, and the lock-up control valve 32 When the oil passage 68 is drained, the oil pressure in the lock-up oil chamber 4d is drained, and the lock-up clutch 4C is engaged to enter the lock-up state.

ロックアツプ制御ソレノイド36は、図示してないロッ
クアツプコントロールユニットからの信号によって1例
えば第4速時の所定車速以上(あるいは各変速段の所定
車速以上)の場合にオンとされる。
The lock-up control solenoid 36 is turned on by a signal from a lock-up control unit (not shown) when the vehicle speed is equal to or higher than a predetermined vehicle speed in, for example, fourth gear (or equal to or higher than a predetermined vehicle speed in each gear).

ソレノイド36がオフの状態にあって信号圧油路74の
開口80を開いている場合には、前述のように、チ、−
り形絞り弁72を通ってライン圧油路58から信号圧油
路74に流入してきた油は開口80を通して排出される
。この場合の信号圧油路74の油圧はチョーク形絞り弁
72の流量特性とオリフィス形絞り弁である開口80の
流量特性とによって決定される。チョーク形絞り弁72
の流量特性は次の式によって示される。
When the solenoid 36 is in the OFF state and opens the opening 80 of the signal pressure oil passage 74, as described above,
Oil that has flowed from the line pressure oil passage 58 into the signal pressure oil passage 74 through the cross-shaped throttle valve 72 is discharged through the opening 80. In this case, the oil pressure of the signal pressure oil passage 74 is determined by the flow characteristics of the choke-type throttle valve 72 and the flow rate characteristics of the opening 80, which is an orifice-type throttle valve. Choke type throttle valve 72
The flow rate characteristics of is expressed by the following equation.

Q=AXΔP/ν Q・・・・通過流量 A・・・・定数 ΔP・・φ圧力差 ν・・・・動粘性係数 従って、油温が非常に低く動粘性係数νが大、きい場合
にはチョーク形絞り弁72を通過する流量が大幅に減少
する。このため信号圧油路74の油圧が非常に小さくな
る。このように油の温度が低下すればするほど信号圧油
路74の油圧が低下するため、ロックアツプ制御バルブ
32のポート76に作用する油圧は非常に小さくなり、
スプール32aがスプリング32bの力に抗して切換え
られることはない、なお、この状態でソレノイド36が
オンとなって開口80が閉じられると信号圧油路74の
油圧は上昇するが、チョーク形絞り弁72を通して供給
される油の量が少ないため、油圧の上昇には多少の時間
遅れがある。しかし、一般にロックアツプ機構は発進直
後の低温時には作動させない制御が行なわれるので、油
温か低い状態においてソレノイド36がオンとされるこ
とはなく、また油温が低い状態においてソレノイド36
がオンとなる制御が行なわれたとしても、油温が低く油
圧の立上りに応答遅れがある時間はそれほど長くないた
め、油圧の応答遅れがあったとしても実際的には問題と
なることはない。
Q=AXΔP/ν Q: Passing flow rate A: Constant ΔP: φ Pressure difference ν: Kinematic viscosity coefficient Therefore, when the oil temperature is very low and the kinematic viscosity coefficient ν is large, In this case, the flow rate passing through the choke-type throttle valve 72 is significantly reduced. Therefore, the oil pressure in the signal pressure oil passage 74 becomes extremely small. In this way, the lower the oil temperature, the lower the oil pressure in the signal pressure oil passage 74, so the oil pressure acting on the port 76 of the lock-up control valve 32 becomes extremely small.
The spool 32a is not switched against the force of the spring 32b. In this state, when the solenoid 36 is turned on and the opening 80 is closed, the oil pressure in the signal pressure oil passage 74 increases, but the choke-type throttle Since the amount of oil supplied through valve 72 is small, there is some time delay in the increase in oil pressure. However, in general, the lock-up mechanism is controlled so as not to operate when the temperature is low immediately after starting, so the solenoid 36 is not turned on when the oil temperature is low, and the solenoid 36 is not turned on when the oil temperature is low.
Even if control is performed to turn on the oil pressure, the time when the oil temperature is low and there is a response delay when the oil pressure rises is not that long, so even if there is a delay in the oil pressure response, it is not a practical problem. .

