JPS61124548A - Ultrafine particle sintered hard alloy - Google Patents

Ultrafine particle sintered hard alloy

Info

Publication number
JPS61124548A
JPS61124548A JP24328484A JP24328484A JPS61124548A JP S61124548 A JPS61124548 A JP S61124548A JP 24328484 A JP24328484 A JP 24328484A JP 24328484 A JP24328484 A JP 24328484A JP S61124548 A JPS61124548 A JP S61124548A
Authority
JP
Japan
Prior art keywords
cutting
alloy
hard alloy
carbide
sintered hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24328484A
Other languages
Japanese (ja)
Inventor
Norio Takahashi
紀雄 高橋
Yusuke Iyori
裕介 井寄
Hitoshi Horie
堀江 仁
Hisaaki Ida
井田 久晶
Toshinao Takahashi
高橋 利尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Carbide Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Carbide Tools Ltd filed Critical Hitachi Metals Ltd
Priority to JP24328484A priority Critical patent/JPS61124548A/en
Publication of JPS61124548A publication Critical patent/JPS61124548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled hard alloy having superior toughness and improved resistances for wear, pitching, by adding a specified quantity of Hf to sintered hard alloy in which hard phase composed mainly of WC and Fe group, Cr group elements are joined at a specified ratio. CONSTITUTION:By weight ratio, 75-90% hard phase (having <=0.8mu average grain size of WC) composed mainly of WC is bonded with 10-25% element of >=one kind among Fe, Cr groups (excluding Mo) to manufacture sintered hard alloy. To said alloy, 0.3-3.2% Hf or Hf carbide is added. By substituting <=about 5% WC by 0.1-5% one or 2 kinds among TaC, NbC, suppressing effect of grain growth can be promoted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ソリッドエンドミルやドリルとして、各種用
途に使用されている超微粒子超硬合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrafine particle cemented carbide used in various applications as solid end mills and drills.

〔1従米の技術〕 WC基題硬合會は、切削工具、耐摩工具用の合金材料と
して広い範囲にわたり使用されている。エンドミル、ド
リルといった回転工具には、WC粒を微細化することで
、分散強化を図り、強度を増加させた超微粒子超硬合金
が使用されている。
[1. American technology] WC-based hard alloys are widely used as alloy materials for cutting tools and wear-resistant tools. Rotary tools such as end mills and drills use ultrafine-grain cemented carbide, which has increased strength by dispersion strengthening by refining WC grains.

回忙工兵で鋼を切削する場合、低速度で切削を行なうと
工具刃先に構成刃先を生成する。さらに切削を続けると
構成刃先は工具切刃より脱落する。このような構成刃先
の付着、脱落を繰り返しながら切削を続けることにより
工具切刃は、繰り返し応力を受け、ついには、チッピン
グを起こすに至る。
When cutting steel with a rotating engineer, cutting at low speed will generate a built-up cutting edge on the tool cutting edge. If cutting continues further, the built-up cutting edge will fall off from the tool cutting edge. By continuing cutting while repeating the attachment and detachment of the built-up cutting edge, the cutting edge of the tool is repeatedly subjected to stress, which eventually leads to chipping.

〔発明が解決しようとする問題点3 以上のような現象に耐え得る工具材料は、鋼との摩擦、
反応性の小さいものが望ましい。
[Problem 3 to be solved by the invention Tool materials that can withstand the above phenomena are
A material with low reactivity is desirable.

よって回転工具に使用する材料の必要条件としては、(
1)強靭性を持ち、繰り返し応力に強い刃先が得られる
こと、(2)被削材の溶着による1構成刃先が生じにく
いことという2点かあζアられる。
Therefore, the requirements for materials used in rotating tools are (
Two points are achieved: 1) A cutting edge that is strong and resistant to repeated stress can be obtained, and (2) a single-component cutting edge is less likely to occur due to welding of the work material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、WCを主成分とする硬質相75〜90%、鉄
族およびOr族(ただし、MOを除く)のうちの1種ま
たは2種以上10〜25%の結合相からなる超微粒子超
硬合金に、Hf またはHf炭化物を0.1〜3.2%
添加したことを特徴とするものである。
The present invention is characterized by ultrafine particles consisting of 75 to 90% of a hard phase mainly composed of WC, and 10 to 25% of a binder phase of one or more of the iron group and the Or group (excluding MO). Add 0.1 to 3.2% Hf or Hf carbide to hard alloy
It is characterized by the addition of

本発明において、上記WCは粒度の大きいものを用いた
場合にはバインダ一層が厚くなり、その部分から脱落し
欠けが生じ易くなるため、その平均粒度は0.8μ以下
が好ましい、また、本発明においてはHfまたはHf炭
化物を微量添加することにより、合金の分散強化が著し
く顕著になり、耐摩耗性が向上する一方、Hf自体の機
械的強度が他の添加物よりも高いので合金の靭性をほと
んど劣化することがない。
In the present invention, when the above-mentioned WC has a large particle size, the binder layer becomes thicker and easily falls off from that part, causing chipping. Therefore, the average particle size is preferably 0.8μ or less. By adding a small amount of Hf or Hf carbide, the dispersion strengthening of the alloy becomes remarkable and the wear resistance improves, while the mechanical strength of Hf itself is higher than other additives, so the toughness of the alloy is improved. Almost never deteriorates.

HfまたはHf炭化物の添加量を0.1〜3゜2重量%
に限定した理由は、0.1重量%未満で1は添加による
効果が見られず、 3.2重量%1を超えて添加すると
、焼結性、室温強度が悪化し始めるからである。
The amount of Hf or Hf carbide added is 0.1 to 3.2% by weight.
The reason why 1 is limited to less than 0.1% by weight is that no effect is observed when added, and when added in excess of 3.2% by weight 1, sinterability and room temperature strength begin to deteriorate.

さらに、本発明において、上記硬質相の主成分であるW
Cの5%以下を、粒成長抑制効果の助長などの目的で、
TaC,NbCt’ft換しても、本発明のHfまたは
Hf炭化物の微量添加による実用上の効果(粒成長抑制
、!It靭性、吸収エネルギーなど)に対し、なんら影
響を与えない。
Furthermore, in the present invention, W which is the main component of the hard phase
5% or less of C is added for the purpose of promoting the effect of suppressing grain growth, etc.
Even if TaC and NbCt'ft are exchanged, there is no effect on the practical effects (grain growth suppression, !It toughness, absorbed energy, etc.) of adding a small amount of Hf or Hf carbide of the present invention.

しかし置換量が5%を超えると、強度が低下するので実
用上問題がでてくる。また超微粒子超硬合金において、
通常粒抑制のため添加されているVなどを併用すること
は、本発明においても、粒抑制、強靭性などの効果を得
るために有効である。
However, if the amount of substitution exceeds 5%, the strength decreases, causing a practical problem. In addition, in ultrafine particle cemented carbide,
The combined use of V, which is usually added to suppress grains, is also effective in the present invention in order to obtain effects such as grain suppression and toughness.

〔実施例〕〔Example〕

次に、本発明の超微粒子超硬合金について実施例に上り
説明する。
Next, the ultrafine grain cemented carbide of the present invention will be described with reference to Examples.

実施例1゜ 平均粒径0.7μのWC85重量%、C。Example 1゜ 85% by weight WC with an average particle size of 0.7μ, C.

111重量%とNi4重量%の組成に0.7重量%のH
f  炭化物を添加したものを湿式ボールミルで96時
間混合後、トルエンで溶解したパラフィン2%を投入し
、乾燥した粉末をエンドミル(8φ、2枚刃)に成型し
た後、1350℃にて真空焼結し、加工した。
0.7% by weight of H in a composition of 111% by weight and 4% by weight of Ni.
f After mixing the carbide-added material in a wet ball mill for 96 hours, adding 2% paraffin dissolved in toluene and molding the dried powder into an end mill (8φ, 2 blades), vacuum sintering at 1350°C. and processed.

以上のようにして作製した本発明エンドミル(A ’)
ト市11j高i度@S K H9種(B)、および市販
題微粒子題硬合金(C)、CD)の4者について、その
成分分析および硬さ、破壊靭性値の測定を行ないその結
果を第1表に示す。
End mill of the present invention (A') produced as above
We analyzed the components and measured the hardness and fracture toughness values for the following four materials: Toichi 11j High I degree @ S K H9 type (B), and commercially available fine particle hard alloys (C) and CD). Shown in Table 1.

さらに下記切削条件で寿命試験を行なった。Furthermore, a life test was conducted under the following cutting conditions.

被  削  材  545C(Hc28−32>切削速
度26.5 m/ win 送         リ   0.0311a/刃切り
込み深さ 8−一 切り込み中 4−一 切  削  油  油性 切削方式片削り 上記条件で切削した結果、5KH9禰(B)は男削長さ
2.5−で′I?命となり、また市販超徴粒子超硬合金
(C)は5論で、市販超微粒子超硬合金(D)は7−で
、いずれもチッピングにより寿命となった。しかしなが
ら本発明合金Aは、35−の切削で摩耗により仕上げ面
が粗くなり、ようやく寿命となった。
Work material 545C (Hc28-32> Cutting speed 26.5 m/win Feed rate 0.0311a/blade depth of cut 8-1 mid-cut 4-all Cutting oil Oil-based cutting method Single cut Cutting under the above conditions resulted in 5KH9 Nene (B) has a cutting length of 2.5-mm, and the commercially available ultra-fine grained cemented carbide (C) has a 5th grade, and the commercially available ultrafine-grained cemented carbide (D) has a 7-mm diameter. All of them reached the end of their service life due to chipping. However, the finished surface of Alloy A of the present invention became rough due to abrasion during 35-mm cutting, and the service life finally ended.

実施例2゜ 市販のWC粉末(平均粒度0.7#s)、Mo粉末(同
1μ曽)、 Hf粉末(同1μs八Co粉末(同1.3
μ−)を用い、第2表に示す組成で混合後、成型し、1
350℃で1時1lll焼結を行なった。
Example 2 Commercially available WC powder (average particle size 0.7#s), Mo powder (average particle size 1μs), Hf powder (average particle size 1μs), Co powder (average particle size 1.3
μ-), mixed with the composition shown in Table 2, molded,
Sintering was performed at 350°C for 1 hour.

得られた合金について、その硬さ、抗折力、破壊靭性値
(Klc)を測定した。
The hardness, transverse rupture strength, and fracture toughness value (Klc) of the obtained alloy were measured.

第2表にその結果を示す。Table 2 shows the results.

さらに、エンドミル(8φ、2枚刃)を製作し、実施例
1と同条件で切l!II長5−とし、寿命試験を行なっ
た。
Furthermore, an end mill (8φ, 2 blades) was manufactured and cut under the same conditions as in Example 1! II length was 5-, and a life test was conducted.

その切刃の摩耗状態を第3表に示す。Table 3 shows the state of wear of the cutting edge.

ヴS   3   表 備考:比較合金7は切削長3−で欠損。V S 3 Table Note: Comparative Alloy 7 was damaged at cutting length 3-.

摩耗は3Iaでの値を示す。Wear values are shown at 3Ia.

第3表より、HfCを微量添加することにより、耐摩耗
性が向上することがわかる。
From Table 3, it can be seen that the addition of a small amount of HfC improves the wear resistance.

また、HfCの微量添加によりエンドミル切刃の耐チッ
ピング性は向上するが、HfC4,5のもの(比較合金
7)は、初期においてチッピングを生じた。しかし、0
.1〜3.2重量%のHfCを添加したもの(本発明合
金2〜6)はチッピングの発生が低(、摩耗が先行する
ことが確認された。
Further, although the chipping resistance of the end mill cutting edge was improved by adding a small amount of HfC, chipping occurred in the initial stage of HfC4,5 (comparative alloy 7). However, 0
.. It was confirmed that the alloys to which 1 to 3.2 weight % of HfC were added (invention alloys 2 to 6) had low occurrence of chipping (and wear preceded).

実施例3゜ 実施例2の第2表における本発明合金5を基本組成とし
てWCeTaCおよび/またはNbCで置換したと塾の
硬さ、抗折力、K+cの測定結果を第4表に示す。
Example 3 Table 4 shows the hardness, transverse rupture strength, and K+c measurement results of alloys of the present invention in Table 2 of Example 2 in which the basic composition was replaced with WCeTaC and/or NbC.

さらに、エンドミル(8φ、2枚刃)を製作し、下記条
件で切m艮20mの辺削試駿を行なった。1.!J刃の
摩耗状態を第5表に示す。
Furthermore, an end mill (8φ, 2-flute) was manufactured, and a trial edge cutting with a cutting length of 20 m was conducted under the following conditions. 1. ! Table 5 shows the wear condition of the J blade.

なお、比較のため実施例1で使用した高速度鋼5KH9
種(B)、市販超微粒子超硬合金(C)、(p)を用い
た。
For comparison, the high speed steel 5KH9 used in Example 1
Seed (B), commercially available ultrafine particle cemented carbide (C), and (p) were used.

彼   削   材    FCD45切削速度 28
.9m/鴫in 送         リ     0.13m+s/刀
切り込み深さ   8− 切り込み巾  41 切  削  油   油性 切削方式 片削り 第4.5表よりTaCおよび/またはNbCの添加によ
り硬度お上り耐チッピング性は、やや低下するものの耐
摩耗性を向上する効果があることがわかる。
Cutting material FCD45 Cutting speed 28
.. 9m/in feed 0.13m+s/cutting depth 8-cutting width 41 Cutting oil Oil-based cutting method Single cutting From Table 4.5, the addition of TaC and/or NbC increases the hardness and the chipping resistance slightly increases. It can be seen that there is an effect of improving wear resistance, although it decreases.

第5表 備考:比較合金Bはビビリによる寿命。Table 5 Note: Comparative alloy B has a lifespan due to chatter.

摩耗はビビリ時の値。Wear is the value when chatter occurs.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明合金は、HrまたはHf炭化物を
微量添加することにより、耐摩耗性、耐チッピング性が
向上するとともに、靭性に優れ、寿命の長い工具を得る
ことができるものである。
As described above, by adding a small amount of Hr or Hf carbide to the alloy of the present invention, wear resistance and chipping resistance are improved, and a tool with excellent toughness and long life can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比で、WCを主成分とする硬質相75〜90
%をFe族およびCr族(ただし、Moを除く)のうち
の1種以上の元素10〜25%で結合した超硬合金にお
いて、HfまたはHf炭化物を0.1〜3.2%添加し
たことを特徴とする超微粒子超硬合金。
(1) Hard phase mainly composed of WC 75 to 90 in weight ratio
% combined with 10 to 25% of one or more elements of the Fe group and Cr group (excluding Mo), in which 0.1 to 3.2% of Hf or Hf carbide is added. Ultrafine particle cemented carbide characterized by:
(2)特許請求の範囲第1項記載の合金において、上記
硬質相の一部をTaCおよびNbCのうちの1種または
2種で0.1〜5%置換したことを特徴とする超微粒子
超硬合金。
(2) In the alloy according to claim 1, a part of the hard phase is replaced with 0.1 to 5% of one or two of TaC and NbC. Hard metal.
JP24328484A 1984-11-20 1984-11-20 Ultrafine particle sintered hard alloy Pending JPS61124548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24328484A JPS61124548A (en) 1984-11-20 1984-11-20 Ultrafine particle sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24328484A JPS61124548A (en) 1984-11-20 1984-11-20 Ultrafine particle sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS61124548A true JPS61124548A (en) 1986-06-12

Family

ID=17101562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24328484A Pending JPS61124548A (en) 1984-11-20 1984-11-20 Ultrafine particle sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS61124548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017597A1 (en) * 1996-10-21 1998-04-30 John James Saveker Carbide material and tools including such material
CN102808123A (en) * 2011-06-02 2012-12-05 自贡硬质合金有限责任公司 Method and device for crushing old hard alloy and preparation method of device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017597A1 (en) * 1996-10-21 1998-04-30 John James Saveker Carbide material and tools including such material
CN102808123A (en) * 2011-06-02 2012-12-05 自贡硬质合金有限责任公司 Method and device for crushing old hard alloy and preparation method of device

Similar Documents

Publication Publication Date Title
US4145213A (en) Wear resistant alloy
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
JP2010523355A (en) tool
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
CN108570589B (en) Hard alloy cutter material and preparation method thereof
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JPH02213428A (en) Manufacture of cutting tool material
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPS61124548A (en) Ultrafine particle sintered hard alloy
JPS6256943B2 (en)
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JPH0346538B2 (en)
JP3292949B2 (en) Fine-grained cemented carbide and method for producing the same
JPS6256944B2 (en)
JPH1053831A (en) Cutting tool made of tungsten carbide base cemented carbide excellent in chipping resistance
JP2503770B2 (en) Tungsten carbide based cemented carbide for cutting tools
JPH01191760A (en) Tungsten carbon-based cutting tool made of sintered hard alloy for cutting of ti alloy
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPS636618B2 (en)
JPS6245295B2 (en)
JP2002361503A (en) Cutting tool
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JP4154643B2 (en) Cemented carbide square end mill with excellent chipping resistance with high-speed cutting.
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JPH08319532A (en) Sintered hard alloy for punching tool