一方、油の温度が上昇すると信号圧油路74の油圧が上
昇するが、この油圧はロックアツプ制御バルブ32の切
換圧よりも小さくなるように設定しである。従って、油
の温度が通常の使用温度になった場合にも、ソレノイド
36がオンになっていないにもかかわらずロックアツプ
制御バルブ32がロックアツプ側に切換わることはない
、この状態でソレノイド36がオンとなると、油の動粘
性係数νが小さくチョーク形絞り弁72を通して48号
圧油路74に十分な流量の油が供給されるため、信号圧
油路74の油圧は直ちにライン圧油路58の油圧と同じ
値まで上昇する゛、すなわち、ソレノイド36のオンへ
の切換わ、りに対する信号圧油路74の油圧の応答性は
非常に良い、従って、定常的な使用温度においてはチョ
ーク形絞り弁72を使用しても従来と同様の油圧応答性
を得ることができる。
On the other hand, when the oil temperature rises, the oil pressure in the signal pressure oil passage 74 increases, but this oil pressure is set to be lower than the switching pressure of the lock-up control valve 32. Therefore, even if the oil temperature reaches the normal operating temperature, the lock-up control valve 32 will not switch to the lock-up side even though the solenoid 36 is not turned on.In this state, the solenoid 36 is turned on. In this case, the oil has a small kinematic viscosity coefficient ν and a sufficient flow rate of oil is supplied to the No. 48 pressure oil passage 74 through the choke type throttle valve 72, so that the oil pressure in the signal pressure oil passage 74 immediately changes to the line pressure oil passage 58. The response of the oil pressure of the signal pressure oil line 74 to the switching on of the solenoid 36 is very good, and therefore, at steady operating temperatures, the choke type throttle valve increases to the same value as the oil pressure. Even if 72 is used, the same hydraulic responsiveness as the conventional one can be obtained.

なお、この実施例はソレノイド36によって制御される
信号圧油路74の油圧によってロックアツプ制御バルブ
32の切換えを制御する場合に本発明を適用したもので
あるが、本発明をロックアツプ制御バルブ以外のバルブ
の切換えに適用することができることは明らかであり、
またソレノイドによって信号圧油路をデユーティ制御す
る場合についても適用可能であることはもちろんのこと
である。
In this embodiment, the present invention is applied to the case where the switching of the lock-up control valve 32 is controlled by the oil pressure of the signal pressure oil passage 74 controlled by the solenoid 36, but the present invention can be applied to valves other than the lock-up control valve. It is clear that it can be applied to the switching of
It goes without saying that the present invention is also applicable to the case where the signal pressure oil passage is duty-controlled by a solenoid.

(ト)!A明の効果 以上説明してきたように1本発明によると、油圧源油路
から信号圧油路を分岐させる絞り弁がチョーク形絞り弁
であるので、低温時における4g号圧油路の残圧を低下
させることができ、信号圧油路の油圧によって制御され
るバルブ等を所定どおり作動させることができ、しかも
通常の使用温度においてはオリフィス形絞り弁を用いた
場合と同様の応答性を得ることができる。
(to)! As explained above, according to the present invention, the throttle valve that branches the signal pressure oil passage from the oil pressure source oil passage is a choke type throttle valve, so that the residual pressure in the No. 4g pressure oil passage at low temperatures is reduced. This allows valves, etc. controlled by the oil pressure in the signal pressure oil path to operate as specified, and also provides the same responsiveness as using an orifice type throttle valve at normal operating temperatures. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による油圧制御装置を含む油圧回路を示
す図、第2図は自動変速機の骨組図である。 36・・−ソレノイド、5811・・ライン圧m路(油
圧源油路)、72・・・チョーク形絞り弁、74・φ・
信号圧油路。
FIG. 1 is a diagram showing a hydraulic circuit including a hydraulic control device according to the present invention, and FIG. 2 is a skeleton diagram of an automatic transmission. 36...-Solenoid, 5811...Line pressure m path (hydraulic source oil path), 72...Choke type throttle valve, 74・φ・
Signal pressure oil line.

Claims (1)

【特許請求の範囲】[Claims] 油圧源油路と絞り弁を介して接続された信号圧油路に設
けられた開口の開閉をソレノイドによって制御すること
により信号圧油路の油圧を制御する、ソレノイドを有す
る油圧制御装置において、絞り弁がチョーク形絞り弁で
あることを特徴とするソレノイドを有する油圧制御装置
In a hydraulic control device having a solenoid that controls the hydraulic pressure of the signal pressure oil path by controlling the opening and closing of an opening provided in the signal pressure oil path connected to the oil pressure source oil path via a throttle valve, a solenoid is used. A hydraulic control device having a solenoid, characterized in that the valve is a choke-type throttle valve.
JP24329084A 1984-11-20 1984-11-20 Hydraulic controller having solenoid Granted JPS61124754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24329084A JPS61124754A (en) 1984-11-20 1984-11-20 Hydraulic controller having solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24329084A JPS61124754A (en) 1984-11-20 1984-11-20 Hydraulic controller having solenoid

Publications (2)

Publication Number Publication Date
JPS61124754A true JPS61124754A (en) 1986-06-12
JPH025947B2 JPH025947B2 (en) 1990-02-06

Family

ID=17101642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24329084A Granted JPS61124754A (en) 1984-11-20 1984-11-20 Hydraulic controller having solenoid

Country Status (1)

Country Link
JP (1) JPS61124754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831900A (en) * 1986-04-01 1989-05-23 Mazda Motor Corporation System for controlling rate of speed change in automatic transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030288A (en) * 1973-07-17 1975-03-26
JPS5712128A (en) * 1980-06-24 1982-01-22 Mitsubishi Motors Corp Torque transmission apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030288A (en) * 1973-07-17 1975-03-26
JPS5712128A (en) * 1980-06-24 1982-01-22 Mitsubishi Motors Corp Torque transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4831900A (en) * 1986-04-01 1989-05-23 Mazda Motor Corporation System for controlling rate of speed change in automatic transmission

Also Published As

Publication number Publication date
JPH025947B2 (en) 1990-02-06

Similar Documents

Publication Publication Date Title
JP2846362B2 (en) Hydraulic control device for lock-up clutch
US4023444A (en) Pressure control circuit for use in automatic transmission of vehicle
JPH023076B2 (en)
US4050332A (en) Oil pressure control system for an automatic transmission system
JPS6313950A (en) Hydraulic, servo-utilized pressure governing device in automatic gear
JPH07317891A (en) Hydraulic control device for automatic transmission
JPH0539238Y2 (en)
JP3116222B2 (en) Hydraulic pressure control system for automatic transmission
US4619350A (en) Clutch operation control system for fluid torque converter of vehicular transmission
JPS61124754A (en) Hydraulic controller having solenoid
JPH05203047A (en) Control device for lockup clutch
US4562905A (en) Clutch operation control system for fluid torque converters
JP2959049B2 (en) Anti-freezing device for forward / reverse switching mechanism for continuously variable transmission
JP3458583B2 (en) Forward / backward switching control device for friction wheel type continuously variable transmission
JP2650292B2 (en) Hydraulic control device for vehicle power transmission
JPS5837369A (en) Controller for automatic change gear for vehicle
KR0131303B1 (en) Auto-transmission reduction valve
KR0131304B1 (en) Hydraulic pressure control valve
JP2874011B2 (en) Hydraulic control device for automatic transmission for vehicles
JPH04145262A (en) Hydraulic controller of automatic transmission for vehicle
JPH084889A (en) Transmission control hydraulic circuit for automatic transmission
JPH0447481Y2 (en)
JPH0231075A (en) Speed change control device for automatic speed change gear
JPS6188055A (en) Hydraulic control device for automatic speed change gear
KR101091656B1 (en) System for control lock up clutch

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees